

Diseño y Selección de equipos de ciclo Rankine en planta de pirólisis de plástico

Rocio Andrea Garrido Panza Ingeniero Mecánico Pontificia Universidad Católica de Valparaíso

Profesor guía: Sra. María Josefina Torres Profesor co-guía: Sr. Hugo Valenzuela Rosenzuaig

Agradecimientos

Agradezco al universo por permitirme estar en este lugar. Agradezco a mi familia por su apoyo y dedicación. Agradezco las experiencias vividas, y a todo quien ha aportado en mi evolución. Agradezco a quienes me han traspasado sus conocimientos desde la humildad y el amor por educar.

Agradezco a mi abuela por su grandeza, su incondicionalidad y su amor infinito.

Resumen

Diseñar y seleccionar componentes de una unidad de Ciclo Rankine para generación de energía eléctrica, utilizando gas de síntesis, proveniente de planta de pirólisis de plástico. El diseño se realiza utilizando el software CyclePad para el análisis de balances energéticos en los equipos que componen el ciclo, para encontrar el diseño más eficiente. Se diseña un ciclo Rankine simple, el cual genera 2,4 MW con un eficiencia de 30% utilizando gas de síntesis como fuente de energía. Para el ciclo diseñado, los combustibles convencionales son menos eficientes en igualdad de condiciones.

Pirólisis; Plástico; Gas de síntesis; Ciclo Rankine; Energía; Equipos.

Abstract

Design and select components of a Rankine cycle unit for generation of electrical energy, using Syngas, coming from a plastic pyrolysis plant. The design is carried out using the CyclePad software for the analysis of energy balances in the equipment that make up the cycle, to find the most efficient design. A simple Rankine cycle is designed, which generates 2.4 MW with an efficiency of 30% using Syngas as an energy source. For the designed cycle, conventional fuels are less efficient with same conditions.

Pyrolysis; Plastic; Syngas; Rankine cycle; Energy; Equipments.

Índice de contenido

Ag	rade	cimie	entos	2 -
Re	sume	ən		3 -
Ab	strac	t		4 -
Ínc	lice c	le co	ntenido	5 -
Ínc	lice c	le Ta	ablas	7 -
Ínc	lice c	le fig	juras y gráficos	8 -
1	Intr	odu	cción	9 -
	1.1	Obj	etivo General	10 -
	1.2	Obj	etivos Específicos	10 -
2	Ant	tece	dentes Generales	11 -
	2.1	Def	inición de pirólisis	11 -
	2.1	.1	Tipos de pirólisis	11 -
	2.1	.2	Productos de la pirólisis	11 -
	2.2	Pirć	blisis de plástico	12 -
	2.2	.1	Definición y tipos de plásticos	12 -
	2.2	.2	Reciclaje de Plásticos en Chile	14 -
	2.2	.3	Proceso de pirólisis de plástico	15 -
	2.3	Gas	s de Síntesis	18 -
	2.3	.1	Factores que influyen en la calidad del gas de síntesis	19 -
	2.3	.2	Propiedades del Gas de Síntesis	20 -
	2.3	.3 nhus	Comparación poder calorífico de gas de síntesis con otros	- 21 -
3	Eu	ndan		- 22 -
5,	ו עו 1 ג	Cicl	los do Potoncia	- 22 -
``	ן.ר 2 1	1	Ciclo de Carpot	- 24 -
,	3.1	. ı Cicl	lo Rankine	- 25 -
```	<u>גר</u> גר	1	Fluido de trabajo	- 26 -
	3.2	2	Proceso	- 27 -
	323		Análisis de Energía del ciclo	- 36 -
	321		Fficiencia del ciclo Rankine	- 39 -
	3.2		Balance exercía	- 42 -
4	Me	todo		44 -
-				···· ·

	11	Modelamiento mediante Cycle Pad	- 15 -
_	4.1		
5	DIS	eno de Ciclo Rankine	46 -
	5.1	Selección de cámara de pirólisis	46 -
	5.1	.1 Cantidad de combustible producida	47 -
	5.1	.2 Calor generado con el gas de síntesis	48 -
	5.2	Análisis del Ciclo Rankine	48 -
	5.2	.1 Balance de exergía del ciclo Rankine simple	59 -
	5.3 comb	Comparación del ciclo utilizando gas de síntesis con relación a ustibles convencionales.	65 -
6	Sel	ección de equipos Ciclo Rankine	67 -
	6.1	Bomba de alimentación caldera	67 -
	6.2	Caldera de vapor	68 -
	6.3	Turbina de vapor	70 -
	6.4	Condensador	71 -
7	Co	nclusiones	73 -
8	Bib	liografía	74 -
9	Ane	exos	76 -
	9.1	Anexo 1 Propiedades agua saturada	76 -
	9.2	Anexo 2 Propiedades de vapor sobrecalentado	80 -
	9.3	Anexo 3 Propiedades gas ideal H ₂ O	82 -
	9.4	Anexo 4 Catálogo Bomba KSB HPH	83 -
	9.5	Anexo 5 Catálogo caldera Bosch UL-SX	84 -
	9.6	Anexo 6 Catálogo turbina Siemens SST-200	86 -
	9.7	Anexo 7 Catálogo condensador ITT C300	87 -

# Índice de Tablas

Tabla 2-2-1 Clasificación y propiedades de los residuos plásticos 13 -
Tabla 2-2-2 Fracción de gases no condensables de gas de síntesis 20 -
Tabla 3-1 Propiedades del Agua como fluido de trabajo 26 -
Tabla 3-2 Fases del agua cuando cambia de estado 27 -
Tabla 3-3 Clasificación de tipos de generación de vapor
Tabla 3-4 Clasificación tipos de turbinas de vapor, según características 34 -
Tabla 5-1Capacidad de procesamiento de residuos plásticos con relación al
modelo de la unidad de pirólisis 47 -
Tabla 5-2 Estado del fluido de trabajo en el sistema 49 -
Tabla 5-3 Consideraciones asumidas diseño CR 50 -
Tabla 5-4 Procesos termodinámicos asumidos en el que trabajan los equipos para
análisis del CR 50 -
Tabla 5-5 Ensayo presiones máximas y temperatura en cada estado del CR 51 -
Tabla 5-6 Entropía y entalpía en cada estado del CR 52 -
Tabla 5-7 Eficiencia del CR para presiones máximas ensayadas 53 -
Tabla 5-8 Presiones mínimas ensayadas CR para aumentar la eficiencia del ciclo
54 -
Tabla 5-9 Ensayo flujo másico de fluido de trabajo CR con la finalidad de aumentar
la potencia de salida del ciclo 54 -
Tabla 5-10 Resumen de valores diseño Ciclo Rankine simple
Tabla 5-11 Ensayo presiones máximas y temperatura en cada estado del CR con
recalentamiento 56 -
Tabla 5-12 Eficiencia del CR con recalentamiento para presiones máximas
ensayadas 57 -
Tabla 5-13 Presiones minimas ensayadas CR con recalentamiento para aumentar
la eficiencia del ciclo 58 -
Tabla 5-14 Ensayo flujo másico de fluido de trabajo CR con recalentamiento la
finalidad de aumentar la potencia de salida del ciclo.
Tabla 5-15 Consideraciones analisis exergetico 60 -
Tabla 5-16 Balance de exergia cicio Rankine simple
Tabla 5-17 Calor generado gas de sintesis, petroleo y gas natural
Tabla 6-1 Características técnicas bomba KSB.
Tabla 6-2 Características técnicas caldera Bosch
Tabla 6-3 Características tecnicas turbina Siemens.
1 adia 6-4 Características tecnicas condensador 111

# Índice de figuras y gráficos

Figura 2-1Reciclaje de plástico por región 14 -
Figura 2-2 Esquema representativo planta de pirólisis de plástico, Biogreen 15 -
Figura 2-3 Representación esquemática sistema Spirajoule, Biogreen 16 -
Figura 2-4 Representación esquemática productos de planta de pirólisis de
plástico, Biogreen 17 -
Figura 2-5 Planta de pirólisis de plástico, Biogreen 18 -
Figura 3-1 Esquema de una máquina térmica 22 -
Figura 3-2 Ciclo Ideal en comparación a ciclo real 24 -
Figura 3-3 Diagrama P-v y T-s 24 -
Figura 3-4 Esquema representativo Ciclo Rankine ideal 27 -
Figura 3-5 Diagrama T-s Ciclo Rankine ideal 28 -
Figura 3-6 Partes de una Bomba Centrífuga 29 -
Figura 3-7 Partes de un generador de vapor 32 -
Figura 3-8 Partes de Turbina a vapor 33 -
Figura 3-9 Esquema de partes de un Condensador 35 -
Figura 3-10 Efecto de irreversibilidades del ciclo real, respecto al ciclo ideal 38 -
Figura 3-11 Diagrama T-s Real, efecto de irreversibilidades de la bomba y la
turbina 39 -
Figura 3-12 Efecto de reducir la presión en el condensador en el ciclo Rankine 40
-
Figura 3-13 Efecto de sobrecalentamiento de vapor en ciclo Rankine 41 -
Figura 3-14 Efecto de incremento de la presión en la caldera en ciclo Rankine 41
-
Figura 5-1 Diagrama referencial diseño ciclo Rankine simple, sin recalentamiento.
(elaboración propia Software Cycle Pad) 48 -
Figura 5-2 Diagrama referencial diseño Ciclo Rankine con recalentamiento 56 -
Figura 5-3 Diagrama de flujo caldera 60 -
Figura 5-4 Diagrama de flujo condensador 63 -
Figura 6-1 Bomba KSB modelo HPH 68 -
Figura 6-2 Caldera Bosch UL-SX 69 -
Figura 6-3 Turbina Siemens SST-200 71 -
Figura 6-4 Intercambiador de calor ITT C300 72 -

## Gráficos

Gráfico 5 1 Diagrama t-S Ciclo Rankine Simple	55-
Gráfico 5 2 Diagrama t-S Ciclo Rankine con recalentamiento	58-
Gráfico 5 3 Comparación ciclo Rankine simple v/s con recalentamiento	59-
Gráfico 5 4 Comparación Gas de síntesis, petróleo y gas natural	66-
Gráfico 6 1 Curva de operación de la bomba	68-

#### 1 Introducción

Vivimos en un mundo que cada vez produce un mayor volumen de residuos de todo tipo, los cuales lejos de ser reciclados o reutilizados, son retirados y llevados a vertederos. De este modelo de vida de consumir y tirar, nace el problema que generan los residuos, los cuales son una amenaza constante para el medio ambiente.

Dentro de los residuos más contaminantes se encuentran los plásticos, debido a su difícil degradación, los cuales podrían tardar hasta 500 años o más, al realizar su degradación de forma natural.

Durante los últimos 30 años, el consumo de plástico se ha elevado exponencialmente. En Chile, según cifras del MMA, los residuos plásticos domiciliarios y no domiciliario, alcanzan un total de 340.000, y de 375.000, toneladas al año, respectivamente.

El plástico es un material orgánico, constituido principalmente de cadenas de hidrocarburos, las cuales necesitan grandes cantidades de energía para ser degradadas. Un proceso capaz de realizar la degradación efectiva de plástico es el proceso de pirolisis.

La pirolisis nace del griego piro(fuego) - lisis(rotura), es decir, es un proceso de descomposición de materia orgánica e inorgánica, debido a gran cantidad de calor. Este proceso permite transformar el plástico en combustibles fósiles refinados como el Syngas (gas de síntesis), además de otras sub – productos como aceite y carbón bituminoso.

Este proceso, ha sido utilizado en el "race for water", un barco hidrógeno solar cuya misión es concientizar sobre la contaminación de plástico en los océanos el cual cuenta con una unidad de pirolisis de plástico proporcionada por la empresa *Biogreen®*, perteneciente a *"Etia Group*", una compañía francesa de ingeniería, dedicada a la ecotecnología y dar soluciones amigables con el medio ambiente.

Este estudio busca desarrollar el diseño y selección de equipos de un ciclo Rankine, que tenga como fluido de trabajo el Syngas proveniente de una unidad de pirolisis de plástico de la empresa *Biogreen*[®].

## 1.1 Objetivo General

Diseñar y seleccionar equipos componentes de una unidad de ciclo Rankine para generación de energía eléctrica. El cual opere con gas de síntesis, proveniente de una planta de pirólisis de plástico.

# 1.2 Objetivos Específicos

- Conocer y evaluar las características técnicas de una unidad de pirólisis de plástico.
- ii. Evaluar comparativamente propiedades físicas del gas de síntesis como combustible de trabajo.
- iii. Aplicar la ley de conservación de la energía para calcular los parámetros de entrada y salida de cada equipo, utilizando programa computacional.
- iv. Comparar los resultados obtenidos utilizando gas de síntesis con los de un combustible convencional.
- v. Especificar condiciones de operación de cada equipo y mostrar opciones comerciales para futura selección.

## 2 Antecedentes Generales

# 2.1 Definición de pirólisis

La pirólisis es un tratamiento termoquímico, que puede ser aplicado a cualquier producto orgánico (que contenga carbono). En este tratamiento, el material se expone a altas temperaturas, y en ausencia de oxígeno sus moléculas son separadas de forma química y física. La descomposición puede ser realizada debido a la limitada estabilidad térmica de sus enlaces químicos, lo que permite que estos se rompan y desintegren al aplicar calor, lo que conduce a la formación de nuevas moléculas.

A diferencia de los procesos de combustión y gasificación, la pirólisis se basa en el calentamiento en ausencia de aire, por lo que se cataloga como un proceso endotérmico que garantiza un alto contenido de energía en los productos recibidos (biogreen-energy, 2019).

#### 2.1.1 Tipos de pirólisis

- <u>Pirólisis acuosa:</u> también denominada termólisis, se da en presencia de agua como el craqueo por vapor de agua del petróleo o la despolimerización térmica de los residuos orgánicos de crudo pesado.
- <u>Pirólisis al vacío</u>: es el calentamiento de material orgánico al vacío para lograr reducir el punto de ebullición y evitar reacciones químicas desfavorables (euston, 2019).

#### 2.1.2 Productos de la pirólisis

Los productos de pirólisis en fase sólida son carbón y biochar; en fase gaseosa son gases no condensables (H₂, CH₄, CnHm, CO, CO₂ y N); solo en el proceso de enfriamiento, se extrae en fase líquida gas de síntesis (Syngas) y aceite de pirólisis (biogreen-energy, 2019)

## 2.2 Pirólisis de plástico

La pirólisis de plástico consiste en un proceso de descomposición química, debido a degradación térmica de materiales plásticos (polímeros) en ausencia de oxígeno, donde todos los residuos plásticos que llegan a la planta de pirólisis son mezclados sin importar el tipo de polímero.

Luego, son introducidos a una cámara cilíndrica que se encuentra a alta temperatura, donde serán degradados, para obtener gases no condensables con alto poder calorífico.

La calidad y poder calorífico de sus productos dependerá del tipo de plásticos tratados.

Se puede representar como una reacción genérica:

$$C_n H_m(polimeros) = \sum_{liquidos} C_a H_b O_c + \sum_{Gases} C_x H_y O_z + H_2 O + C (carbón)$$
(2.1)

(energía12.com, 2019).

#### 2.2.1 Definición y tipos de plásticos

Los plásticos o polímeros son la unión de varias moléculas sencillas de carbónhidrógeno (monómero), las cuales provienen de recursos naturales como petróleo, gas natural, carbón y sal común. Existen dos tipos de plásticos:

- <u>Termoplásticos</u>: este tipo de plásticos no sufre cambios en su estructura química durante el calentamiento, por lo que se pueden calentar y volver a modelar las veces que se desee.
- <u>Termoestables</u>: este tipo de plásticos sufre cambio en su estructura química, y una vez moldeados por la aplicación de calor, no pueden volver a modificar su forma (camara argentina de la industria plastica, 2019).

En 1988 la Sociedad de la Industria de Plásticos (SPI) creo el Código de Identificación de Plásticos, con el fin de poder distinguir de forma internacional la composición de resinas en envases y otros productos del sector industrial y así poder clasificarlos, de la siguiente manera:

Denominación	Características	Poder calorífico [MJ/Kg] ^[6]	Densidad g/cm ³
PET Polietileno Tetrafalato	Se produce a través de Ácido Tereftálico y el Etilenglicol por policondensación.	24	1,33-1,40
PEAD Polietileno de Alta Densidad	Es un termoplástico fabricado a partir de Etileno (elaborado a partir de Etano, uno de los componentes del gas natural)	37	0,94-0,98
PVC Policloruro de Vinilo	Se produce a partir de dos materias primas naturales: 43%gas y 57% sal común.	18	1,19-1,35
PEBD Polietileno de Baja Densidad	Se produce a partir de gas natural.	41	0,89-0,93
Polipropileno	Es un termoplástico que se obtiene por polimerización del propileno. Los copolímeros se forman agregando Etileno durante el proceso.	41	0,85-0,92
Poliestireno	PS Cristal: Es un polímero de estireno, monómero derivado del petróleo, cristalino y de alto brillo. PS Alto Impacto: es un polímero de estireno, monómero con oclusiones de Polibutadieno que le da resistencia al impacto.	39	1,04-1,08
Otros plásticos	En este rubro se incluye una gran variedad de plásticos, tales como el Policarbonato (PC), Poliamida (PA), ABS, SAN, EVA, Poliuretano (PU), Acrílico (PMMMA) entre otros.	-	-

Tabla 2-2-1 Clasificación y propiedades de los residuos plásticos.

(gestores de residuos., 2019) (Tablas de poder calorífico, 2019)

#### 2.2.2 Reciclaje de Plásticos en Chile

En Chile, existen diversas empresas que se dedican al reciclaje de plásticos, las cuales se encargan de procesar el material, para posteriormente ser transformado en productos vírgenes, o bien ser usado como materia prima para otros procesos productivos.

En coherencia con el escenario mundial, en Chile se reciclan principalmente resinas tipo PP, PE y PET.

Anualmente el país consume aparentemente 990.000 toneladas de resinas plásticas al año, de las cuales 87.679 son recicladas, es decir, un 8,5% del consumo total de resinas plásticas.

Del total de plástico reciclado, 14.281 toneladas al año (17%) corresponde a origen domiciliario, de lo cual 55% es resina PET y el resto se concentra en PP y PE. El plástico de origen no domiciliario corresponde a 69.398 toneladas al año (83%).

Las empresas recicladoras se concentran principalmente en la zona central del país (Asociación Gremial de Industriales de plástico, 2019).



#### % de empresas recicladoras por región

Figura 2-1Reciclaje de plástico por región. Fuente: (Asociación Gremial de Industriales de plástico, 2019)

#### 2.2.3 Proceso de pirólisis de plástico

La pirólisis es un proceso utilizado desde la antigüedad, por lo que existen diversas maneras de realizarla, en cuanto a tipos de residuos que alimentan el sistema, y equipos que lo componen.

En este caso, tomaremos como base la unidad para pirólisis de plástico realizada por la empresa francesa Biogreen®, la cual opera desde el año 2003, entregando una solución innovadora al tratamiento de residuos plásticos, dándoles una valorización a sus productos.

Su concepto se basa en el fuerte potencial energético que promete la gran cantidad de residuos plásticos que son desechados cada día a nivel mundial. Este se expresa en el poder calorífico de los materiales tratados.

La planta consiste en una unidad de pirólisis modular y transportable, que se compone de tres partes:

- 1) Proceso
- 2) Comando y controles
- 3) Generación de energía



Figura 2-2 Esquema representativo planta de pirólisis de plástico, Biogreen.

En la primera parte del proceso, se alimenta el sistema con residuos plásticos, los cuales son triturados al tamaño adecuado, y son almacenados en un tanque de compensación. Aquí son tomados por un levantador de tornillo, y llevados hasta la sección de alimentación, para ser digeridos por un tornillo dosificador en cual regula el flujo de masa de la máquina.

La masa llega a una unidad llamada Spirajoule, donde se calienta por un tornillo de eje hueco a una temperatura de 800°C, sin presencia de oxígeno, para así realizar el proceso de pirólisis. Gracias a la tecnología de Spirojoule, la masa es transportada al mismo tiempo por el tornillo que se calienta con electricidad gracias al efecto Joule, como en el calentador radioactivo.





Finalizado este proceso, el material se transforma en gas de síntesis, el cual se mantiene caliente en la primera parte de la tubería, para luego ser enfriado en dos etapas. La primera etapa consiste en ser enfriado por pulverización, y luego, en la segunda etapa el gas pasa por un intercambiador de calor, que cuenta con un circuito de agua de refrigeración.

Una vez enfriado, el gas pasa a través de una válvula de tres direcciones para ser dirigido a la siguiente etapa del proceso, o en el caso de seguridad en la chimenea de emergencia para poner el equipo en modo de parada de seguridad.

En el proceso posterior, el gas de síntesis frío es limpiado por un proceso de desengrase, que permite eliminar las microgotas de aceite del gas de síntesis, para luego pasar por un filtro de carbón activado, para limpiar a fondo cualquier impureza y contaminantes.

Luego del filtro, hay sensor de oxígeno que mide continuamente el contenido de oxígeno en el gas de síntesis, para garantizar las condiciones correctas del proceso.

Además, se cuenta con un ventilador de extracción, que permite mantener una subpresión muy ligera dentro del Spirajoule; el ventilador también mantiene el gas en movimiento.

Continuando con el proceso, se tiene un panel de fluidos y medios, el cual contiene nitrógeno, aire comprimido y agua industrial. El nitrógeno está conectado al Spirajoule y al tornillo de enfriamiento. El aire comprimido, es usado para el control de válvulas, y el agua industrial para rociar sobre el carbón que es transportado en el tornillo de enfriamiento.

La parte condensable del gas llega a una tubería, y es extraído por una bomba, para ser filtrado y enfriado. Luego es recirculado a la parte superior del condensador para enfriar el gas.

La parte sólida del producto, que no se trasforma en gas, es extraído por una válvula rotativa que crea una exclusa de aire que impide el acceso de oxígeno al interior del proceso. La válvula rotativa transfiere el carbón, al tornillo de enfriamiento, que transportará más lejos el char, y lo enfriará gracias a la pulverización del agua, para finalmente almacenarlo en un tanque.

Luego del ventilador de extracción, el gas de síntesis llega listo para poder accionar un motor y producir electricidad.



Figura 2-4 Representación esquemática productos de planta de pirólisis de plástico, Biogreen.



Figura 2-5 Planta de pirólisis de plástico, Biogreen.

Existe otra zona de comando y control, que cuenta con un gabinete de control para pilotear el proceso principal, enfriador de agua, controlador de corriente, control de oxidante, control de gas de síntesis y fluidos. Se pueden controlar los parámetros del sistema como la temperatura, tiempo de residencia del producto en la cámara, o la velocidad del tornillo de Spirajoule. (biogreen-energy, 2019) (ecotechnologies, ETIA, 2019)

#### 2.3 Gas de Síntesis

El gas de síntesis o Syngas, es una mezcla de moléculas que contienen hidrógeno, metano, monóxido de carbono, dióxido de carbono, vapores de agua, así como otros hidrocarburos y compuestos condensables. (biogreen-energy, 2019)

El gas de síntesis es el producto mayoritario del proceso de pirólisis a alta temperatura, ya que al ser realizada se produce la vaporización de compuestos volátiles de la materia prima, producto del calor que induce un conjunto de reacciones químicas complejas.

#### 2.3.1 Factores que influyen en la calidad del gas de síntesis.

La composición química del gas de síntesis, y la proporción de sus moléculas depende en gran medida de las características de la materia prima (homogénea o heterogénea), y de las condiciones de tratamiento del proceso. (temperatura, granulometría de materia prima, entre otras).

A continuación, se explican cada uno de los factores que influyen en la calidad del proceso:

- <u>Composición del material tratado</u>: cada uno de los principales constituyentes de los residuos plásticos presenta diferentes temperaturas de descomposición térmica, lo que significa que contribuyen a los resultados del proceso de manera diferente. Debido a la gran diversidad de composiciones de materiales, siempre se recomienda realizar pruebas piloto para pronosticar el rendimiento del proceso de pirólisis de la manera más precisa.
- <u>Temperatura del proceso</u>: tiene una gran influencia en los resultados del tratamiento. Las temperaturas más altas de pirólisis proporcionan una mayor cantidad de gases no condensables (gas de síntesis, gas sintético), mientras que las temperaturas más bajas favorecen la producción de productos sólidos de alta calidad (carbón vegetal, bio-carbón, combustibles torrefados). La temperatura es un factor totalmente controlable en el proceso, gracias al transportador de tornillo calentado eléctricamente que permite una configuración precisa de las condiciones de tratamiento.
- 3. <u>Tiempo de residencia del material en la cámara de pirólisis</u>: influye en el grado de conversión térmica del producto sólido recibido, así como en el tiempo de residencia del vapor, que influye en la composición de los vapores (fase condensable / no condensable). El tiempo de residencia se puede controlar con precisión en el proceso, cambiando la velocidad de rotación del transportador de tornillo (Spirajoule®) que transporta el material a lo largo del reactor.

4. <u>Tamaño de partícula y estructura física</u>: influye en la velocidad a la que el material se somete a la pirólisis. En general, los materiales de menor tamaño de partícula se ven afectados más rápidamente por la descomposición térmica, lo que puede resultar en mayores cantidades de aceite de pirólisis, que en el caso de un tamaño de partícula más grande.

(biogreen-energy, 2019)

#### 2.3.2 Propiedades del Gas de Síntesis

El proceso de pirólisis a alta temperatura, llevado a cabo en ausencia de oxígeno, da como resultado gas de síntesis con poder calorífico que podría llegar hasta los 36 [MJ/Nm³], perfectamente. Los gases más ricos en energía se obtienen usando plásticos como materia prima de alimentación del sistema.

En estado caliente el gas de síntesis contiene gases condensables y permanentes, y pueden considerarse una fuente de energía alternativa o renovable.

La unidad de pirólisis Biogreen®, presenta los siguientes valores de fracción de gases no condensables medidos a temperatura ambiente:

% Vol	H2	CH4	C2-C4	CO	CO2	N2	PCI
							[MJ/Nm3]
RUS	16%	25%	24%	18%	15%	2%	27.3
Biomasa	15%	26%	3%	35%	17%	4%	17.10
Plásticos	25%	38%	18%	9%	5%	5%	28
Neumáticos	19%	40%	28%	3.5%	6.5%	3%	36

Tabla 2-2-2 Fracción de gases no condensables de gas de síntesis. (biogreen-energy, 2019)

# 2.3.3 Comparación poder calorífico de gas de síntesis con otros combustibles.

El poder calorífico de una sustancia o combustible se define como la cantidad de calor (energía) que se genera, por kilogramo o metro cubico de esa sustancia, al oxidarse de forma completa.

El poder calorífico inferior es el calor de combustión que no aprovecha la energía de condensación del agua. Las calderas, son calculadas con el PCI del combustible a utilizar.

A continuación, se señalan los valores de poder calorífico inferior de distintos combustibles, utilizados para la generación de energía:

Combustible	PCI [MJ/NKg] o [MJ/kg]
Gas de síntesis (pirólisis de plástico)	28
Gas natural	40,47
Propano	46,20
Butano	44,78
Biogás (en general)	21,77
Petróleo bruto	42,55
GLP	45,89
GNL	45,10
Gasolina	43,89
Biodiesel	36,90
Biomasa en general	14,12

Tabla 2-3 Poder Calorífico Inferior de diversos combustibles.

(Petromercado, s.f.) (Tablas poder calorífico, 24)

La tabla nos muestra, que comparativamente el poder calorífico del gas de síntesis proveniente del proceso de pirólisis de plástico es inferior al de otras sustancias combustibles, por lo que es necesario analizar su eficiencia en el proceso de generación de energía eléctrica.

#### **3** Fundamentos

#### 3.1 Ciclos de Potencia

Un ciclo de potencia es un ciclo termodinámico en el cual se genera potencia. El ciclo es operado a través de una máquina térmica que se encarga en convertir la energía química (combustible), en calor, el cual se transfiere a través de un fluido, para generar trabajo.



Figura 3-1 Esquema de una máquina térmica

Los ciclos de potencia pueden ser abiertos o cerrados:

- Abiertos: el fluido de trabajo se renueva cada vez que termina el ciclo termodinámico.
- Cerrado: el fluido de trabajo vuelve a su estado inicial cada vez que el ciclo termodinámico termina. No hay cambio de estado.

El fluido usado en el proceso se denomina fluido de trabajo, y puede existir en forma de vapor o de gas. En los ciclos de potencia de gas, el fluido se encuentra en estado gaseoso durante todo el ciclo, en cambio, en los ciclos de potencia de vapor, el fluido de trabajo se evapora y condensa de forma alternada, presentándose en estado líquido y vapor.

Dependiendo de la forma en que se transfiere el calor al fluido de trabajo, las máquinas térmicas pueden ser clasificadas dependiendo del tipo de combustión que

realicen. En las máquinas de combustión externa, el calor se transfiere al fluido de trabajo desde una fuente externa como un quemador, pozo geotérmico, reactor nuclear o el sol (central termoeléctrica); en las máquinas de combustión interna el calor se transfiere al fluido de trabajo quemando el combustible dentro de los límites del sistema (motor de automóvil).

(Boles - Cengel Y. A.-M., 2012)

Los ciclos de potencia son realizados por dispositivos reales, donde existen diferentes factores como la fricción o la falta de tiempo suficiente para establecer las condiciones de equilibrio, por lo que su análisis requiere de idealizaciones, que nos acerquen lo que más se pueda a un proceso real. Este proceso se llama ciclo ideal, el cual no presenta prácticamente irreversibilidades ni complicaciones en el sistema.

Las idealizaciones o simplificaciones que se usan para el análisis de los ciclos de potencia son las siguientes:

- El ciclo no implica ninguna fricción, por lo que el fluido de trabajo no experimenta ninguna caída de presión cuando fluye en las tuberías o dispositivos como los intercambiadores de calor.
- 2. Todos los procesos de expansión y compresión ocurren en la forma de cuasiequilibrio.
- Las tuberías que conectan a los diferentes componentes de un sistema están muy bien aisladas y la transferencia de calor a través de ellas es insignificante.
- Ignorar los cambios de energías cinética y potencial del fluido de trabajo en el proceso.



Figura 3-2 Ciclo Ideal en comparación a ciclo real.

Una representación gráfica de las propiedades que intervienen en los ciclos de potencia, son los diagramas P-v y T-s, los cuales nos entregan información sobre de que forma se comporta el ciclo. El área de trabajo encerrada por las curvas de proceso representa el trabajo neto realizado por el sistema, lo cual también equivale a la transferencia de calor neta del ciclo. Los ciclos no implican ninguna irreversibilidad interna, por lo que la transferencia de calor es lo único que puede cambiar la entropía del fluido. (Boles - Cengel Y. A.-M., 2012, págs. 491-995)



Figura 3-3 Diagrama P-v y T-s.

#### 3.1.1 Ciclo de Carnot

El ciclo de Carnot es un modelo de ciclo estándar, el cual presenta procesos completamente reversibles, lo que quiere decir que no presenta ninguna

irreversibilidad de forma externa o interna. El ciclo de Carnot opera con una máquina térmica teórica, llamada máquina térmica de Carnot, la cual se compone de 4 procesos reversibles, dos isotérmicos y dos adiabáticos:

- 1. Adición de calor isotérmica
- 2. Expansión isentrópica
- 3. Rechazo de calor isotérmico
- 4. Compresión isentrópica

Esta máquina presenta la eficiencia térmica más alta de todas las máquinas térmicas que operan entre los mismos niveles de temperatura, la cual está dada por:

$$\eta_{t\acute{e}r,Carnot} = 1 - rac{T_L}{T_H}$$

Donde  $T_L$  es la temperatura de descarga y  $T_H$  es la temperatura de la fuente de suministro de energía. Si existe un aumento de temperatura de la fuente, o una disminución de temperatura en la descarga, la eficiencia del ciclo aumenta.

En la práctica resulta imposible lograr procesos completamente reversibles, ya que no se pueden eliminar las irreversibilidades de cada proceso, es por esto por lo que el ciclo de Carnot permite dar el punto inicial a la hora de diseñar ciclos de potencia, para luego al diseñar un ciclo real o ideal, acercarse lo más posible a este ciclo que presenta un desempeño superior. (Boles - Cengel Y. A.-M., 2012, págs. 494-495)

#### 3.2 Ciclo Rankine

El ciclo Rankine, en un ciclo de potencia, que trabaja con agua como fluido trabajo, el cual es usado en centrales para generación de energía eléctrica. En el gran número de centrales eléctricas a vapor se emplea el agua como fluido de trabajo, debido a su versatilidad, bajo costo y bajo nivel de contaminación. Durante el ciclo, el agua se comprime reversiblemente a baja presión y temperatura, hasta la presión de la caldera, donde se transfiere calor al agua adiabáticamente hasta la temperatura de saturación, una vez obtenido el vapor, es recalentado expandiéndose reversiblemente y de forma adiabática en la turbina, hasta la presión de condensación, donde el calor del vapor residual es eliminado por medio de agua fría. Una vez terminado el ciclo, es repetido al entrar vapor condensado a la bomba que alimenta la caldera.

#### 3.2.1 Fluido de trabajo

El ciclo Rankine convencional emplea agua como fluido de trabajo, el cual cambia alternadamente de estado líquido y gaseoso (vapor). El agua es una sustancia pura, por lo que las propiedades del fluido son constantes a una temperatura y presión específica. Algunas propiedades químicas, se presentan en la siguiente tabla:

Propiedad	Valor
Peso molecular	18 kg/mol
Punto de ebullición	373,15 K-101.325 kPa
Punto de fusión	273,15 K-101.325 kPa
Punto triple	273,16 K-0,611 kPa
Punto crítico	647 K-22,06 MPa
Calor latente	2.256,6 KJ/Kg-101.325 kPa
Calor específico	4,18 J/kg

Tabla 3-1 Propiedades del Agua como fluido de trabajo.

(Ramirez, 2017)

La absorción y rechazo de calor en el ciclo Rankine, produce una variación en su calor latente, el cual es el calor necesario para que cambie de estado. Cuando el fluido cambia de estado se presenta de las siguientes formas:

Proceso de cambio de fase en sustancias puras.			
Líquido comprimido Se da cuando a determinadas condicione			
(subenfriado)	sustancia existe en fase líquida.		
Líquido saturado	Es cuando una sustancia está a punto de tener un		
	proceso de cambio de fase. (a punto de evaporarse).		
Vapor saturado	Es cuando una sustancio en forma de vapor está a		
	punto de condensarse.		
Vapor húmedo	Es cuando una sustancia se encuentra entre dos		
	estados, líquido y vapor, y ambos estados coexisten en		
	equilibrio.		
Vapor sobrecalentado	Es cuando una sustancia en forma de vapor se		
	encuentra a altas temperaturas, y no está a punto de		
	condensarse.		

Tabla 3-2 Fases del agua cuando cambia de estado.

#### 3.2.2 Proceso

En el ciclo de Rankine ideal no ocurren irreversibilidades internas, y se compone de 4 procesos:

- 1→2: Compresión isentrópica de la bomba.
- $2 \rightarrow 3$ : Adición de calor adiabático en una caldera.
- 3→4: Expansión isentrópica en una turbina.
- **4→1**: Rechazo de calor adiabático en un condensador.



Figura 3-4 Esquema representativo Ciclo Rankine ideal.

Para un mejor análisis de lo que sucede con cada proceso con los parámetros de temperatura, y entropía, los procesos son graficados en un diagrama T-s, como se muestra en la siguiente figura:



Figura 3-5 Diagrama T-s Ciclo Rankine ideal.

La realización del ciclo Rankine se lleva a cabo utilizando diversos equipos:

- Equipos principales: Son aquellos que condicionan al resto de la instalación, y son escogidos a partir del diseño del ciclo. En estos podemos encontrar: la bomba de alimentación, la turbina, la caldera y el condensador.
- Equipos auxiliares: son aquellos que están condicionados por los equipos principales y sirven para mejorar parámetros de diseño en el ciclo. En estos podemos encontrar: cámara de mezcla, válvulas de estrangulación, calentadores de agua de alimentación (CAA), entre otros.

A continuación, se describe el funcionamiento de cada uno de los equipos principales:

#### A. Bomba de Alimentación

La bomba de alimentación es la encargada de suministrar fluido de trabajo a la caldera, el cual entra como líquido saturado y se condensa a la presión de operación de la caldera. La temperatura del fluido se ve ligeramente aumentada debido a la disminución del volumen específico debido a la compresión.

Las bombas de alimentación utilizadas son en su mayoría de tipo centrifugas (multi o monoetapas), y suministran un caudal a altas presiones, la cual debe ser capaz de vencer la presión de operación de la caldera, esto generalmente se logra por una bomba de tipo multietapa. Su rango de operación se encuentra entre 150 psi y 600 psi, para caldera entre 100 hp y 1000 hp.

Las bombas están alimentadas por un motor eléctrico, son robustas, ya que requieren de un trabajo a alta presión, por lo general se ubican después del desaireador, donde el agua suavizada elimina el oxígeno disuelto, de forma de prevenir la corrosión.

(Bombas centrifugas, 2020)



Figura 3-6 Partes de una Bomba Centrífuga.

Fuente: (Tecnología mecánica, 2020)

#### B. Generador de vapor

Un generador de vapor es la combinación de una caldera y el sobrecalentador de vapor. El fluido de trabajo entra a la caldera como líquido comprimido y sale como vapor sobrecalentado. La caldera, es el equipo que recibe el calor que entra al proceso, por la combustión de combustibles diversos, como petróleo, gas natural, bío-diesel, bío-gas, entre otros.

Las calderas se pueden clasificar principalmente en:

Clasificación de calderas				
Circulación del agua	Pirotubular o de tubos de humo			
y gases en la zona de tubos	Acuotubular o de tubos de agua			
Ingreso de agua a la	Natural	El agua se mueve por efecto térmico.		
caldera	Forzada	El agua circula mediante impulso de una bomba.		
Generación	De agua caliente.			
Generación	De vapor saturado o recalentado.			
	Baja	0 a 2,5 kg/cm ²		
Proción do trobaio	Media	2,5 a 10 kg/cm ²		
Flesion de trabajo	Alta	10 a 220 kg/cm ²		
	Supercrítica	más de 200 kg/cm²		
Movilidad	Fija o estacionaria.			
IVIOVIIIUAU	Móvil o portátil.			

Tabla 3-3 Clasificación de tipos de generación de vapor.

El generador de vapor es uno de los equipos más esenciales dentro del ciclo, ya que es la fuente de energía. Posee diversos elementos en su composición los cuales es importante conocer para comprender su funcionamiento. Sus partes son las siguientes:

**Quemador:** es el encargado de quemar un combustible líquido, gas o sólido produciendo una llama.

El hogar o cámara de combustión: es donde se quema el combustible y donde se alcanzan las temperaturas más altas.

El circuito de humos o intercambiador: cumple la doble misión de conducir los humos que se producen en la combustión hacia la caja de humos y de arrebatarles el mayor calor posible para luego cedérselo al agua (dejarlos salir directamente a la atmósfera acarrearía entre otros inconvenientes una gran pérdida de energía, al desperdiciar el calor que poseen).

- Para aumentar al máximo el intercambio de calor entre los gases y el agua, el circuito de humos tendrá la mayor superficie posible y se realizará de forma que disminuya en lo posible la velocidad de salida de los gases.

- Esto se logra obligando a los gases a dar varias vueltas antes de dejarlos salir e intercalando a su paso ciertos elementos denominados turbuladores que les dificultan el paso frenándolos.

**Caja de humos:** es la zona en la que confluyen todos los humos para ser enviados posteriormente hacia el exterior por la chimenea.

**Parrilla y cenicero:** Soporte y contenedor de residuos respectivamente, de combustibles sólidos.

**Retorno de agua:** es la toma en la que se conecta la parte de la instalación por la que vuelve el agua más fría, puede llegar de los radiadores, de un acumulador de condensado o directamente del tratamiento de aguas de la operación.

**Salida de vapor:** una vez que el agua ha entrado en la caldera y ha absorbido calor es enviada hacia la planta para darle uso.

**Circuito de agua:** en este el agua circula calentándose al absorber el calor de las paredes que la contienen y que es transmitido por radiación, conducción y convección.

**Altar:** Es un pequeño muro de ladrillo, refractario, ubicado en el hogar, en el extremo opuesto a la puerta del fogón y al final de la parrilla, debiendo sobrepasar a ésta en aproximadamente 30 cm.

- Los objetivos del altar son:

- Impedir que caigan de la parrilla residuos o partículas de combustible.

- Ofrecer resistencia a las llamas y gases para que éstos se distribuyan en forma pareja a lo ancho de la parrilla y lograr en esta forma una combustión completa.

- Poner resistencia a los gases calientes en su trayecto hacia la chimenea. Con esto se logra que entreguen todo su calor y salgan a la temperatura adecuada.

**Cámara de Agua:** Es el volumen de la caldera que está ocupado por el agua que contiene y tiene como límite superior un cierto nivel mínimo del que no debe descender nunca el agua durante su funcionamiento. Es el comprendido del nivel mínimo visible en el tubo de nivel hacia abajo.

Cámara de Vapor: es el espacio o volumen que queda sobre el nivel superior máximo de agua y en el cual se almacena el vapor generado por la caldera.

**Cámara de alimentación de agua:** Es el espacio comprendido entre los niveles máximo y mínimo de agua. Durante el funcionamiento de la cámara, se encuentra ocupada por agua y/o vapor, según sea donde se encuentre el nivel de agua.



Figura 3-7 Partes de un generador de vapor.

Fuente: (engormix, s.f.)

Existen diferentes accesorios auxiliares, que ayudarán a un mejor funcionamiento de la caldera, ya que entregan información de los parámetros de funcionamiento, como presión, temperatura, entre otros.

Para el ciclo Rankine, por lo general se utilizan calderas de tipo pirotubular. (Ignacio, 2017)

#### C. Turbina de Vapor

La turbina de vapor es un motor rotatorio que convierte la energía térmica del vapor en trabajo mecánico, con el fin de producir energía eléctrica a través de un generador. Son un elemento esencial de las centrales eléctricas.

El vapor entra a la turbina a alta presión y temperatura para pasar por las toberas de la turbina, donde el vapor se expande, reduciendo su presión y temperatura, pero aumentando su velocidad. El vapor a alta velocidad hace que giren los álabes móviles alrededor del eje. Generalmente las turbinas a vapor poseen más de una

etapa (conjunto tobera-álabe), para poder aumentar la velocidad del vapor de manera gradual y aprovechar al máximo su energía.

Las turbinas de vapor poseen un rotor y un estator, los álabes del rotor están conectado al eje, y el estator está conectado a la carcasa. El rotor gira alrededor del eje con el fin de producir energía eléctrica.

Las turbinas de vapor se seleccionan de acuerdo con la potencia de salida requerida, además de la presión de entrada del vapor y temperatura de entrada.

La calidad del vapor que sale de la turbina es muy importante ya que este no debe tener un alto contenido de agua en la mezcla de vapor vivo, de lo contrario la turbina puede presentar averías en los álabes, por esto es muy importante llevar un control de la temperatura de ingreso del vapor.

Otra condición que puede provocar averías, son las vibraciones, las cuales, al aumentar, nos pueden indicar algún otro problema que se presente en el equipo. En general las turbinas son equipos que requieren de mantenimientos periódicos, debido a que presentan partes móviles que deben encontrarse siempre lubricadas, y en buen estado.



Figura 3-8 Partes de Turbina a vapor.

Fuente: (Enspm, 2020)

Existen varios tipos de turbina, la cuales se resumen en la siguiente tabla:

Turbinas de Vapor			
	<b>Monoetapa</b> : el vapor pasa solo por una etapa, son más robustas y seguras. Hay hasta de 2MW.		
Número de etapas	<b>Multietapa</b> : el vapor pasa por más de una etapa con el fin de disminuir la velocidad, porque los requerimientos mecánicos son mayores. Son de potencias mayore a 2MW.		
Aprovechamiento de flujo de vapor	Acción: Transforman la energía de presión del vapor en velocidad en las tober (www.areatecnologia.com, 2020)as, y el impulso de vapor a velocidad es la que mueve el rotor. Habitualmente tienen varias etapas en las que la presión disminuye de forma escalonada en cada una de ellas. Salto grande de presión, caudal pequeño.		
•	<b>Reacción</b> : Existe diferencia de presión en ambos lados de las ruedas de los álabes, y esto impulsa el rotor. Mientras pasa el vapor por los álabes, disminuye la presión, debido a que el espacio entre lo álabes es variable. Salto pequeño de presión, caudal grande.		
Dirección del flujo de vapor	<b>Radial</b> : El vapor fluye perpendicular al eje de rotación.		
	Axial: El vapor fluye paralelo al eje de rotación.		
Presión de salida del vapor	<b>Contrapresión</b> : El vapor sale a una presión superior a la atmosférica, suele estar conectado a un condensador, que entrega agua caliente o sobrecalentada, que permite su aprovechamiento posterior.		
	<b>Condensación</b> : El vapor sale a una presión inferior a la atmosférica, obteniéndose agua de refrigeración. Este mecanismo es utilizado en turbinas de alta potencia para mejorar su rendimiento.		

Tabla 3-4 Clasificación tipos de turbinas de vapor, según características. (ecured, 2020) (plantas de cogeneración, 2020) El condensador es un intercambiador de calor, que transforma el vapor proveniente de la turbina en líquido saturado, rechazando calor al medio. Luego de esta etapa, el ciclo llega a su fin, devolviendo el líquido saturado nuevamente a la bomba de alimentación.

Existen dos tipos de condensadores, los aerocondensadores, los cuales utilizan un ventilador para enfriar el fluido, o torres de refrigeración, las cuales utilizan agua para producir la condensación. Este último es el más utilizado en centrales eléctricas de vapor, las que utilizan agua como fluido de refrigeración, además de una torre evaporativa, descarga el vapor latente de vaporización.

El condensador es un elemento esencial en el proceso ya que aprovecha el vapor a la salida de la turbina, reduciendo la presión, por debajo de la presión atmosférica, es decir, produce vacío, esto provoca que el sato de presión sea mayor, aumentando el rendimiento y la potencia de la turbina.

El líquido que es reinyectado en la bomba de alimentación se encuentra libre de impurezas, lo que es muy beneficioso para el equipo. (ciclo agua y vapor, 2020)



Figura 3-9 Esquema de partes de un Condensador.

Fuente: (M.R.Franceshini, 2020)

#### 3.2.3 Análisis de Energía del ciclo

Los equipos esenciales del ciclo Rankine son cuatro: bomba, generador de vapor, turbina de vapor y condensador, estos equipos generan pérdidas de energía. Para simplificar el análisis no se considerarán estas pérdidas, y se considerará un flujo estacionario. La energía cinética y potencial, también se considera despreciables, por lo que la ecuación de conservación de la energía de flujo estacionario por unidad de vapor es la siguiente:

$$(q_{entrada} - q_{salida}) + (w_{entrada} - w_{salida}) = h_s - h_e \left[\frac{kJ}{kg}\right]$$
(3.2)

La caldera y el condensador no incluyen trabajo, ya que solo absorben y rechazan calor respectivamente, alterando solo su entropía. La bomba y la turbina si consideran trabajo, pero no consideran variaciones en su entropía. De esta forma, los balances energéticos para cada dispositivo quedan resumidos en las siguientes ecuaciones:

Bomba (q = 0)

 $w_{Bomba,entrada} = h_2 - h_1 = v(P_2 - P_1)$ (3.3)

<u>Caldera</u> (w = 0)

 $q_{entrada} = h_3 - h_2 \tag{3.4}$ 

<u>Turbina</u> (q = 0)

$$w_{turbina,salida} = h_3 - h_4 \tag{3.5}$$
$$q_{salida} = h_4 - h_1 \tag{3.6}$$

Es importante tener en cuenta que el fluido de trabajo en forma de vapor húmedo, que sale de la turbina para entrar al condensador, posee un valor o título "X", el cual se define como la relación de la cantidad de vapor y la cantidad de masa total de la mezcla.

Sus valores fluctúan entre 0 y 1, y se definen de acuerdo con la siguiente ecuación:

$$X = \frac{masa\ de\ vapor}{masa\ total} \tag{3.7}$$

El título del vapor se puede calcular en base al volumen específico como:

$$X = \frac{V_{prom} - V_f}{V_{fg}} \tag{3.8}$$

El valor de x se recomienda sobre 0,8, con el fin de que el vapor húmedo no dañe los álabes de la turbina, y no se provoquen daños al material.

La eficiencia térmica del ciclo Rankine se determina a partir de:

$$\eta_{t\acute{e}rmica} = \frac{w_{neto}}{q_{entrada}} = 1 - \frac{q_{entrada}}{q_{salida}}$$
(3.9)

Donde

$$w_{neto} = q_{entrada} - q_{salida} = w_{turbina, salida} - w_{bomba, entrada}$$
(3.10)

Otra forma de expresar la ecuación 3.7, es:

$$\eta_{t\acute{e}r} = \frac{h_3 - h_4 - (h_2 - h_1)}{h_3 - h_2}$$
(Boles - Cengel Y. A.-M., 2012, pág. 563)

Los balances energéticos de cada equipo no son ideales, debido a las irreversibilidades que ocurren en el proceso. Es por esto por lo que las ecuaciones de balance de energía para un ciclo Rankine real, difieren de estas. Las irreversibilidades que ocurren en los equipos son las siguientes:

- 1. Fricción del fluido: esta irreversibilidad produce caídas de presión en el condensador, la caldera y las tuberías de unión del proceso. La caldera tiene una leve caída de presión. Debido a las tuberías que conectan la caldera con la turbina, la presión a la entrada de la turbina es aún más baja que a la salida de la caldera. La caída de presión en el condensador es muy pequeña. Para contrarrestar las caídas de presión de los equipos, el agua se debe bombear con una presión mayor, por lo que se requiere una bomba más grade y una entrada de rodete mayor.
- Pérdida de calor: Debido a que el fluido en estado de vapor circula por varios componentes, se producen pérdidas de calor hacia la atmósfera. Es por esto por lo que se requiere transferir mayor cantidad de calor al vapor en la caldera.



Figura 3-10 Efecto de irreversibilidades del ciclo real, respecto al ciclo ideal.

Las irreversibilidades afectan especialmente a la bomba y a la turbina, en el ciclo ideal los procesos dados en estos equipos son isentrópico, por lo que para hacer un cálculo real, es necesario comparar las salidas reales con las ideales, de la siguiente forma:

$$\eta_{bomba} = \frac{W_{ideal}}{W_{real}} = \frac{h_{2s} - h_1}{h_{2a} - h_1}$$
(3.12)

$$\eta_{turbina} = \frac{W_{ideal}}{W_{real}} = \frac{h_3 - h_{4a}}{h_3 - h_{4s}}$$
(3.13)

En estas ecuaciones, los estados 2a y 4a, corresponden a los estados reales, y los valores 2s y 4s, corresponden a los valores isentrópicos (ideales) (Boles - Cengel Y. A.-M., 2012, págs. 565-566).



Figura 3-11 Diagrama T-s Real, efecto de irreversibilidades de la bomba y la turbina.

#### 3.2.4 Eficiencia del ciclo Rankine

La eficiencia térmica del ciclo Rankine, se ve afectada por distintas irreversibilidades, la cuales en su mayoría tienen que ver con la energía térmica transferida o rechazada al fluido de trabajo. Para lograr superar las irreversibilidades, el calor absorbido tiene que ser lo más alto posible, y el calor rechazado, debe ser lo más bajo posible. Algunos incrementos de la eficiencia son los siguientes:

 Reducción de la presión del condensador: El fluido de trabajo existe como vapor húmedo en el condensador a la temperatura de saturación, que corresponde a la presión dentro del condensador, por lo que, al reducir la presión en la que opera el condensador, disminuye la temperatura, del vapor, y por lo tanto la temperatura en que el calor es rechazado. El efecto sobre el ciclo se puede observar en la figura 16.

Los condensadores de las centrales eléctricas de vapor operan sus condensadores por debajo de la presión atmosférica, lo cual no genera problemas debido a que el fluido opera en un circuito cerrado. Sin embargo, existe un límite para operar la presión del condensador, ya que la presión no debe ser menor a la presión de saturación del medio de enfriamiento.

Las desventajas de reducir la presión en el condensador es que crea la posibilidad de filtraciones de aire en el condensador, y la creación de humedad de vapor en la turbina, lo que es indeseable ya que disminuye la eficiencia de la turbina y erosiona los álabes. (Boles - Cengel Y. A.-M., 2012, págs. 568-569)



Figura 3-12 Efecto de reducir la presión en el condensador en el ciclo Rankine.

 Sobrecalentamiento de vapor a altas temperaturas: Este efecto puede llevarse a cabo sobrecalentando el vapor a altas temperaturas, sin necesidad de aumenta la presión en la caldera. Debido a que aumenta la temperatura promedio a la cual se añade calor, aumenta la eficiencia del ciclo, efecto que se observa en la figura 17.

La ventaja de este efecto es la reducción de la humedad a la salida de la turbina, debido a las altas temperaturas del vapor, la cuales quedan limitadas al comportamiento mecánico y metalúrgico de los materiales con los cuales

está fabricada, los cuales deben ser capaces de soportar la temperatura de sobrecalentamiento del vapor (Boles - Cengel Y. A.-M., 2012, pág. 568).



Figura 3-13 Efecto de sobrecalentamiento de vapor en ciclo Rankine.

3. Incremento de presión de la caldera: Una forma de aportar calor al proceso, es aumentar la presión en la caldera, lo que eleva la temperatura de ebullición, esto a su vez eleva la temperatura del vapor generado, aumentando la eficiencia del proceso, como se observa en la figura 18. A lo largo de lo años las presiones de operación de las calderas han aumentado, llegando actualmente hasta 30 MPa, operando a presiones supercríticas de 22 MPa (Boles - Cengel Y. A.-M., 2012, págs. 568-569).



Figura 3-14 Efecto de incremento de la presión en la caldera en ciclo Rankine.

En la actualidad, existe otra forma de aumentar la eficiencia de un ciclo Rankine, la que consiste en cambiar el fluido de trabajo más básico que es el agua, por un fluido orgánico. Esta técnica es utilizada para ciclo Rankine orgánicos.

#### 3.2.5 Balance exergía

La exergía se define como el trabajo útil máximo, que puede obtenerse en un sistema, cuando este llega a un equilibrio con el ambiente en el cual se encuentra. La exergía, a diferencia de la energía, depende del estado del ambiente, como del estado del sistema. La exergía de un sistema que está en equilibrio con el ambiente, es cero, ya que el ambiente no puede realizar trabajo, por lo que llamamos al ambiente punto muerto, y lo caracterizamos de acuerdo con la temperatura T₀ y presión P₀ que se encuentra.

El balance de exergía se realiza considerando que la exergía entra al sistema, con la combustión del combustible. Una parte de la exergía que entra al sistema vuelve al ambiente en forma de trabajo neto desarrollado. No obstante, la mayor cantidad de exergía que entra al sistema se destruye en los equipos, debido a las irreversibilidades, o bien se devuelve al ambiente por el agua de refrigeración, gases de combustión evacuados, o pérdidas de calor transferidas al entorno.

En el caso de un ciclo Rankine, se considera un flujo estacionario.

El balance de exergía se realiza utilizando las siguientes ecuaciones:

- Balance global de Energía volumen de control

$$\dot{Q_{vc}} = \dot{W_{vc}} \tag{3.14}$$

El balance exergético para un sistema termodinámico abierto puede ser expresado como:

$$\sum E entrada - \sum E salida = I$$
(3.15)

Donde I representa la exergía destruida.

El balance de exergía en cada componente se realiza utilizando la ecuación:

$$E_{\iota} = m (a_{f1} - a_{f0}) m [(h_1 - h_0) - T_0 (s_1 - s_0)]$$
(3.16)

Donde E, representa la exergía destruida en cada componente, y dependerá de las propiedades en el punto que se esté calculando.

Otra forma de calcular el balance de exergía es realizando un balance de entropía utilizando la ecuación:

$$A_d = \dot{m}T_0(s_3 - s_2) \tag{3.17}$$

Para el balance de exergía en el condensador, se necesita saber el flujo másico de agua de refrigeración, para lo cual se utiliza la siguiente ecuación:

$$\dot{m}_{w} = \frac{\dot{Q}_{s}[MW][3600 \, s/h][10^{3} kW/MW]}{(h_{e} - h_{s})}$$
(3.18)

(N.Shapiro, 2004)

#### 4 Metodología

El ciclo Rankine, se diseñó a partir de una planta de pirólisis de plástico comercializada por la empresa Biogreen, la cual produce gas de síntesis, entre otros productos, como resultados del proceso.

El gas de síntesis producido en la planta de pirólisis será la fuente de energía que recibirá el ciclo Rankine que vamos a diseñar.

Para llevar a cabo el proceso de diseño, es necesario en primer lugar seleccionar la unidad llamada Spirojoule, la cual corresponde a la cámara de pirólisis donde se realiza el proceso. Esta unidad se selecciona dependiendo de el volumen de desechos plásticos que se quiere procesar, versus la cantidad de gas de síntesis que se requiere tener disponible, con el fin de conocer el calor que será suministrado al ciclo Rankine como fuente de energía.

Una vez seleccionada la unidad de pirólisis, se procederá a diseñar el ciclo Rankine para generación de energía eléctrica. Para este análisis, haremos uso del el Software CyclePad, el cual nos ayudará a simular el diseño, para conseguir la mayor eficiencia térmica que se pueda obtener del ciclo.

Realizaremos tres ensayos que consistirán en fijar la presión máxima del ciclo a la salida de la caldera, la presión mínima del ciclo a la salida de la turbina, y el flujo másico de vapor necesario para el ciclo, con el objetivo de lograr la máxima eficiencia térmica del ciclo.

Los ensayos serán realizados en primera instancia sin recalentamiento intermedio, y luego con recalentamiento intermedio y expansión en etapas, con la finalidad de analizar el diseño más eficiente.

En los ensayos, se tendrá en cuenta el calor generado por la combustión, es decir, el calor que será absorbido por el ciclo, que dependerá del poder calorífico inferior del combustible utilizado. Se realizará una comparación del gas de síntesis con un combustible convencional, con motivo de tener un parámetro de comparación en términos de eficiencia. Una vez que se escoja el diseño óptimo, se procede a seleccionar los equipos, que cumplan con los parámetros de diseño de entrada y salida de la planta que se diseñó.

# 4.1 Modelamiento mediante Cycle Pad

Cycle Pad es un software que consiste en un laboratorio virtual, el cual ayuda a construir y analizar procesos termodinámicos.

Este software es de fácil acceso ya que se puede descargar de la página del servidor, es sencillo de utilizar y permite obtener gran cantidad de información en la simulación de procesos, la cual sirve para un análisis más amplio de los procesos. Actualmente existen software más avanzados como Thermoflow, no obstante, Cycle Pad es un software gratuito, que a pesar de su antigüedad nos ayudará a calcular todos los valores de parámetros necesarios para el análisis.

Para el diseño del ciclo Rankine básico, se requiere del análisis de los 4 procesos termodinámicos que ocurren en los componentes del ciclo, buscando una óptima eficiencia térmica. Para esto se requiere saber de qué forma influyen el calor suministrado, y el trabajo realizado, además de cómo influyen los parámetros de operación (temperatura, presión, entropía, entalpía) en cada uno de los componentes.

El software permite un modelamiento del ciclo Rankine con mayor sensibilidad, y la modificación de parámetros con el fin de obtener un diseño óptimo, real y con una eficiencia térmica aceptable, para posteriormente seleccionar los equipos comerciales adecuados.

(CyclePad, 2020)

## 5 Diseño de Ciclo Rankine

## 5.1 Selección de cámara de pirólisis

La planta de pirólisis de plástico que comercializa la empresa Biogreen, cuenta con una cámara de pirólisis, de la cual depende el volumen de residuos plástico que se procesan, y, en consecuencia, la cantidad de combustible estimado que se puede obtener terminado el proceso. Parámetro que nos ayudó a conocer el calor transferido al ciclo Rankine como fuente de energía.

La cámara de pirólisis comercializada por Biogreen, se llama Spirajoule, la cual es una tecnología única que consiste en un equipo de calentamiento térmico continuo de residuos, en este caso plásticos, de hasta 850°C.

El equipo se basa en un transportador de tornillo de eje hueco, calentado por una corriente de bajo voltaje. El tornillo está fabricado de material que conduce la electricidad, y se encuentra conectado a una fuente de alimentación eléctrica.

La electricidad se transmite desde la fuente alimentación de alimentación, mediante articulaciones eléctricas giratorias, ubicada a amos extremos. La conducción de energía eléctrica a través del tornillo genera calor, como resultado del calentamiento por efecto Joule o resistivo. Este efecto permite mantener la temperatura, y controlarla con precisión.

El producto que ingresa al reactor es transportado y permanece en contacto continuo con el tornillo, mientras se transfiere. Las partículas de materia prima se calientan de manera uniforme mientras pasan a través del reactor.

El procesamiento es posible en una atmósfera inerte, oxidante o reactiva, lograda mediante el recubrimiento de gases seleccionados (https://etia-group.com, 2020).

A continuación, se presentan los modelos de Spirojoule, con valores de cantidad de flujo de combustible que producen con relación al volumen de residuos plásticos que procesan. Los valores en general son de conocimiento público, excepto el valor de flujo de combustible producido, ya que la empresa que comercializa la planta de pirólisis de plástico se reserva el derecho de propiedad intelectual, pero se sabe, que el gas de síntesis es aproximadamente el 68% del volumen total de residuos plásticos procesado, por lo que este valor fue calculado y agregado a la tabla.

Modelo			BGR13	30L1.7			BGR	800L6			BGR4	50L6			BGR	600L6			BGR1	.50L8	
Tiempo de reisdencia	min	5	10	15	20	5	10	15	20	5	10	15	20	5	10	15	20	5	10	15	20
Flujo volumétrico	L/hra	60	30	20	15	1500	750	500	375	2800	1400	900	700	4600	2300	1500	1150	8200	4100	2730	2050
	100	6	3	2	2	150	75	50	38	280	140	93	70	460	230	152	115	820	410	272	205
Canacidad en	200	12	6	4	3	300	150	100	75	500	280	187	140	800	460	307	230	1500	820	547	410
referencia a la	300	18	9	6	5	300	225	150	113	500	420	280	210	800	690	460	345	1500	1230	820	615
densidad	400	24	12	8	6	300	300	200	150	500	500	373	280	800	900	613	460	1500	1500	1093	820
Kg/m ³	500	30	15	10	8	300	300	250	188	500	500	467	350	800	800	767	575	1500	1500	1367	1025
	600	30	18	12	9	300	300	300	225	500	500	500	420	800	600	800	690	1500	1500	1500	1230
Gas de Sintesis	Kg/s	0,2	833																		

Tabla 5-1Capacidad de procesamiento de residuos plásticos con relación al modelo de la unidad de pirólisis.

#### (biogreen-energy pyrolisis, 2020)

El gas de síntesis producido depende de tres parámetros, el tiempo de residencia de la materia prima dentro de la cámara de pirólisis, el flujo volumétrico de residuos que se degraden, y la densidad aparente de los residuos que se traten. Si observamos la tabla, la capacidad máxima de residuos plásticos tratados, son 1500 kg/hr, obtenido con el modelo BGR150L8.

En consecuencia, se calculó el gas de síntesis producido, en relación con el volumen de residuos plásticos tratados, teniendo en cuenta que es el 68% aproximadamente de los productos, obteniéndose 0,2833 kg/s.

#### 5.1.1 Cantidad de combustible producida

La cantidad de gas de síntesis producida se calculó, teniendo como base la cantidad de plásticos que se reciclan en Chile anualmente, y las horas de operación de la planta de ciclo Rankine. Se pretende que la planta generadora de energía este en operación 24 horas diarias de forma continua, teniendo en cuenta este valor, y sabiendo que la capacidad máxima de procesamiento de residuos plásticos del equipo escogido son 1500 kg/hr, se requiere procesar 36 toneladas diarias de residuos plásticos, lo que asegura un flujo de combustible de 1019,88 kg/hr.

#### 5.1.2 Calor generado con el gas de síntesis

El calor generado por el combustible, suponiendo una combustión perfecta, está dado por el poder calorífico inferior del gas de síntesis el cual es 28000 kj/kg, y por el flujo másico de combustible, el cual corresponde a 0,2833 kg/s, según la elección de la unidad de pirólisis realizada anteriormente (Ortiz, 2016).

$$Q_{gen} = \dot{m}_{gs} \times PCI_{gs} \left[\frac{kJ}{s}\right]$$

$$Q_{gen} = 0,2833 \times 28000 = 7933,33 \left[\frac{kJ}{s}\right]$$
(5.1)

## 5.2 Análisis del Ciclo Rankine

El ciclo se analizó a través del software Cycle Pad, considerando un ciclo Rankine simple y otro con recalentamiento intermedio y expansión en etapas.

El ciclo Rankine simple, se realizó analizando cuatro puntos de interés lo cual entregó información del comportamiento del sistema. Esto permitió modificar los parámetros ensayando diferentes valores para encontrar las condiciones que entregasen los estados óptimos del sistema en cada punto.

A continuación, se muestran los cuatro puntos analizados, además de los equipos que componen el ciclo:



Figura 5-1 Diagrama referencial diseño ciclo Rankine simple, sin recalentamiento. (elaboración propia Software Cycle Pad)

El software Cycle Pad nos permitió calcular los valores de presión, temperatura, entropía y entalpía, tan solo, dando el valor requerido a 4 parámetros.

Para comenzar el análisis se caracterizaron las condiciones termodinámicas en las que trabajarían los equipos, el fluido de trabajo y la fase en que se encuentra este, en los seis estados que considera el ciclo (Tabla 5-2).

Estado	Fluido de trabajo
1	Líquido saturado
2	Líquido comprimido
3	vapor sobrecalentado
4	vapor sobrecalentado
5	vapor húmedo
6	Líquido saturado

Tabla 5-2 Estado del fluido de trabajo en el sistema.

Fue importante conocer el estado en el que se encuentra el agua en cada uno de los seis puntos del ciclo, debido a que los valores de entalpía y entropía se encuentran tabulados en tablas de propiedades de agua saturada, agua sobrecalentada (vapor) y agua comprimida, para la cuales se tienen valores registrados para diferentes presiones y temperaturas. (Anexo1)

También se consideró de forma preliminar una producción de energía de no más de 3 MW, debido a que es un diseño sencillo, y su objetivo principal es la producción de energía eléctrica con gas de síntesis a partir de desechos plásticos, por lo que se debe asegurar la operación continua de la planta, respecto al flujo de combustible sintetizado con relación a los desechos procesados por hora.

Para el análisis del ciclo, se ensayaron cinco presiones de entrada a la caldera, que van de 1 a 3 MPa, y cinco presiones de salida de la turbina de alta presión de 700 kPa a 2,5 MPa. Se evaluó una temperatura de 300°C a la salida de la caldera y una presión de 15 kPa, en el ingreso del condensador. Estos valores fueron escogidos, bajo referencia del catálogo de calderas de vapor Bosch, con el fin de tantear valores de parámetros reales. Se escoge el catálogo Bosch, debido a que entrega mayor versatilidad al momento de escoger el tipo de quemador en comparación con

otras marcas de calderas a vapor. Esta condición se hace primordial para el diseño que se lleva a cabo, debido a que el combustible utilizado para el diseño no es de tipo convencional. (www.bosch-climate, 2020)

Otra condición impuesta para realizar el análisis fue que la eficiencia térmica del ciclo no podía ser menor de 30%.

Para el análisis del ciclo Rankine, se imponen las condiciones de operación resumidas en la siguiente tabla:

	Consideraciones
1	Temperatura ambiente 20°.
2	Fluido de trabajo: Agua.
3	Flujo másico de fluido de trabajo: 1 kg/s.
4	Eficiencia isentrópica de la turbina 85%, eficiencia isentrópica de la bomba 80%.
5	No hay perdidas de calor en los equipos.

Tabla 5-3 Consideraciones asumidas diseño CR.

Para el análisis del ciclo se asumen las siguientes consideraciones respecto a los equipos que operan en el sistema (Tabla 5-4).

Proceso Equipo	Adiabático	Isocórico	Isoentrópico	Isobárico
Bomba	Si		No	
Caldera		No		Si
Turbina	Si		No	
Condensador				Si

Tabla 5-4 Procesos termodinámicos asumidos en el que trabajan los equipos para análisis del CR.

El inició y termino del ciclo se encuentran en el punto 4 (Figura 5-1), donde el fluido de trabajo tiene una calidad de 0% por ser líquido saturado, la entalpía toma un valor de h₄ y la entropía de s₄. Luego el fluido de trabajo entra a la bomba, la cual

presenta irreversibilidades, por lo que su eficiencia isentrópica es de un 80%, en consecuencia, su entropía de s₄ a s₁ disminuye levemente, y su entalpía del estado 4 al estado 1 aumenta.

El fluido de trabajo como líquido comprimido, ingresa a la caldera isobárica, a una presión P₁, donde absorbe el calor proveniente de la combustión del gas de síntesis. El fluido de trabajo aumenta su temperatura hasta los 300°, saliendo en el estado 2 como vapor sobrecalentado.

Debido a la absorción energética su entalpía y entropía entre el estado 1 y 2, aumentan.

El vapor se expande en la turbina de alta presión, la cual presenta una eficiencia isentrópica de 85%.

Al ingresar el vapor por la tobera de la turbina, choca con lo álabes, haciendo girar su eje, perdiendo presión y temperatura al llegar a el estado 3. El vapor sale hacia el punto 3 a una presión P₃, como vapor húmedo, con una calidad que debe encontrarse sobre un 0,80%, para no dañar los álabes debido a la humedad.

Finalmente, el vapor húmedo ingresa a un condensador isobárico, donde rechaza el calor absorbido en el proceso, para salir como líquido saturado nuevamente en el punto 4 y volver a comenzar el ciclo.

A continuación, se observa una tabla con los valores registrados en los cuatro estados del ciclo, para cada una de las presiones máximas ensayadas:

Ensayo	P ₁ [kPa]	T ₁ [°C]	P ₂ [kPa]	T₂ [°C]	P ₃ [kPa]	T₃ [°C]	P ₄ [kPa]	T4 [°C]			
1	1000	54,08	1000	300	15	53,98	15	53,98			
2	1500	54,14	1500	300	15	53,98	15	53,98			
3	2000	54,18	2000	300	15	53,98	15	53,98			
4	2500	54,23	2500	300	15	53,98	15	53,98			
5	3000	54,28	3000	300	15	53,98	15	53,98			
		Valores asumidos									
			Valo	ores reg	istrado	s Cycle	Pad				

Tabla 5-5 Ensayo presiones máximas y temperatura en cada estado del CR.

Ensayo	s1 [kj/kg*k]	h1 [kj/kg]	s2 [kj/kg*k]	h2 [kj/kg]	s₃ [kj/kg*k]	h₃ [kj/kg]	S4 [kj/kg*k]	h₄ [kj/kg]
1	0,7555	227,2	7,12	3015	7,46	2420	0,7549	226
2	0,7561	227,9	6,94	3037	7,3	2368	0,7549	226
3	0,7565	228,5	6,77	3023	7,15	2317	0,7549	226
4	0,7569	229,1	6,66	3007	7,05	2286	0,7549	226
5	0,7572	229,8	6,56	2991	6,96	2256	0,7549	226

Tabla 5-6 Entropía y entalpía en cada estado del CR.

La entalpía del estado 1, se calculó utilizando la ecuación (3.3), donde v es el volumen específico para la presión especificada en ese punto en la tabla de registros de agua saturada (Anexo 1). Como la bomba no se considera isentrópica, se utilizó la ecuación (3.12), con una eficiencia isentrópica del 80%.

El valor de la entalpía en el punto 2, se encuentra en la tabla de registro de vapor de agua sobrecalentada, para la presión y temperatura especificadas (Anexo 2). Luego para los puntos 3 se aplicó la ecuación (3.13), considerando una eficiencia de 85% en la turbina.

El estado del fluido de trabajo en punto 3 es vapor húmedo, en el cual su calidad se conoce aplicando la ecuación (3.8).

Finalmente, en el punto 4 el fluido de trabajo se encuentra en estado de agua saturada, la cual se obtuvo de la tabla de registro a una presión conocida (anexo 1) El proceso de obtención de entalpías y entropías para cada estado se calculó utilizando el software Cycle Pad, con el fin de evitar errores en los cálculos, por lo que las ecuaciones y valores registrados, se obtuvieron de forma automática.

	1	2	3	4	5	Unidad
T° _{máximo}	300	300	300	300	300	°C
T° mínimo	53,98	53 <i>,</i> 98	53,98	53,98	53,98	°C
P máximo	1000	1500	2000	2500	3000	kPa
P mínimo	15	15	15	15	15	kPa
W entrada	-1,3	-1,93	-2,56	-3,19	-3,83	kW
W salida	630,5	668,3	706	720,8	735,6	kW
W _{Neto}	629,2	666,4	703,5	717,6	731,8	kW
Q entrada	2823	2809	2794	2778	2761	kW
Q salida	-2,194	-2142	-2091	-2060	-2030	kW
η	22,29	23,72	25,18	25,83	26,50	%

Tabla 5-7 Eficiencia del CR para presiones máximas ensayadas.

La eficiencia del ciclo fue calculada utilizando la ecuación (3.11). De los valores obtenidos se demostró, que mientras la diferencia de presiones mínima y máxima es mayor, la eficiencia del ciclo aumenta. En este caso el ensayo 5, es el que mayor eficiencia presentó, con una presión mínima de 15 kPa y una presión máxima de 3000 kPa.

La eficiencia del ciclo se encontraba por debajo del 30% que se buscó, por lo que se ensayaron presiones de salida de la turbina de alta presión de 1 a 15 kPa, con el propósito de aumentar la eficiencia.

Ensayo	1	2	3	4	5	6	7	8	Unidad
T° máximo	300	300	300	300	300	300	300	300	°C
T° mínimo	6,97	17,5	24,08	28,97	32,88	36,17	39,01	41,52	°C
P máximo	3000	3000	3000	3000	3000	3000	3000	3000	kPa
P mínimo	1	2	3	4	5	6	7	8	kPa
W _{entrada}	-3,8	-3,78	-3,79	-3,78	-3,8	-3,81	-3,81	-3,81	kW
W salida	980,3	923,2	888,2	862,6	842,3	825,3	810,7	798	kW
W _{Neto}	976,5	919,4	884,4	858,8	838,5	821,5	806,9	794,2	kW
Q _{entrada}	2958	2914	2886	2866	2850	2836	2824	2814	kW
Q salida	-1982	-1995	-2002	-2007	-2011	-2014	-2017	-2019	kW
η	33,01	31,55	30,64	29,97	29,42	28,97	28,57	28,22	%

A continuación, se presentan los resultados de dicho ensayo:

Ensayo	9	10	11	12	13	14	15	Unidad
T° máximo	300	300	300	300	300	300	300	°C
T° _{mínimo}	43,77	45,82	47,7	49,43	51,05	52,56	53 <i>,</i> 98	°C
P _{máximo}	3000	3000	3000	3000	3000	3000	3000	kPa
P mínimo	9	10	11	12	13	14	15	kPa
W _{entrada}	-3,79	-3,82	-3,82	-3,8	-3,81	-3,82	-3,83	kW
W salida	786,6	776,2	766,8	758,2	750,2	742,6	735,6	kW
W _{Neto}	782,8	772,4	763	754,4	746,4	738,8	731,8	kW
Q _{entrada}	2804	2796	2788	2780	2774	2767	2761	kW
Q salida	-2021	-2023	-2025	-2026	-2027	-2029	-2030	kW
η	27,92	27,63	27,37	27,14	26,91	26,70	26,50	%

Tabla 5-8 Presiones mínimas ensayadas CR para aumentar la eficiencia del ciclo.

Como se observa en los resultados la mayor eficiencia se encontró en el ensayo 1 que corresponde a la presión mínima de 1 kPa, sin embargo, para el diseño se escogió el ensayo 2, que registra una presión mínima de operación de 2 kPa, con una eficiencia térmica de 31,55 %.

No obstante, el ensayo 2, presentó una potencia salida muy por debajo de 3 MW, por lo que, se realizó un tercer ensayo, donde se calcularon diez valores diferentes flujos másico de fluido de trabajo que iban de 1,2 a 3 kg/s, con la finalidad de aumentar la potencia de salida del ciclo.

Ensayo	1	2	3	4	5	6	7	8	9	10	Unidad
m	1,2	1,4	1,6	1,8	2	2,2	2,4	2,6	2,8	3	kg/s
T° _{máximo}	300	300	300	300	300	300	300	300	300	300	°C
T° _{mínimo}	17,5	17,5	17,5	17,5	17,5	17,5	17,5	17,5	17,5	17,5	°C
P _{máximo}	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	kPa
P _{mínimo}	2	2	2	2	2	2	2	2	2	2	kPa
W _{entrada}	-4,54	-5,3	-6,05	-6,81	-7,56	-8,32	-9,08	-9,83	-10,59	-11,35	kW
W _{salida}	1108	1293	1477	1662	1846	2031	2216	2400	2585	2770	kW
W _{Neto}	1103	1287	1471	1655	1839	2023	2207	2391	2574	2785	kW
<b>Q</b> _{entrada}	3497	4080	4662	5245	5828	6411	6994	7577	8159	8742	kW
Q _{salida}	-2394	-2831	-3191	-3590	-3989	-4388	-4787	-5186	-5585	-5984	kW
η	31,54	31,54	31,55	31,55	31,55	31,56	31,56	31,56	31,55	31,86	%

Tabla 5-9 Ensayo flujo másico de fluido de trabajo CR con la finalidad de aumentar la potencia de salida del ciclo.

De acuerdo con los valores ensayados, se escogió un valor de flujo másico de 2,6 kg/s, debido a que el calor de entrada generado por el combustible que se calculó es de 7933,33 kW, por lo que el calor de entrada al sistema no puede superar este valor, de lo contrario sería inconsistente.



Gráfico 5-1 Diagrama t-S Ciclo Rankine Simple.

Finalizado los ensayos, se presenta una tabla resumen con los valores de cada parámetro que fue calculado:

Parámetro	Valor	Unidad	Parámetro	Valor	Unidad
m	2,6	kg/s	h1	76,93	[kj/kg]
Х	0,8111	-	\$ ₁	0,2621	[kj/kg*k]
T° máximo	300	°C	h ₂	2991	[kj/kg]
T° _{mínimo}	17,5	°C	S ₂	6,56	[kj/kg*k]
P _{máximo}	3000	kPa	h ₃	2068	[kj/kg]
P mínimo	2	kPa	\$ ₃	7,12	[kj/kg*k]
W _{entrada}	-9,83	kW	h4	73,37	[kj/kg]
W salida	2400	kW	\$4	0,2603	[kj/kg*k]
W _{Neto}	2391	kW			
Q _{entrada}	7577	kW			
Q salida	-5186	kW	1		
η	31,56	%	1		

Tabla 5-10 Resumen de valores diseño Ciclo Rankine simple.

Para el análisis del ciclo con recalentamiento intermedio y expansión en etapas, se analizaron seis puntos. El análisis se llevó a cabo bajo el mismo procedimiento y condiciones preliminares del análisis para ciclo Rankine simple, exceptuando que el ciclo cuenta con dos turbinas, una de alta presión, y otra de baja presión, además de una unidad de recalentamiento intermedio. A continuación, se muestran los seis puntos analizados, además de los equipos que componen el ciclo:



Figura 5-2 Diagrama referencial diseño Ciclo Rankine con recalentamiento.

La presiones ensayadas a la salida de la turbina de alta presión van desde 700 kPa a 2,5 MPa.

A continuación, se presentan las tablas de resultado de los ensayos realizados para el análisis del ciclo:

Ensayo	P1 [kPa]	T1 [°C]	P ₂ [kPa]	T₂ [°C]	P₃ [kPa]	T₃ [°C]	P4 [kPa]	T₄ [°C]	P₅ [kPa]	T₅ [°C]	P ₆ [kPa]	T ₆ [°C]
1	1000	54,1	1000	300	700	261	700	300	15	54	15	54
2	1500	54,1	1500	300	1000	261	1000	300	15	54	15	54
3	2000	54,2	2000	300	1500	262	1500	300	15	54	15	54
4	2500	54,2	2500	300	2000	279	2000	300	15	54	15	54
5	3000	54,3	3000	300	2500	280	2500	300	15	54	15	54
Valores asumidos												
		Valore	es regi	strado	s Cycl	e Pad						

Tabla 5-11 Ensayo presiones máximas y temperatura en cada estado del CR con recalentamiento.

	1	2	3	4	5	Unidad
T° _{máximo}	300	300	300	300	300	°C
T° mínimo	53,98	53 <i>,</i> 98	53,98	53 <i>,</i> 98	53,98	°C
P _{máximo}	1000	1500	2000	2500	3000	kPa
P mínimo	15	15	15	15	15	kPa
W entrada	-1,3	-1,93	-2,56	-3,19	-3,83	kW
W salida	663,7	702,1	740	741	755,8	kW
W _{Neto}	662,4	700,2	737,4	737,8	752	kW
Q entrada	2906	2894	2880	2828	2812	kW
Q salida	-2244	-2194	-2142	-2091	-2060	kW
η	22,79	24,19	25,60	26,09	26,74	%

Tabla 5-12 Eficiencia del CR con recalentamiento para presiones máximas ensayadas.

Ensayo	1	2	3	4	5	6	7	8	Unidad
T° _{máximo}	300	300	300	300	300	300	300	300	°C
T° mínimo	6,97	17,5	24,08	28,97	32,88	36,17	39,01	41,52	°C
P máximo	3000	3000	3000	3000	3000	3000	3000	3000	kPa
P mínimo	1	2	3	4	5	6	7	8	kPa
W _{entrada}	-3,8	-3,78	-2,56	-3,78	-3,8	-3,81	-3,81	-3,81	kW
W salida	1005	946,6	911	884,9	864,3	847	832,2	819,2	kW
W _{Neto}	1001	942,8	907,2	881,1	860,5	843,2	828,4	815,4	kW
Q _{entrada}	3009	2965	2937	2917	2900	2887	2875	2864	kW
Q _{salida}	- 2008	-2022	-2030	-2036	-2040	-2043	-2046	-2049	kW
η	33,27	31,80	30,89	30,21	29,67	29,21	28,81	28,47	%
Ensayo	9	10	11	12	13	14	15	Unidad	
T° _{máximo}	300	300	300	300	300	300	300	°C	
T° mínimo	43,77	45,82	47,7	49,43	51,05	52,56	53,98	°C	
P máximo	3000	3000	3000	3000	3000	3000	3000	kPa	
P mínimo	9	10	11	12	13	14	15	kPa	
W entrada	-3,79	-3,82	-3,82	-3,8	-3,81	-3,82	-3,83	kW	
W salida	807,6	797,1	787,6	778,7	770,6	762,9	755,8	kW	
W _{Neto}	803,8	793,3	783,8	774,9	766,8	759,1	752	kW	
Q entrada	2855	2846	2838	2831	2824	2818	2812	kW	
Q salida	- 2051	-2053	-2055	-2056	-2058	-2059	-2060	kW	
η	28,15	27,87	27,62	27,37	27,15	26,94	26,74	%	

Ensayo	1	2	3	4	5	6	7	8	9	10	Unidad
m	1,2	1,4	1,6	1,8	2	2,2	2,4	2,6	2,8	3	kg/s
T° máximo	300	300	300	300	300	300	300	300	300	300	°C
T° _{mínimo}	17,5	17,5	17,5	17,5	17,5	17,5	17,5	17,5	17,5	17,5	°C
P máximo	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	kPa
P mínimo	2	2	2	2	2	2	2	2	2	2	kPa
W _{entrada}	-4,54	-5,3	-6,05	-6,81	-7,56	-8,32	-9,08	-9,83	-10,6	-11,4	kW
W salida	1136	1325	1514	1704	1893	2082	2272	2461	2650	2840	kW
W _{Neto}	1131	1320	1508	1697	1886	2074	2263	2451	2640	2828	kW
<b>Q</b> entrada	3558	4151	4744	5337	5930	6522	7115	7708	8301	8894	kW
Q _{salida}	- 2426	-2831	-3235	-3640	-4044	-4448	-4853	-5257	-5662	-6066	kW
η	31,79	31,80	31,79	31,80	31,80	31,80	31,81	31,80	31,80	31,80	%

Tabla 5-13 Presiones mínimas ensayadas CR con recalentamiento para aumentar la eficiencia del ciclo.

Tabla 5-14 Ensayo flujo másico de fluido de trabajo CR con recalentamiento la finalidad de aumentar la potencia de salida del ciclo.



Gráfico 5-2 Diagrama t-S Ciclo Rankine con recalentamiento.

Analizados ambos ciclos, se procedió a la comparación de la eficiencia térmica de ambos ciclos, con respecto a diferentes valores de flujo másico ensayados:



Gráfico 5-3 Comparación ciclo Rankine simple v/s con recalentamiento.

Del gráficos se pudo inferir que la diferencia en los valores de eficiencia del ciclo Rankine simple, y ciclo Rankine con recalentamiento, no es significativa, ya que la diferencia máxima, no supera los 0,25%.

De acuerdo con la información representada en el gráfico se decide trabajar con un ciclo Rankine simple, ya que, el ciclo Rankine con recalentamiento no aumenta su eficiencia de forma relevante. Además, considera la incorporación de una turbina de alta y baja presión, la cual no se justifica en términos de potencia neta generada, ya que la potencia de la planta no superará los 3MW, lo cual es perfectamente logrado con la acción de solo un conjunto turbina-generador.

#### 5.2.1 Balance de exergía del ciclo Rankine simple.

Con el fin de identificar los equipos donde la energía se destruye o se pierde, se realizó un balance de exergía para el sistema diseñado. Este análisis nos ayudó a tener en consideración la mejora de aspectos técnicos al momento de seleccionar los equipos.

Para el análisis de exergía realizado en el ciclo se tomaron las siguientes consideraciones:

Consideraciones
1. El volumen de control se encuentra en estado estacionario.
2. Los efectos de energía cinética y potencial son despreciables.
3. Los gases de combustión se consideran aire con comportamiento de gas ideal.
4. Punto muerto: $T_0 = 20^{\circ} / P_0 = 100 Pa$ .
5. Se incorpora el 68% de la exergía que entra a la planta del combustible que entra a la planta luego de contabilizar las pérdidas por chimenea, y por combustión.

Tabla 5-15 Consideraciones análisis exergético.

La eficiencia térmica del ciclo, calculada para el ciclo es de 31,8%, por lo que el 68,2%, de la energía proporcionada al fluido de trabajo es cedida al exterior de la planta por el agua de refrigeración.

La exergía que se destruye en cada componente fue calculada a partir de los siguientes balances exergéticos.

#### A. Caldera



Figura 5-3 Diagrama de flujo caldera.

La caldera posee un flujo de fluido de trabajo, que va desde el punto 1 hasta el punto 2, y un recalentamiento que va desde el punto 3 hasta el punto 4. Los gases de combustión se enfrían desde los 280° a los 130°, a presión constante de 1 atm. Este valor se asume de acuerdo con el catálogo Bosch de calderas de vapor.

El flujo de agua m que atraviesa la caldera corresponde a 2,6 kg/s o 9,36x10³ kg/h, de acuerdo con la ecuación (3.13), el balance global de energía se traduce a:

$$0 = Q_{vc}^{,\bullet} - W_{vc}^{,\bullet} + \dot{m}_a(h_e - h_s) + \dot{m}(h_2 - h_1) + \dot{m}(h_4 - h_3)$$

Donde h_e y h_s, corresponden a las entalpías de gas ideal a la temperatura de entrada y salida (Anexo 3)

$$\dot{m}_a(h_e - h_s) = \dot{m}(h_1 - h_2)$$
$$\frac{\dot{m}_a}{\dot{m}} = \frac{9,36x10^3}{(558 - 403,2)} = 60,5 \ kg \ (agua/aire)$$
$$\therefore \ \dot{m}_a = 9,36x10^3 \cdot 60,5 = 5,6x10^5 \ kg/h$$

Aplicamos la ecuación (3.15) para obtener la exergía cedida por los gases, donde: [*Exergía cedida por los gases*] =  $m_a(a_{fe} - a_{fs})$ 

$$= \dot{m}_{a}[h_{e} - h_{s} - T_{0}(s_{e} - s_{s})]$$

$$= 5,6x10^{5}[558 - 403,3 - 293,15(2,32399 - 2,00027)] kj/h$$

$$= \frac{3,34x10^{7} kj/h}{3600 s/h} \left| \frac{1 MW}{10^{3} kW} \right| = 9,3MW$$

Aplicamos la ecuación (3.15) para exergía recibida por la corriente del agua de la caldera y el recalentamiento:

- Caldera

$$\begin{aligned} [Exergía recibida por la corriente de agua] &= \dot{m} (a_{f2} - a_{f1}) \\ &= \dot{m} [h_2 - h_1 - T_0 (s_2 - s_1)] \\ &= 9,36x 10^3 [2991 - 76,93 - 293,15(6,52 - 0,2621)] \, kj/h \\ &= \frac{1035x 10^7 kj/h}{3600 \, s/h} \left| \frac{1 \, MW}{10^3 kW} \right| = 2,87 MW \end{aligned}$$

Hacemos el balance de exergía en la caldera, aplicando ecuación (3.13):

$$E = \dot{m}_a (a_{fe} - a_{fs}) - \dot{m} (a_{f2} - a_{f1})$$
$$E = 9.3 - 2.87 = 6.43 MW$$

La eficiencia exergetica dada por la ecuación (3.14), es:

$$\varepsilon = \frac{2,87}{9,3} = 0,3 \ x \ 100 = 30\%$$

Según los cálculos realizados, el 70% de la exergía que es aportada a la caldera y recalentamiento, por los productos de combustión, es destruida.

No obstante, sabemos que el 68,2% de la exergía aportada por el combustible, queda en los productos de combustión, por lo que 0,682x70%= 47,74%, de la exergía que entra con el combustible, se destruye en la caldera.

#### B. Turbina

Para el análisis de exergía en la turbina, se tomó en cuenta las consideraciones impuestas en la tabla 5-15.

Realizando un balance energético, de acuerdo con la ecuación 3.17, tenemos lo siguiente:

- Turbina

$$A_{d} = \dot{m}T_{0}(s_{3} - s_{2})$$

$$A_{d} = 9,36x10^{3} \cdot 295,15(7,12 - 6,56)$$

$$= \frac{1,5470x10^{6}kj/h}{3600 s/h} \left| \frac{1 MW}{10^{3}kW} \right| = 0,429 MW$$

La suma de exergía de ambas turbinas es:

$$E = 0,429 \ MW$$

Sabemos que la exergía cedida por los gases de combustión corresponde a 9,3 MW, por lo tanto, el porcentaje de exergía que se destruye en ambas turbinas es:

$$\frac{0,429}{9,3} x \ 100 \ x \ 0,682 \ = \ 3,14 \ \%$$

#### C. Bomba

Para el análisis de exergía en la turbina, se tomó en cuenta las consideraciones impuestas en la tabla 5-15.

Realizando un balance energético, de acuerdo con la ecuación (3.16), tenemos lo siguiente:

$$A_{d} = \dot{m}T_{0}(s_{1} - s_{4})$$

$$A_{d} = 9,36x10^{3} \cdot 295,15(0,2621 - 0,2603)$$

$$= \frac{4,972x10^{3}kj/h}{3600 s/h} \left| \frac{1 MW}{10^{3}kW} \right| = 0,0013 MW$$

Sabemos que la exergía cedida por los gases de combustión corresponde a 9,3 MW, por lo tanto, el porcentaje de exergía que se destruye en la bomba es:

$$\frac{0,0013}{9,3} x \ 100 \ x \ 0,682 \ = \ 0,009 \ \%$$

#### D. Condensador



Figura 5-4 Diagrama de flujo condensador.

El balance de exergía del condensador se realizó asumiendo que el flujo de agua de refrigeración entra a temperatura ambiente, y sale a 60°, producto del calor absorbido en el proceso.

Para el balance de exergía, calculamos el flujo de agua de refrigeración utilizando la ecuación (3.17):

$$\dot{m_w} = \frac{\dot{Q_s}[MW][3600 \ s/h][10^3 kW/MW]}{(h_e - h_s)}$$
$$= \frac{5,18[MW][3600 \ s/h][10^3 kW/MW]}{(251,18 - 83,915)}$$
$$= 1,11x10^5 \ kg/h$$

Aplicando la ecuación (3.15), para calcular la exergía neta absorbida por el agua de refrigeración:

 $[Exergía neta absorbida por agua de refrigeración] = m_w(a_{fe} - a_{fs})$ 

$$= m_w [h_e - h_s - T_0 (s_e - s_s)]$$
  
= 1,11x10⁵[251,18 - 83,915 - 293,15(0,8313 - 0,2965)] kj/h  
$$= \frac{1,16x10^6 kj/h}{3600 s/h} \left| \frac{1 MW}{10^3 kW} \right| = 0,32MW$$

Hacemos el balance de exergía en el condensador, utilizando la ecuación (3.15):

$$E = \dot{m}_{w} (a_{fe} - a_{fs}) + \dot{m} (a_{f4} - a_{f3})$$
$$\dot{m} (a_{f4} - a_{f3}) = \dot{m} [h_4 - h_3 - T_0 (s_4 - s_3)]$$
$$= 9,36x 10^3 [73,37 - 2068 - 293,15(0,2603 - 7,12)]$$
$$= \frac{1,52x 10^5 k j / h}{3600 s / h} \left| \frac{1 MW}{10^3 k W} \right| = 0,042 MW$$

E = 0,32 + 0,042 = 0,362

Sabemos que la exergía cedida por los gases de combustión corresponde a 9,3 MW, por lo tanto, el porcentaje de exergía que se destruye en la bomba es:

$$\frac{0,362}{9,3} x \ 100 \ x \ 0,682 \ = \ 2,65 \ \%$$

Balance exergético ciclo Bankine	Exergía destruida [%]		
	Normal	Aproximado	
Salidas			
Potencia neta producida	31,80%	32%	
Perdidas	·		
Agua de refrigeración	2,87%	3%	
Gases de combustión*	1%	1%	
Destrucción de exergía			
Caldera			
Combustor*	10%	10%	
Intercambiador de calor	47,74%	48%	
Turbina	3,14%	3%	
Bomba	0,013%	0%	
Condensador	2,65%	3%	
Total	99,21%	100%	

*Valor asumido por literatura (N.Shapiro, 2004).

Tabla 5-16 Balance de exergía ciclo Rankine simple

La energía destruida en la caldera fue mayor, que, en otros equipos, por lo que debemos considerar mejoras prácticas al momento de seleccionar los equipos, con el fin de disminuir la exergía destruida, y aumentar el rendimientos de la caldera. Existen equipos auxiliares, que pueden contribuir a un mayor aprovechamiento de la energía, para poder lograr un ciclo más eficiente y con pérdidas menores.

# 5.3 Comparación del ciclo utilizando gas de síntesis con relación a combustibles convencionales.

El combustible, fuente de energía, incide en el ciclo solo en términos de calor de entrada en la caldera. Para el análisis comparativo, solo se varió este parámetro. Para modificar el calor de entrada, se pueden manipular dos parámetros: la temperatura en el punto 2, que se encuentra a la salida de la caldera, y el flujo másico que circula a través del ciclo.

Para el análisis de la comparación se varió el parámetro de flujo másico, debido a que como se explicó anteriormente, la temperatura máxima de 300°, se impuso teniendo en cuenta el catálogo de calderas de vapor comerciales Bosch, donde en los diferentes modelos, este es el máximo valor que se puede utilizar como temperatura de trabajo.

La comparación se hizo analizando el gas de síntesis en relación con gas natural y petróleo.

El flujo másico de combustible máximo que puede producir la planta de pirólisis, de acuerdo con la unidad escogida es de 0,2833 [kg/s], por lo que para la realización del análisis comparativo utilizamos este valor.

Para el cálculo de calor generado, se utiliza la ecuación (5.1) del apartado 5.1.2 y para el PCI, lo valores se encuentran tabulados en la tabla 3 del apartado 2.3.3. Los resultados de calor generado se presentan en la siguiente tabla:

Combustible	Qgen	Unidad
Gas de síntesis	7933,33	kW
Gas natural	11465,2	kW
petróleo	12054,4	kW

Tabla 5-17Calor generado gas de síntesis, petróleo y gas natural.



Gráfico 5-4 Comparación Gas de síntesis, petróleo y gas natural.

En base al gráfico realizado, si bien los combustibles convencionales al combustionar generan una cantidad de entrada al ciclo significativamente mayor que el gas de síntesis, para este diseño, su eficiencia no aumenta. Esto ocurre debido a que la temperatura de la caldera se mantuvo constante ya que no se varió la temperatura de salida.

En el caso hipotético de haber variado los parámetros de presión y temperatura, o generar un diseño específico para estos combustibles, la eficiencia debe aumentar ya que, al aumentar la temperatura de salida de la caldera, por el calor generado, en consecuencia, habría un aumento de presión máxima en el ciclo, aumentando la brecha con la presión mínima del ciclo, lo que aumenta su eficiencia. Hecho demostrado en el ensayo de presiones máximas, en la tabla 5-7.

# 6 Selección de equipos Ciclo Rankine

La selección de los equipos se realizó de acuerdo con el valor de los parámetros obtenidos en el análisis de ciclo Rankine, para el cual se utilizó gas de síntesis como fuente de energía.

De acuerdo con el análisis realizado, a través de balances energéticos en los equipos, se decidió realizar un ciclo Rankine simple, el cual contará con una caldera, una turbina, una bomba y un condensador.

# 6.1 Bomba de alimentación caldera

La bomba de alimentación de la caldera debe seleccionarse según la presión necesaria que se requiere en la caldera, para el diseño realizado se requiere una presión de 30 bar, un caudal de 2,6 kg/s (9,3 m³/h) y una potencia requerida de 9,83 kW.

La bomba seleccionada es de modelo KSB HPH, y posee las siguientes características técnicas:

Bomba KSB			
Тіро	НРН		
Medio	agua de refrigeración		
Tecnología	centrífuga		
Accionamiento	eléctrico		
Caudal	mín: 2,5 m³/h		
	máx: 1900 m³/h		
Presión	mín:0 bar		
	máx: 110 bar		
Potencia	490 kW		

Tabla 6-1 Características técnicas bomba KSB.

Algunos fabricantes recomiendan, adicionar un 10% al valor de la presión a la cual trabaja la caldera, con el fin de superar las pérdidas de carga, y la presión de esta. En el siguiente diagrama se presenta las curvas características de los diferentes modelos de bomba, dependiendo de los requerimientos de operación. En el caso nuestro se escoge la bomba HPH 40-250, debido a que cumple con el caudal necesario de trabajo. El catálogo de la bomba se encuentra en el Anexo 4.



Gráfico 6-1 Curva de operación de la bomba.



Figura 6-1 Bomba KSB modelo HPH.

## 6.2 Caldera de vapor

La caldera de vapor se escoge bajo tres parámetros: la temperatura máxima, la presión máxima, y la carga de vapor solicitada.

Para el ciclo Rankine diseñado se requiere:

- Presión máxima: 3 MPa

- Temperatura máxima: 300°C

- Carga de vapor: 2,6 kg/s

Adicionalmente, se requiere una caldera que pueda utilizar como fluido de trabajo gas de síntesis. Esto dependerá del modelo de caldera, ya que debe admitir combustibles alternativos.

Dentro del comercio, se decide seleccionar la caldera modelo Bosch UL-SX, la cual posee las siguiente características comerciales:

Caldera de vapor Bosch				
Тіро	UL-SX			
Medio de transferencia térmica	Vapor sobrecalentado de alta presión			
Tipo de construcción	3 pasos: hogar + dos pasos de gases. Técnica pirotubular.			
Potencia en kg/h	2600 a 28000			
Presión de diseño en bar	hasta 30			
Temperatura máx. en °C	300			
combustible	Diesel, fuel-oil, gas,			

Tabla 6-2 Características técnicas caldera Bosch.



Figura 6-2 Caldera Bosch UL-SX.

La caldera es compatible con todos los sistemas de quemador, lo que permite la utilización de combustibles alternativos, en este caso, gas de síntesis. Los

quemadores ofrecidos por el fabricante cumplen con las normativas ambientales de todos los países, además permite alcanzar un nivel neutro de emisiones de CO₂ al utilizar combustibles alternativos como bio-gas, bio-diesel, entre otros.

La caldera posee un economizador integrado lo que permite la recuperación del calor de los gases de combustión, lo cual aumenta el rendimiento entre un 7% a 15%. A continuación, se presenta el grafico de rendimiento del fabricante:



El consumo de combustible dependerá del tipo de quemador, y de los parámetro de operación escogidos, información que dependerá de las condiciones solicitadas. En el Anexo 5 se presenta la ficha técnica de la caldera seleccionada en detalle.

## 6.3 Turbina de vapor

La turbina seleccionada depende de la potencia de salida, de la presión y temperatura máxima de entrada. Para el diseño analizado se tiene:

- Potencia generada: 2,6 MW
- Presión de entrada: 3 MPa
- Temperatura: 300°C

La turbina seleccionada de forma comercial es la turbina Siemens modelo SST-200, con las siguientes características:

Turbina Siemens				
Tipos	SST-200			
Potencia de salida	hasta 20 MW			
Velocidad de la turbina	hasta 12.000 r.p.m			
Presión de entrada de vapor	hasta 120 bar			
Temperatura de entrada de vapor	hasta 540°C			
Contrapresión	hasta 16 bar			
Condensado	hasta 0,25 bar			
Extracciones controladas	16 bares			
Extracciones incontroladas	60 bares			

Tabla 6-3 Características técnicas turbina Siemens.



Figura 6-3 Turbina Siemens SST-200.

La información técnica se encuentra en el Anexo 6.

# 6.4 Condensador

El condensador en el ciclo Rankine, se debe seleccionar dependiendo de la energía del circuito que se quiera rechazar.

Para la condensación del fluido de trabajo se utilizan intercambiadores de calor, los cuales por lo general son tubulares, el cual posee un circuito propio de recirculación de agua o refrigerante, el cual se encarga de absorber el calor transferido desde el fluido de trabajo. Dependiendo de la cantidad de energía que se rechace, será necesaria una torre de enfriamiento, o refrigeración para quitar calor del líquido refrigerante.

Para el diseñó realizado, se escogió un intercambiador de calor un intercambiador de calor de tubo y coraza, marca ITT Standard, modelo C300:

Condensador ITT					
Modelo	C300				
Presión máxima coraza	20,7 bar				
Presión máxima de tubo	41,3 bar				
Temperatura máxima coraza	343°C				
Temperatura máxima de tubos	343°C				
Тіро	U				
Pasos por tubos	2,4 y 6				

Tabla 6-4 Características técnicas condensador ITT.

Aplicaciones: calentar y enfriar líquidos de petróleo, agua y fluidos de proceso, o condensación de vapor de proceso.

El intercambiador seleccionado permite una amplia variación en la temperatura del fluido, y resiste mejor el choque térmico. La información técnica se encuentra en el catálogo en el anexo 7.



Figura 6-4 Intercambiador de calor ITT C300
## 7 Conclusiones

De acuerdo con los resultados obtenidos en base al diseño de ciclo Rankine realizado, el gas de síntesis puede ser una provechosa fuente energética como combustible alternativo para generación de energía eléctrica, lo cual queda demostrado, en comparación con otros combustibles convencionales como el gas natural y el petróleo, que no mostraron una eficiencia superior del ciclo diseñado, en igualdad de condiciones de operación.

La planta diseñada puede lograr generar 2,4 MW, la que puede ser perfectamente utilizada como uso domiciliario, o en procesos industriales que requieran de esta, de tal manera que al ser un combustible que proviene de una planta de pirólisis que procesa desechos plásticos, estos pueden ser reciclados y contribuyen a un mejor aprovechamiento de los recursos.

Con respecto a la eficiencia del ciclo, si bien se logró el 30% propuesto preliminarmente, esta es baja, debido a que según los balances de exergía realizados, existen grandes pérdidas energéticas en el proceso, principalmente en la caldera, las cuales podrían ser estudiadas a futuro, para comprobar una posible mejoría, al realizar la incorporación de equipos auxiliares que ayudasen a un mejor aprovechamiento del calor generado en el proceso, o el estudio de un ciclo Rankine orgánico, que utilice como fluido de trabajo algún otro alternativo al agua.

Al analizar el ciclo Rankine con recalentamiento y expansión en etapas, no se obtuvo mejoras significativas con relación a la eficiencia, seleccionando un diseño final simple

Los equipos seleccionados para el ciclo cumplen con los requerimientos de operación según lo balances de energía realizados, y su adquisición comercial es factible.

# 8 Bibliografía

- Asociación Gremial de Industriales de plástico. (2019). Estudio sobre reciclaje de plásticos en Chile. Santiago.
- *biogreen-energy*. (20 de junio de 2019). Obtenido de http://www.biogreenenergy.com/what-is-pyrolysis/
- *biogreen-energy*. (15 de mayo de 2019). Obtenido de http://www.biogreenenergy.com/syngas/
- *biogreen-energy.* (26 de mayo de 2019). Obtenido de http://www.biogreenenergy.com/plastics-pyrolysis/
- *biogreen-energy pyrolisis*. (20 de abril de 2020). Obtenido de http://www.biogreenenergy.com/industrial-pyrolysis-capacities/
- Boles Cengel, Y. A. (2012). Termodinámica. En M. A. Yunus A Cengel, *Termodinámica* (págs. 491-495). Mc Graw Hill.
- Boles Cengel, Y. A.-M. (2012). Termodinámica. En Y. A.-M. Boles, *Termodinámica* (pág. 282). Mc Graw Hill.
- Bombas centrifugas. (30 de mayo de 2020). Obtenido de https://www.bombascentrifugas.net/2019/04/bombas-calderas.html
- bosch-thermotechnology. (s.f.). Obtenido de https://www.boschthermotechnology.com/es/es/ocs/comercial-e-industrial/caldera-de-vaporuniversal-ul-s-ul-sx-669474-p/
- camara argentina de la industria plastica. (25 de junio de 2019). Obtenido de http://www.caip.org.ar/tipos-de-plasticos/
- ciclo agua y vapor. (29 de mayo de 2020). Obtenido de http://www.cicloaguavapor.com/condensador
- CyclePad. (mayo de 2020). cycle pad software. Obtenido de http://www.qrg.northwestern.edu/projects/NSF/Cyclepad/aboutcp.html ecotechnologies, ETIA. (26 de mayo de 2019). Obtenido de
- https://www.youtube.com/watch?v=3HXeV5y6aNw&feature=emb_logo ecured. (junio de 2020). Obtenido de https://www.ecured.cu/Turbina_de_vapor energía12.com. (20 de junio de 2019). Obtenido de energía12.com:
  - https://energia12.com/2012/03/29/transformacion-por-pirolisis-obtenciondiesel-a-partir-de-residuos-plasticos-2a-parte/
- engormix. (s.f.). Obtenido de
  - https://www.engormix.com/balanceados/articulos/calderas-humo-tubulares-t42818.htm
- Enspm. (2020). Obtenido de www.enspm.com
- *euston*. (21 de junio de 2019). Obtenido de https://www.euston96.com/pirolisis/ *gestores de residuos*. (29 de junio de 2019). Obtenido de
- https://gestoresderesiduos.org/noticias/la-clasificacion-de-los-plasticos https://etia-group.com. (20 de abril de 2020). Obtenido de https://etia-group.com/: https://etia-group.com/our-products/spirajoule/
- Ignacio, H. O.-J. (2017). Caldera para plata de producción de empresa cial alimetos. Satiago.
- Introducción a la fisico química: Termodinámica. (s.f.). En P. J. Thomas Engel, Introducción a la fisico química: Termodinámica (pág. 192).

KSB. (s.f.). Obtenido de

https://shop.ksb.com/ims_docs/CA/CAA9104C4BB86C41E1000000CEA40 CB4.pdf

M.R.Franceshini. (2020). Obtenido de

https://www.mrfpr.com/post/intercambiadores-de-calor-101-segunda-partetubo-y-carcaza

N.Shapiro, J. M. (2004). *Fundamentos de termodinámica técnica.* España: Reverté S.A.

- Ortiz, M. P. (2016). *Diseño de una central termoélectrica de Biomasa.* Cataluña: Universidad Técnica de Cataluña.
- os-motores.blogspot.com. (29 de mayo de 2020). Obtenido de losmotores.blogspot.com: http://los-motores.blogspot.com/2006/06/turvinas-yreactores.html
- Petromercado. (s.f.). Obtenido de http://petromercado.com/blog/37-articulos/105poder-calorifico-inferior-y-superior.html

plantas de cogeneración. (29 de mayo de 2020). Obtenido de http://www.plantasdecogeneracion.com/index.php/turbinas-devapor#:~:text=De%20acci%C3%B3n%20y%20de%20reacci%C3%B3n,el% 20que%20mueve%20el%20rotor.&text=Las%20turbinas%20de%20acci%C 3%B3n%20habituales,en%20cada%20una%20de%20ellas.

Ramirez, E. H. (2017). Análisis de factibilidad de un ciclo Rankine para un digestor y un gasificador. ciudad de Mexico.

Siemens. (2020). Obtenido de

https://assets.new.siemens.com/siemens/assets/public.1587994933.2bb220 b7a44405554ff4e3a724f62bdca89d6a2b.sst-200-data-sheet.pdf

- Tablas de poder calorífico. (24 de mayo de 2019). Obtenido de
- https://ingemecanica.com/tutoriales/poder_calorifico.html
- Tablas poder calorífico. (2020 de mayo de 24). Obtenido de https://ingemecanica.com/tutoriales/poder_calorifico.html
- *Tecnología mecánica*. (29 de mayo de 2020). Obtenido de http://www.fullmecanica.com/definiciones/b/1677-bombas-centrifugas
- Termotec limitada. (2020). Obtenido de

http://www.termo.cl/producto_ic_tubocarcaza.htm

*www.areatecnologia.com.* (30 de mayo de 2020). Obtenido de www.areatecnologia.com:

https://www.areatecnologia.com/mecanismos/turbina-de-vapor.html

www.bosch-climate. (2020). Obtenido de https://www.bosch-climate.cl/productosbosch-industriales/bosch-productos-industriales/calderas-de-vapor/calderau-mb.html

*www.termoindustrial1ii132.blogspot.com*. (19 de mayo de 2020). Obtenido de www.termoindustrial1ii132.blogspot.com:

http://termoindustrial1ii132.blogspot.com/

## 9 Anexos

# 9.1 Anexo 1 Propiedades agua saturada

		Volumei I	n específico, m ³ /kg	E	nergía in kJ/kg	terna,		Entalpía kJ/kg	а,		Entropía, kJ/kg · K	
Temp., T°C	Pres. sat., P.,, kPa	Líq. sat.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	Líq. sat., h.	Evap.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat., s-
0.01	0.6117 0.8725	0.001000	206.00 147.03	0.000	2374.9 2360.8	2374.9 2381.8	0.001	2500.9 2489.1	2500.9 2510.1	0.0000	9.1556 8.9487	9.1556 9.0249
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	0.1511	8.7488	8.8999
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	0.2245	8.5559	8.7803
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	0.2965	8.3696	8.6661
25	3.1698	0.001003	43.340	104.83	2304.3	2409.1	104.83	2441.7	2546.5	0.3672	8.1895	8.5567
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	0.4368	8.0152	8.4520
35	5.6291	0.001006	25.205	146.63	2276.0	2422.7	146.64	2417.9	2564.6	0.5051	7.8466	8.3517
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5	0.5724	7.6832	8.2556
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188.44	2394.0	2582.4	0.6386	7.5247	8.1633
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3	0.7038	7.3710	8.0748
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1	0.7680	7.2218	7.9898
60	19.947	0.001017	7.6670	251.16	2204.7	2455.9	251.18	2357.7	2608.8	0.8313	7.0769	7.9082
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.12	2345.4	2617.5	0.8937	6.9360	7.8296
70	31.202	0.001023	5.0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	0.9551	6.7989	7.7540
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	1.0158	6.6655	7.6812
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	2308.0	2643.0	1.0756	6.5355	7.6111
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	1.1346	6.4089	7.5435
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	1.1929	6.2853	7.4782
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	1.2504	6.1647	7.4151
100	101.42	0.001043	1.6720	419.06	2087.0	2506.0	419.17	2256.4	2675.6	1.3072	6.0470	7.3542
105	120.90	0.001047	1.4186	440.15	2071.8	2511.9	440.28	2243.1	2683.4	1.3634	5.9319	7.2952
110	143.38	0.001052	1.2094	461.27	2056.4	2517.7	461.42	2229.7	2691.1	1.4188	5.8193	7.2382
115	169.18	0.001056	1.0360	482.42	2040.9	2523.3	482.59	2216.0	2698.6	1.4737	5.7092	7.1829
120	198.67	0.001060	0.89133	503.60	2025.3	2528.9	503.81	2202.1	2706.0	1.5279	5.6013	7.1292
125	232.23	0.001065	0.77012	524.83	2009.5	2534.3	525.07	2188.1	2713.1	1.5816	5.4956	7.0771
130	270.28	0.001070	0.66808	546.10	1993.4	2539.5	546.38	2173.7	2720.1	1.6346	5.3919	7.0265
135	313.22	0.001075	0.58179	567.41	1977.3	2544.7	567.75	2159.1	2726.9	1.6872	5.2901	6.9773
140	361.53	0.001080	0.50850	588.77	1960.9	2549.6	589.16	2144.3	2733.5	1.7392	5.1901	6.9294
145	415.68	0.001085	0.44600	610.19	1944.2	2554.4	610.64	2129.2	2739.8	1.7908	5.0919	6.8827
150	476.16	0.001091	0.39248	631.66	1927.4	2559.1	632.18	2113.8	2745.9	1.8418	4.9953	6.8371
155	543.49	0.001096	0.34648	653.19	1910.3	2563.5	653.79	2098.0	2751.8	1.8924	4.9002	6.7927
160	618.23	0.001102	0.30680	674.79	1893.0	2567.8	675.47	2082.0	2757.5	1.9426	4.8066	6.7492
165	700.93	0.001108	0.27244	696.46	1875.4	2571.9	697.24	2065.6	2762.8	1.9923	4.7143	6.7067
170	792.18	0.001114	0.24260	718.20	1857.5	2575.7	719.08	2048.8	2767.9	2.0417	4.6233	6.6650
175	892.60	0.001121	0.21659	740.02	1839.4	2579.4	741.02	2031.7	2772.7	2.0906	4.5335	6.6242
180	1002.8	0.001127	0.19384	761.92	1820.9	2582.8	763.05	2014.2	2777.2	2.1392	4.4448	6.5841
185	1123.5	0.001134	0.17390	783.91	1802.1	2586.0	785.19	1996.2	2781.4	2.1875	4.3572	6.5447
190	1255.2	0.001141	0.15636	806.00	1783.0	2589.0	807.43	1977.9	2785.3	2.2355	4.2705	6.5059
195	1398.8	0.001149	0.14089	828.18	1763.6	2591.7	829.78	1959.0	2788.8	2.2831	4.1847	6.4678
200	1554.9	0.001157	0.12721	850.46	1743.7	2594.2	852.26	1939.8	2792.0	2.3305	4.0997	6.4302

Agua saturada. Tabla de temperaturas

Te	emp.,	sat.,	sat,	sat.,	sat.,	Evap.,	sat.,	sat.,	Evap.,	sat.,	sat.,	Evap.,	sat.,
Τ	°C	P _{sat} kPa	V _f	Vg	Uf	U _{fg}	ug	h _f	h _{fg}	hg	s _f	S _{fg}	s _g
	205	1724.3	0.001164	0.11508	872.86	1723.5	2596.4	874.87	1920.0	2794.8	2.3776	4.0154	6.3930
	210	1907.7	0.001173	0.10429	895.38	1702.9	2598.3	897.61	1899.7	2797.3	2.4245	3.9318	6.3563
	215	2105.9	0.001181	0.094680	918.02	1681.9	2599.9	920.50	1878.8	2799.3	2.4712	3.8489	6.3200
	220	2319.6	0.001190	0.086094	940.79	1660.5	2601.3	943.55	1857.4	2801.0	2.5176	3.7664	6.2840
	225	2549.7	0.001199	0.078405	963.70	1638.6	2602.3	966.76	1835.4	2802.2	2.5639	3.6844	6.2483
	230	2797.1	0.001209	0.071505	986.76	1616.1	2602.9	990.14	1812.8	2802.9	2.6100	3.6028	6.2128
	235	3062.6	0.001219	0.065300	1010.0	1593.2	2603.2	1013.7	1789.5	2803.2	2.6560	3.5216	6.1775
	240	3347.0	0.001229	0.059707	1033.4	1569.8	2603.1	1037.5	1765.5	2803.0	2.7018	3.4405	6.1424
	245	3651.2	0.001240	0.054656	1056.9	1545.7	2602.7	1061.5	1740.8	2802.2	2.7476	3.3596	6.1072
	250	3976.2	0.001252	0.050085	1080.7	1521.1	2601.8	1085.7	1715.3	2801.0	2.7933	3.2788	6.0721
	255	4322.9	0.001263	0.045941	1104.7	1495.8	2600.5	1110.1	1689.0	2799.1	2.8390	3.1979	6.0369
	260	4692.3	0.001276	0.042175	1128.8	1469.9	2598.7	1134.8	1661.8	2796.6	2.8847	3.1169	6.0017
	265	5085.3	0.001289	0.038748	1153.3	1443.2	2596.5	1159.8	1633.7	2793.5	2.9304	3.0358	5.9662
	270	5503.0	0.001303	0.035622	1177.9	1415.7	2593.7	1185.1	1604.6	2789.7	2.9762	2.9542	5.9305
	275	5946.4	0.001317	0.032767	1202.9	1387.4	2590.3	1210.7	1574.5	2785.2	3.0221	2.8723	5.8944
	280	6416.6	0.001333	0.030153	1228.2	1358.2	2586.4	1236.7	1543.2	2779.9	3.0681	2.7898	5.8579
	285	6914.6	0.001349	0.027756	1253.7	1328.1	2581.8	1263.1	1510.7	2773.7	3.1144	2.7066	5.8210
	290	7441.8	0.001366	0.025554	1279.7	1296.9	2576.5	1289.8	1476.9	2766.7	3.1608	2.6225	5.7834
	295	7999.0	0.001384	0.023528	1306.0	1264.5	2570.5	1317.1	1441.6	2758.7	3.2076	2.5374	5.7450
	300	8587.9	0.001404	0.021659	1332.7	1230.9	2563.6	1344.8	1404.8	2749.6	3.2548	2.4511	5.7059
4.4 4.5 4.4 4.4 4.4	305	9209.4	0.001425	0.019932	1360.0	1195.9	2555.8	1373.1	1366.3	2739.4	3.3024	2.3633	5.6657
	310	9865.0	0.001447	0.018333	1387.7	1159.3	2547.1	1402.0	1325.9	2727.9	3.3506	2.2737	5.6243
	315	10,556	0.001472	0.016849	1416.1	1121.1	2537.2	1431.6	1283.4	2715.0	3.3994	2.1821	5.5816
	320	11,284	0.001499	0.015470	1445.1	1080.9	2526.0	1462.0	1238.5	2700.6	3.4491	2.0881	5.5372
	325	12,051	0.001528	0.014183	1475.0	1038.5	2513.4	1493.4	1191.0	2684.3	3.4998	1.9911	5.4908
1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	330	12,858	0.001560	0.012979	1505.7	993.5	2499.2	1525.8	1140.3	2666.0	3.5516	1.8906	5.4422
	335	13,707	0.001597	0.011848	1537.5	945.5	2483.0	1559.4	1086.0	2645.4	3.6050	1.7857	5.3907
	340	14,601	0.001638	0.010783	1570.7	893.8	2464.5	1594.6	1027.4	2622.0	3.6602	1.6756	5.3358
	345	15,541	0.001685	0.009772	1605.5	837.7	2443.2	1631.7	963.4	2595.1	3.7179	1.5585	5.2765
	350	16,529	0.001741	0.008806	1642.4	775.9	2418.3	1671.2	892.7	2563.9	3.7788	1.4326	5.2114
1.1 1.1 1.1 1.1 1.1 1.1	355	17,570	0.001808	0.007872	1682.2	706.4	2388.6	1714.0	812.9	2526.9	3.8442	1.2942	5.1384
	360	18,666	0.001895	0.006950	1726.2	625.7	2351.9	1761.5	720.1	2481.6	3.9165	1.1373	5.0537
	365	19,822	0.002015	0.006009	1777.2	526.4	2303.6	1817.2	605.5	2422.7	4.0004	0.9489	4.9493
	370	21,044	0.002217	0.004953	1844.5	385.6	2230.1	1891.2	443.1	2334.3	4.1119	0.6890	4.8009
	373.95	22,064	0.003106	0.003106	2015.7	0	2015.7	2084.3	0	2084.3	4.4070	0	4.4070

*Fuente*: Las tablas A-4 a A-8 fueron generadas utilizando el programa para resolver ecuaciones de ingeniería (EES) desarrollado por S. A. Klein y F. L. Alvarado. La rutina utilizada en los cálculos es la altamente precisa Steam_IAPWS, que incorpora la Formulación 1995 para las Propiedades Termodinámicas de la Sustancia Agua Ordinaria para Uso Científico y General, editada por The International Association for the Properties of Water and Steam (IAPWS). Esta formulación reemplaza a la formulación de 1984 de Haar, Gallagher y Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), la cual está también disponible en EES como la rutina STEAM. La nueva formulación se basa en las correlaciones de Saul y Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) con modificaciones para ajustarla a la Escala Internacional de Temperaturas de 1990. Las modificaciones están descritas por Wagner y Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). Las propiedades del hielo están basadas en Hyland y Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂0 from 173.15 K a 473.15 K", *ASHRAE Trans.*, Part 2A, Paper 2793, 1983.

Aσup	esturada	Tabla d		rocionoc
Agua	Satulaua.		ie ui	esiures

		Volume	n específico, m³/kg		Energía in kJ/kg	terna,		Entalpía, kJ/kg	,		Entropía, kJ/kg · K	
Pres., <i>P</i> kPa	Temp. sat., <i>T</i> _{sat} °C	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., u _{fg}	Vapor sat., <i>u_g</i>	Líq. sat, h _f	Evap., <i>h_{fg}</i>	Vapor sat., <i>h_g</i>	Líq. sat., s _f	Evap., <i>s_{fg}</i>	Vapor sat., s _g
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.6421
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.9650
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1	1.7765	5.1191	6.8955
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561
500	151.83	0.001093	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1	1.8604	4.9603	6.8207
550	155.46	0.001097	0.34261	655.16	1908.8	2563.9	655.77	2096.6	2752.4	1.8970	4.8916	6.7886
600	158.83	0.001101	0.31560	669.72	1897.1	2566.8	670.38	2085.8	2756.2	1.9308	4.8285	6.7593
650	161.98	0.001104	0.29260	683.37	1886.1	2569.4	684.08	2075.5	2759.6	1.9623	4.7699	6.7322
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071
750	167.75	0.001111	0.25552	708.40	1865.6	2574.0	709.24	2056.4	2765.7	2.0195	4.6642	6.6837

Agua salulaua. Tabla de Diesiones (conclusio)	Agua	saturada	Tabla	de	presiones	(conclusión
-----------------------------------------------	------	----------	-------	----	-----------	-------------

		Volumen n	específico, 1 ³ /kg	E	nergía in kJ/kg	terna,		Entalpía kJ/kg	,	Entropía, kJ/kg · K			
Pres., P kPa	Temp. sat., 7 . °C	Líq. sat.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	Líq. sat,	Evap.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	
P KPa 800 850 900 950 1000 1100 1200 1400 1500 1750 2250 2500	7sat C 170.41 172.94 175.35 177.66 179.88 184.06 187.96 191.60 195.04 198.29 205.72 212.38 218.41 223.95	Vr 0.001115 0.001118 0.001121 0.001124 0.001127 0.001133 0.001138 0.001144 0.001149 0.001154 0.001166 0.001177 0.001187 0.001187	Vg 0.24035 0.22690 0.21489 0.20411 0.19436 0.17745 0.16326 0.15119 0.14078 0.13171 0.11344 0.095877 0.088717 0.079952	Ur 719.97 731.00 741.55 751.67 761.39 779.78 796.96 813.10 828.35 842.82 876.12 906.12 933.54 958.87	Urg           1856.1           1846.9           1838.1           1829.6           1821.4           1805.7           1790.9           1776.8           1750.6           1693.0           1667.3           1643.2	<i>u_g</i> 2576.0 2577.9 2579.6 2581.3 2582.8 2585.5 2587.8 2587.8 2593.4 2596.7 2599.1 2600.9 2602.1	n _f 720.87 731.95 742.56 752.74 762.51 781.03 798.33 814.59 829.96 844.55 878.16 908.47 936.21 961.87	<i>h</i> _{fg} 2047.5 2038.8 2030.5 2022.4 2014.6 1999.6 1995.4 1971.9 1958.9 1946.4 1917.1 1889.8 1864.3 1840.1	ng 2768.3 2770.8 2770.8 2773.0 2775.2 2777.1 2780.7 2788.9 2786.5 2788.9 2791.0 2795.2 2795.2 2795.2 2795.2 2795.2 2795.2 2800.5 2800.5 2801.9	s _f 2.0457 2.0705 2.0941 2.1166 2.1381 2.1785 2.2159 2.2508 2.2835 2.3143 2.3844 2.4467 2.5029 2.5542	Stg           4.6160           4.5705           4.5273           4.482           4.4470           4.3735           4.2428           4.1287           4.0033           3.8923           3.7926           3.7016	Sg           6.6616           6.6409           6.6213           6.6217           6.5850           6.5520           6.4936           6.4936           6.4430           6.3877           6.3390           6.2954           6.2954	
3000 3500 4000 5000 6000 7000 8000 9000 10,000	233.85 242.56 250.35 263.94 275.59 285.83 295.01 303.35 311.00	0.001217 0.001235 0.001252 0.001286 0.001319 0.001352 0.001384 0.001418 0.001452	0.066667 0.057061 0.049779 0.039448 0.032449 0.027378 0.023525 0.020489 0.018028	1004.6 1045.4 1082.4 1148.1 1205.8 1258.0 1306.0 1350.9 1393.3	1598.5 1557.6 1519.3 1448.9 1384.1 1323.0 1264.5 1207.6 1151.8	2603.2 2603.0 2601.7 2597.0 2589.9 2581.0 2570.5 2558.5 2545.2	1008.3 1049.7 1087.4 1154.5 1213.8 1267.5 1317.1 1363.7 1407.8	1794.9 1753.0 1713.5 1639.7 1570.9 1505.2 1441.6 1379.3 1317.6	2803.2 2802.7 2800.8 2794.2 2784.6 2772.6 2758.7 2742.9 2725.5 2705.2	2.6454 2.7253 2.7966 2.9207 3.0275 3.1220 3.2077 3.2866 3.3603	3.5402 3.3991 3.2731 3.0530 2.8627 2.6927 2.5373 2.3925 2.2556	6.1856 6.1244 6.0696 5.9737 5.8902 5.8148 5.7450 5.6791 5.6159	
12,000 13,000 14,000 15,000 16,000 17,000 18,000 19,000 20,000 21,000 22,064	324.68 330.85 336.67 342.16 347.36 352.29 356.99 361.47 365.75 369.83 373.71 373.95	0.001526 0.001526 0.001610 0.001657 0.001710 0.001770 0.001840 0.001926 0.002038 0.002207 0.002703 0.002105	0.014264 0.012781 0.011487 0.010341 0.009312 0.008374 0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1473.0 1511.0 1548.4 1585.5 1622.6 1660.2 1699.1 1740.3 1785.8 1841.6 1951.7 2015.7	1041.3 985.5 928.7 870.3 809.4 745.1 675.9 598.9 509.0 391.9 140.8 0	2514.3 2496.6 2477.1 2455.7 2432.0 2405.4 2375.0 2339.2 2294.8 2233.5 2092.4 2015.7	1491.3 1531.4 1571.0 1610.3 1649.9 1690.3 1732.2 1776.8 1826.6 1888.0 2011.1 2084.3	1194.1 1131.3 1067.0 1000.5 931.1 857.4 777.8 689.2 585.5 450.4 161.5 0	2662.7 2637.9 2610.8 2581.0 2547.7 2510.0 2466.0 2412.1 2338.4 2172.6 2084.3	3.4964 3.5606 3.6232 3.6848 3.7461 3.8082 3.8720 3.9396 4.0146 4.1071 4.2942 4.4070	1.9975 1.8730 1.7497 1.6261 1.5005 1.3709 1.2343 1.0860 0.9164 0.7005 0.2496 0	5.4939 5.4336 5.3728 5.3108 5.2466 5.1791 5.1064 5.0256 4.9310 4.8076 4.5439 4.4070	

# 9.2 Anexo 2 Propiedades de vapor sobrecalentado

Vapor o	le agua sob	precalent	ado									
Τ	v	u	h	s	v	u	h	s	v	u	h	s
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
	P -	0.01 MP	a (45.81)	°C)*	P -	0.05 MP	a (81.32°	C)	P -	0.10 MP	a (99.61	°C)
Sat.*	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
50	14.867	2443.3	2592.0	8.1741								
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8	7.3611
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367	2582.9	2776.6	7.6148
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724	2658.2	2875.5	7.8356
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062	2733.9	2974.5	8.0346
300	26.446	2812.3	30/6./	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389	2810.7	3074.5	8.2172
400 600	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	0.1566	3.1027	2968.3	3278.6	8.0402
600	40.205	2202.2	3469.7	9.0990	9.0577	2202.1	3469.3	9.1000	3.0000 A 0270	2202.2	3400.7	0.0302
700	40.290	3480.8	3929.9	10.1051	8 9813	3480.6	3929.7	9.6626	4.0279	3480.4	3929.4	9.3424
800	49 527	3665.4	4160.6	10,6312	9 9047	3665.2	4160.4	9,8883	4 9519	3665.0	4160.2	9 5682
900	54,143	3856.9	4398.3	10.8429	10.8280	3856.8	4398.2	10.1000	5.4137	3856.7	4398.0	9,7800
1000	58.758	4055.3	4642.8	11.0429	11.7513	4055.2	4642.7	10.3000	5.8755	4055.0	4642.6	9.9800
1100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9	4893.7	10.4897	6.3372	4259.8	4893.6	10.1698
1200	67.989	4470.9	5150.8	11.4132	13.5977	4470.8	5150.7	10.6704	6.7988	4470.7	5150.6	10.3504
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229
	P -	0.20 MP	a (120.2	1°C)	P -	0.30 MPa	(133.52	°C)	P -	0.40 MPa	a (143.61	l°C)
Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955
150	0.95986	2577.1	2769.1	7.2810	0.63402	2571.0	2761.2	7.0792	0.47088	2564.4	2752.8	6.9306
200	1.08049	2654.6	2870.7	7.5081	0.71643	2651.0	2865.9	7.3132	0.53434	2647.2	2860.9	7.1723
250	1.19890	2731.4	2971.2	7.7100	0.79645	2728.9	2967.9	7.5180	0.59520	2726.4	2964.5	7.3804
300	1.31623	2808.8	3072.1	7.8941	0.87535	2807.0	3069.6	7.7037	0.65489	2805.1	3067.1	7.5677
400	1.54934	2967.2	32/7.0	8.2236	1.03155	2966.0	32/5.5	8.0347	0.77265	2964.9	3273.9	7.9003
500	1./8142	3131.4	3487.7	8.5153	1.18672	3130.6	3486.6	8.3271	0.88936	3129.8	3485.5	8.1933
700	2.01302	3302.2	3704.8	0.0221	1.34139	3301.6 2470.6	3704.0	0.0910	1.100558	2470.0	3703.3	8,4580
800	2.24454	3664.7	J920.0	9.0221	1,49580	3664.3	J920.2	0.0345	1 23730	3663.0	J927.0	8 9274
900	2 70656	3856.3	4105.0	9.4598	1.80417	3856.0	4103.0	9 2725	1 35208	3855.7	4100.0	9 1 3 9 4
1000	2.93755	4054.8	4642.3	9.6599	1.95824	4054.5	4642.0	9.4726	1.46859	4054.3	4641.7	9.3396
1100	3.16848	4259.6	4893.3	9,8497	2,11226	4259.4	4893.1	9.6624	1.58414	4259.2	4892.9	9.5295
1200	3.39938	4470.5	5150.4	10.0304	2.26624	4470.3	5150.2	9.8431	1.69966	4470.2	5150.0	9.7102
1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9	5413.0	10.0157	1.81516	4686.7	5412.8	9.8828
	P -	0.50 MP	a (151.8	3°C)	P -	0.60 MPa	(158.83	°C)	P -	0.80 MPa	a (170.41	l°C)
Sat.	0.37483	2560.7	2748.1	6.8207	0.31560	2566.8	2756.2	6.7593	0.24035	2576.0	2768.3	6.6616
200	0.42503	2643.3	2855.8	7.0610	0.35212	2639.4	2850.6	6.9683	0.26088	2631.1	2839.8	6.8177
250	0.47443	2723.8	2961.0	7.2725	0.39390	2721.2	2957.6	7.1833	0.29321	2715.9	2950.4	7.0402
300	0.52261	2803.3	3064.6	7.4614	0.43442	2801.4	3062.0	7.3740	0.32416	2797.5	3056.9	7.2345
350	0.57015	2883.0	3168.1	7.6346	0.47428	2881.6	3166.1	7.5481	0.35442	2878.6	3162.2	7.4107
400	0.61731	2963.7	3272.4	7.7956	0.51374	2962.5	3270.8	7.7097	0.38429	2960.2	3267.7	7.5735
500	0.71095	3129.0	3484.5	8.0893	0.59200	3128.2	3483.4	8.0041	0.44332	3126.6	3481.3	7.8692
600	0.80409	3300.4	3702.5	8.3544	0.66976	3299.8	3701.7	8.2695	0.50186	3298.7	3700.1	8.1354
700	0.89696	3478.6	3927.0	8.5978	0.74725	3478.1	3926.4	8.5132	0.56011	3477.2	3925.3	8.3794
800	0.98966	3663.6	4158.4	8.8240	0.82457	3663.2	4157.9	8.7395	0.61820	3662.5	4157.0	8.6061
900	1.08227	3855.4	4396.6	9.0362	0.90179	3855.1	4396.2	8.9518	0.67619	3854.5	4395.5	8.8185
1000	1.17480	4054.0	4641.4	9.2364	0.97893	4053.8	4641.1	9.1521	0.73411	4053.3	4640.5	9.0189
1100	1.26/28	4259.0	4892.6	9.4263	1.05603	4258.8	4892.4	9.3420	0.79197	4258.3	4891.9	9.2090
1200	1.35972	4470.0	5149.8	9.60/1	1.13309	4469.8	5149.6	9.5229	0.84980	4469.4	5149.3	9.3898
1300	1.45214	4000.0	3412.6	9.7797	1.21012	4686.4	041Z.5	9.6900	0.90761	4686.1	541Z.Z	9.9629

*La temperatura entre paréntesis es la temperatura de saturación a la presión especificada.

† Propiedades del vapor saturado a la presión específicada.

Vapor	de agua so	brecalen	tado ( <i>con</i>	tinuación)								
Т	v	u	h	s	v	u	h	S	v	u	h	s
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
	Ρ-	- 1.00 MF	Pa (179.88	8 °C)	P	- 1.20 N	/Pa (187.	96 °C)	P -	1.40 MPa	a (195.04	1 °C)
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	2587.8	2783.8	6.5217	0.14078	2591.8	2788.9	6.4675
200	0.20602	2622.3	2828.3	6.6956	0.16934	2612.9	2816.1	6.5909	0.14303	2602.7	2803.0	6.4975
250	0.23275	2710.4	2943.1	6.9265	0.19241	2704.7	2935.6	6.8313	0.16356	2698.9	2927.9	6.7488
300	0.25799	2793.7	3051.6	7.1246	0.21386	2789.7	3046.3	7.0335	0.18233	2785.7	3040.9	6.9553
350	0.28250	2875.7	3158.2	7.3029	0.23455	2872.7	3154.2	7.2139	0.20029	2869.7	3150.1	7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482	2955.5	3261.3	7.3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464	3123.4	3477.0	7.6779	0.25216	3121.8	3474.8	7.6047
600	0.40111	3297.5	3698.6	8.0311	0.33395	3296.3	3697.0	7.9456	0.28597	3295.1	3695.5	7.8730
700	0.44783	3476.3	3924.1	8.2755	0.37297	3475.3	3922.9	8.1904	0.31951	3474.4	3921.7	8.1183
800	0.49438	3661.7	4156.1	8.5024	0.41184	3661.0	4155.2	8.4176	0.35288	3660.3	4154.3	8.3458
900	0.54083	3853.9	4394.8	8.7150	0.45059	3853.3	4394.0	8.6303	0.38614	3852.7	4393.3	8.5587
1000	0.58721	4052.7	4640.0	8.9155	0.48928	4052.2	4639.4	8.8310	0.41933	4051.7	4638.8	8.7595
1100	0.63354	4257.9	4891.4	9.1057	0.52792	4257.5	4891.0	9.0212	0.45247	4257.0	4890.5	8.9497
1200	0.67983	4469.0	5148.9	9.2866	0.56652	4468.7	5148.5	9.2022	0.48558	4468.3	5148.1	9.1308
1300	0.72610	4685.8	5411.9	9.4593	0.60509	4685.5	5411.6	9.3750	0.51866	4685.1	5411.3	9.3036
	Ρ-	- 1.60 M	Pa (201.3)	7 °C)	P	- 1.80 M	/Pa (207.	11 °C)	P -	2.00 MPa	a (212.38	3 °C)
Sat.	0.12374	2594.8	2792.8	6.4200	0.11037	2597.3	2795	.9 6.3775	0.09959	2599.1	2798.3	6.3390
225	0.13293	2645.1	2857.8	6.5537	0.11678	2637.0	2847.	2 6.4825	0.10381	2628.5	2836.1	6.4160
250	0.14190	2692.9	2919.9	6.6753	0.12502	2686.7	2911.	7 6.6088	0.11150	2680.3	2903.3	6.5475
300	0.15866	2781.6	3035.4	6.8864	0.14025	2777.4	3029.	9 6.8246	0.12551	2773.2	3024.2	6.7684
350	0.17459	2866.6	3146.0	7.0713	0.15460	2863.6	3141.	9 7.0120	0.13860	2860.5	3137.7	6.9583
400	0.19007	2950.8	3254.9	7.2394	0.16849	2948.3	3251.	6 7.1814	0.15122	2945.9	3248.4	7.1292
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5	5 3470.	4 7.4845	0.17568	3116.9	3468.3	7.4337
600	0.24999	3293.9	3693.9	7.8101	0.22200	3292.7	3692.	3 7.7543	0.19962	3291.5	3690.7	7.7043
700	0.27941	3473.5	3920.5	8.0558	0.24822	3472.6	3919.	4 8.0005	0.22326	3471.7	3918.2	7.9509
800	0.30865	3659.5	4153.4	8.2834	0.27426	3658.8	4152.	4 8.2284	0.24674	3658.0	4151.5	8.1791
900	0.33780	3852.1	4392.6	8.4965	0.30020	3851.5	i 4391.	9 8.4417	0.27012	3850.9	4391.1	8.3925
1000	0.36687	4051.2	4638.2	8.6974	0.32606	4050.7	4637.	6 8.6427	0.29342	4050.2	4637.1	8.5936
1100	0.39589	4256.6	4890.0	8.8878	0.35188	4256.2	2 4889.	6 8.8331	0.31667	4255.7	4889.1	8.7842
1200	0.42488	4467.9	5147.7	9.0689	0.37766	4467.6	5147.	3 9.0143	0.33989	4467.2	5147.0	8.9654
1300	0.45383	4684.8	5410.9	9.2418	0.40341	4684.5	5410	.6 9.1872	0.36308	4684.2	5410.3	9.1384
	Ρ-	- 2.50 M	Pa (223.9	5 °C)	Р	- 3.00 M	MPa (233.	85 °C)	P -	3.50 MPa	a (242.56	5 °C)
Sat.	0.07995	2602.1	2801.9	6.2558	0.06667	2603.2	2803.	2 6.1856	0.05706	2603.0	2802.7	6.1244
225	0.08026	2604.8	2805.5	6.2629								
250	0.08705	2663.3	2880.9	6.4107	0.07063	2644.7	2856.	5 6.2893	0.05876	2624.0	2829.7	6.1764
300	0.09894	2762.2	3009.6	6.6459	0.08118	2750.8	2994.	3 6.5412	0.06845	2738.8	2978.4	6.4484
350	0.10979	2852.5	3127.0	6.8424	0.09056	2844.4	3116.	1 6.7450	0.07680	2836.0	3104.9	6.6601
400	0.12012	2939.8	3240.1	7.0170	0.09938	2933.6	5 3231.	7 6.9235	0.08456	2927.2	3223.2	6.8428
450	0.13015	3026.2	3351.6	7.1768	0.10789	3021.2	2 3344.	9 7.0856	0.09198	3016.1	3338.1	7.0074
500	0.13999	3112.8	3462.8	7.3254	0.11620	3108.6	3457.	2 7.2359	0.09919	3104.5	3451.7	7.1593
600	0.15931	3288.5	3686.8	7.5979	0.13245	3285.5	5 3682.	8 7.5103	0.11325	3282.5	3678.9	7.4357
700	0.17835	3469.3	3915.2	7.8455	0.14841	3467.0	3912.	2 7.7590	0.12702	3464.7	3909.3	7.6855
800	0.19722	3656.2	4149.2	8.0744	0.16420	3654.3	4146.	9 7.9885	0.14061	3652.5	4144.6	7.9156
900	0.21597	3849.4	4389.3	8.2882	0.17988	3847.9	4387.	5 8.2028	0.15410	3846.4	4385.7	8.1304
1000	0.23466	4049.0	4635.6	8.4897	0.19549	4047.7	4634.	2 8.4045	0.16751	4046.4	4632.7	8.3324
1100	0.25330	4254.7	4887.9	8.6804	0.21105	4253.6	4886.	7 8.5955	0.18087	4252.5	4885.6	8.5236
1200	0.27190	4466.3	5146.0	8.8618	0.22658	4465.3	5145.	1 8.7771	0.19420	4464.4	5144.1	8.7053
1300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.6	5408.	8 8.9502	0.20750	4681.8	5408.0	8.8786

# 9.3 Anexo 3 Propiedades gas ideal H₂O

Т	ħ	σ	<u>s</u> °	Т	ħ	σ	5°
К	kJ/kmol	kJ/kmol	kJ/kmol - K	К	kJ/kmol	kJ/kmol	kJ/kmol - K
0	0	0	0	600	20,402	15,413	212.920
220	7,295	5,466	178.576	610	20,765	15,693	213.529
230	7,628	5,715	180.054	620	21,130	15,975	214.122
240	7,961	5,965	181.471	630	21,495	16,257	214.707
250	8,294	6,215	182.831	640	21,862	16,541	215.285
260	8,627	6,466	184.139	650	22,230	16,826	215.856
270	8,961	6,716	185.399	660	22,600	17,112	216.419
280	9,296	6,968	186.616	670	22,970	17,399	216.976
290	9,631	7,219	187.791	680	23,342	17,688	217.527
298 300 310 320 330 240	9,904 9,966 10,302 10,639 10,976	7,425 7,472 7,725 7,978 8,232 8,232	188.720 188.928 190.030 191.098 192.136	690 700 710 720 730 740	23,714 24,088 24,464 24,840 25,218 25,597	17,978 18,268 18,561 18,854 19,148	218.071 218.610 219.142 219.668 220.189 220.707
350 360 370 380 390	11,652 11,992 12,331 12,672 13,014	8,742 8,998 9,255 9,513 9,771	195.144 194.125 195.081 196.012 196.920 197.807	750 760 770 780 790	25,977 26,358 26,741 27,125 27,510	19,741 20,039 20,339 20,639 20,941	221.215 221.720 222.221 222.717 223.207
400	13,356	10,030	198.673	800	27,896	21,245	223.693
410	13,699	10,290	199.521	810	28,284	21,549	224.174
420	14,043	10,551	200.350	820	28,672	21,855	224.651
430	14,388	10,813	201.160	830	29,062	22,162	225.123
440	14,734	11,075	201.955	840	29,454	22,470	225.592
450	15,080	11,339	202.734	850	29,846	22,779	226.057
460	15,428	11,603	203.497	860	30,240	23,090	226.517
470	15,777	11,869	204.247	870	30,635	23,402	226.973
480	16,126	12,135	204.982	880	31,032	23,715	227.426
490	16,477	12,403	205.705	890	31,429	24,029	227.875
500	16,828	12,671	206.413	900	31,828	24,345	228.321
510	17,181	12,940	207.112	910	32,228	24,662	228.763
520	17,534	13,211	207.799	920	32,629	24,980	229.202
530	17,889	13,482	208.475	930	33,032	25,300	229.637
540	18,245	13,755	209.139	940	33,436	25,621	230.070
550	18,601	14,028	209.795	950	33,841	25,943	230.499
560	18,959	14,303	210.440	960	34,247	26,265	230.924
570	19,318	14,579	211.075	970	34,653	26,588	231.347
580	19,678	14,856	211.702	980	35,061	26,913	231.767
590	20,039	15,134	212.320	990	35,472	27,240	232.184

Propiedades de gas ideal del vapor de agua, H₂O

HPH

#### Anexo 4 Catálogo Bomba KSB HPH 9.4



#### Límites de presión y temperatura Curva de presión de vapor del agua



Temperatura del agua en ºC

#### Presión de servicio máxima permisible, max. 110 bar (véase curva de presión de vapor del agua)

S - 3	3				con Rec	epción s	egún TR	D		51					122.00	sin Rec	epción s	egún TRI	D			
Tamaño	0	SP240GH	I+N		1.7	706			1.4	1931			SP240GH	i+N		1.1	7706			1.4	931	
HPH	20°C	200°C	300°C	20°C	200°C	300°C	350°C	20°C	200°C	300°C	350°C	20°C	200°C	300°C	20°C	200°C	300°C	350°C	20°C	200°C	300°C	350°C
40-250	59,2	51,8	42,9	108,5	102,6	97,2	93,2	110,0	110,0	110,0	109,2	72,6	51,9	43,0	110,0	110,0	108,1	103,6	110,0	110,0	110,0	110,0
50-200	70,2	61,4	50,9	97,7	97,7	97,7	97,7	110,0	110,0	110,0	110,0	86,1	61,5	51,0	108,6	108,6	108,6	108,6	110,0	110,0	110,0	110,0
50-400	53,9	47,2	39,1	98,9	93,5	88,6	85,0	110,0	109,3	104,4	99,6	66,1	47,2	39,1	110,0	104,0	98,6	94,5	110,0	110,0	110,0	110,0
80-200	48,9	42,7	35,4	89,6	84,6	80,2	76,9	110,0	98,9	95,5	90,1	59,9	42,8	35,5	107,6	94,2	89,3	85,6	110,0	110,0	105,1	100,2
80-250	47,8	39,8	33,0	87,6	78,9	74,8	71,7	107,5	92,2	88,1	84,0	55,8	39,9	33,0	100,2	87,7	83,1	79,7	110,0	102,5	97,9	93,4
80-315	45,2	32,9	27,3	74,6	65,3	61,9	59,3	91,5	76,3	72,9	69,5	46,2	33,0	27,3	82,9	72,5	68,8	65,9	101,8	84,8	81,1	77,3
100-200	46,9	41,0	34,0	86,0	81,2	77,0	73,8	105,5	94,9	90,7	86,5	57,5	41,1	34,0	103,2	90,3	85,6	82,1	110,0	105,6	100,9	96,2
100-250	69,0	50,3	41,7	110,0	99,7	94,5	90,6	110,0	110,0	110,0	106,1	70,5	50,4	41,7	110,0	110,0	105,0	100,7	110,0	110,0	110,0	110,0
100-315	45,2	33,0	27,3	74,7	65,3	61,9	59,4	91,7	76,4	73,0	69,6	46,2	33,0	27,3	83,0	72,6	68,9	66,0	101,9	84,9	81,1	77,4
150-250	59,6	52,1	43,2	109,3	103,2	97,3	93,9	110,0	110,0	110,0	110,0	73,0	52,1	43,2	110,0	110,0	108,8	104,4	110,0	110,0	110,0	110,0
150-315	54,4	40,1	33,2	90,7	79,4	75,3	72,2	110,0	92,8	88,7	84,6	56,2	40,1	33,3	100,9	88,3	83,7	80,3	110,0	103,2	98,6	94,0
200-250	61,5	52,5	43,5	110,0	104,0	98,6	94,6	110,0	110,0	110,0	110,0	73,6	52,6	43,6	110,0	110,0	109,7	105,2	110,0	110,0	110,0	110,0
200-315	58,4	51,1	42,3	107,1	101,2	96,0	92,0	110,0	110,0	110,0	107,8	71,6	51,1	42,4	110,0	110,0	106,7	102,3	110,0	110,0	110,0	110,0
200-316	68,1	49,7	41,2	110,0	98,4	93,3	89,5	110,0	110,0	109,9	104,8	69,6	49,7	41,2	110,0	109,4	103,7	99,4	110,0	110,0	110,0	110,0
200-400	45,5	39,8	33,0	83,5	78,9	74,8	71,8	102,5	92,3	88,2	84,1	55,8	39,9	33,0	100,3	87,8	83,2	79,8	110,0	102,6	98,0	93,5
200-401	47,0	34,2	28,4	77,5	67,8	64,3	61,7	95,1	79,3	75,8	72,2	48,0	34,3	28,4	86,2	75,4	71,5	68,6	105,8	88,2	84,2	80,3
200-501	62,3	45,9	38,0	103,8	90,9	86,1	82,6	110,0	106,2	101,5	96,8	64,3	45,9	38,1	110,0	101,0	95,7	91,8	110,0	110,0	110,0	107,5
250-316	79,9	61,5	51,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	86,2	61,6	51,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0	110,0
250-401	64,0	46,7	38,7	105,7	92,5	87,7	84,1	110,0	108,1	103,8	98,5	65,4	46,7	38,7	110,0	102,8	97,5	93,5	110,0	110,0	110,0	109,5
250-501	47,0	41,1	34,1	86,2	81,5	77,2	74,0	105,8	95,2	91,0	86,7	57,6	41,1	34,1	103,5	90,6	85,9	82,3	110,0	105,8	101,1	96,4
300-400	62,4	54,6	45,2	110,0	108,1	102,5	98,3	110,0	110,0	110,0	110,0	76,5	54,6	45,3	110,0	110,0	110,0	109,3	110,0	110,0	110,0	110,0
300-500												46.8	33.5	27.7	84,1	73.6	69.8	66.9	103.2	86.0	82.2	78.4

#### Combinaciones de materiales

Denominación de la pieza	Material		
Carcasa espiral	GP240GH+N	1.7706	1.4931
Pie de apoyo	JS1025 ⁶⁾	JS1025 ⁶⁾	JS1025 ⁶⁾
Eje	1.7709+QT+SR	1.7709+QT+SR	1.7709+QT+SR
Rodete o impulsor	JL1040 1) 5)/ 1.4408	JL1040 1) 5) / 1.4408	JL1040 1) 5) / 1.4408
Soporte de cojinetes	JL1040 ⁵⁾	JL1040 ⁵⁾	JL1040 ⁵⁾
Linterna del soporte	1.7706	1.7706	1.7706 2)
Tornillos de la carcasa 3)	1.6772	1.6772	1.6772
Aro rozante carcasa	JL1040 ⁴⁾⁵⁾	JL1040 ^{4) 5)}	JL1040 ^{4) 5)}
Aro rozante rodete	1.4027	1.4027	1.4027
Casquillo protector del eje	1.4122	1.4122	1.4122
Tuerca del rodete	1.4571	1.4571	1.4571

JS1025 desde rodete Ø 315, v > 40 m/s ó t > 250 °C
 en el tamaño 50-400 es necesario 1.4931
 > 80 bar, tornillo de dilatación s/DIN 2510
 bajo demanda, VG 434

5) según EN 1561 = GJL-250 6) según EN 1563 = GJS-400-18-LT

## 9.5 Anexo 5 Catálogo caldera Bosch UL-SX

Datos Técnicos UNIVERSAL								
Тіро	UL-S	UL-SX						
Medios de transferencia térmica	Vapor saturado de baja presión	Vapor sobrecalentado de alta presión						
Tipo de construcción	3 pasos: hogar + dos pasos de gases. Técnica pirotubular	3 pasos: hogar + dos pasos de gases. Técnica pirotubular						
Potencia en kg/h	1.250 a 28.000	2.600 a 28.000						
Presión de diseño en bar	Hasta 30	Hasta 30						
Temperatura máx. en ºC	235	300						
Combustible	Diesel, Fuel-Oil, Gas	Diesel, Fuel-Oil, Gas						

1 Gabinete eléctrico de operación y control con el sistema 16 Válvula de corte del agua de alimentación, BCO incorporado. libre de mantenimiento. 2 Grifo de purga, para toma de muestras de agua. Mirilla. 17 Indicador óptico del nivel de agua con cristal Quemador. 18 protector y reflector. Aislamiento acabado con revestimiento de protección. 19 4 Válvula de corte del tubo de presostatos, libre de 20 Bancada. mantenimiento. 21 Tren de gas. Presostato de seguridad. 22 Caja de bornes. 5 6 Transductor de presión (4-20 mA).
7 Electrodo limitador del nivel bajo de agua. Módulo de bombas de alimentación. 23 24 Válvula de corte de purga, libre de mantenimiento. 8 Manómetro. 25 Válvula de purga automática de lodos. Dispositivo de Transmisor de nivel (4-20 mA). corte rápido. 10 Válvula del manómetro con función de chequeo. 26 Boca de inspección del lado del vapor. 11 Separador de gotas. 27 Boca de inspección del lado del agua. 12 Válvula de salida de vapor. 28 Registro de inspección del lado de los gases de escape. Cámara de evacuación de los gases de escape. 13 Válvula de seguridad con resorte. 30 32 14 Medición continua automática de la conductividad y Intercambiador de calor de gases de escape del contenido en sales. 'ECONOMIZADOR'. 15 Válvula de retención del agua de alimentación. 33 Piping de conexión entre ECO / caldera.





Nominal output	t/h	1.25	2	2.6	3	4	5	6	7	8	10	12	13	14	16	17	18	22	28 ¹⁾
Dimensions		20 M		4e - 2		20 - 13 				a +									
Steam Capacity F & A 100 °C	kg/h	1,296	2,074	2,697	3,112	4,149	5,186	6,223	7,260	8,297	10,372	12,446	13,483	14,521	16,595	17,632	18,669	22,818	29,041
Length - L1	mm	4,010	4,653	4,972	5,927	6,615	6,615	7,255	7,255	7,845	8,369	9,007	9,008	8,674	9,854	9,920	9,944	9,610	9,868
Width – W1	mm	1,929	2,102	2,187	2,182	2,439	2,634	2,674	2,774	2,874	3,074	3,224	3,474	3,474	3,474	3,669	3,674	3,874	4,199
Height – H1	mm	2,262	2,512	2,557	2,642	2,947	3,177	3,222	3,312	3,562	3,732	3,867	4,222	4,222	4,222	4,467	4,467	4,747	5,212
Min. trans- port width	mm	1,652	1,852	1,910	1,905	2,165	2,360	2,400	2,500	2,600	2,800	2,950	3,200	3,200	3,200	3,400	3,400	3,600	4,000
Min. trans- port height	mm	2,150	2,232	2,210	2,210	2,575	2,765	2,975	2,958	3,178	3,065	3,200	3,465	3,465	3,465	3,710	3,685	3,835	4,302
Flue gas connection	DN	250	315	315	315	400	500	500	500	630	630	710	710	710	800	800	800	900	1,000
Stop valve diameter	DN	50	65	80	80	100	100	125	125	125	150	150	200	200	200	200	200	200	250
Safety valve size	DN	25	32	32	32	40	50	50	50	65	65	65	80	80	80	80	80	100	100
Safety valve outlet diameter	DN	40	50	50	50	65	80	80	80	100	100	100	125	125	125	125	125	150	150
Blowdown valve diameter	DN	25	25	25	25	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Feed check valve diameter	DN	25	25	25	25	40	40	40	40	40	50	50	65	65	65	65	65	65	80
Boiler inclusiv	e eco	nomizer	16																
Efficiency gas firing	%	94.3	94.9	94.9	95.0	94.9	94.9	95.0	94.9	94.8	94.8	95.1	95.1	95.0	95.1	95.0	94.9	94.8	94.9
Fuel con- sumption gas	m∜h	83	132	172	199	265	331	397	464	530	663	793	859	927	1,058	1,125	1,192	1,459	1,854
Efficiency oil firing	%	94.4	95.0	95.0	95.0	95.0	95.0	95.1	95.1	94.9	94.9	95.2	95.2	95.0	95.1	95.0	95.0	94.9	95.0
Fuel con- sumption oil	kg/h	72	115	150	173	230	288	345	403	461	577	690	747	806	920	979	1,037	1,269	1,613
Boiler without	t econ	omizer																	
Efficiency gas firing	%	89.0	89.0	88.3	89.6	89.1	89.1	89.9	89.9	88.3	89.6	88.5	88.7	88.4	89.7	89.6	89.6	90.1	90.2 ²⁾
Fuel con- sumption gas	m³/h	88	141	185	210	282	353	419	489	570	702	852	921	995	1,121	1,192	1,262	1,535	1,8472)
Efficiency oil firing	%	89.3	89.2	88.6	89.9	89.4	89.3	90.1	90.1	88.6	89.8	88.8	89.0	88.7	90.0	89.9	89.9	90.3	90.42)
Fuel con- sumption oil	kg/h	77	123	160	183	245	306	364	425	494	609	739	799	863	973	1,035	1,096	1,333	1,6042)

All dimensions and weights are approximate based upon a salty boiler operation, boiler working pressure of 10 bar G and an exhaust temperature of 140 °C (incl. ECO). All numbers are exemplary. All Bosch boilers are produced exactly to the customers' project specific requirements. Fuel consumption oil, based on LFO, NCV 11.89 kWh/Nm³. Fuel consumption gas, based on natural gas H, NCV 10.35 kWh/Nm³. Fuel consumption based on mean operating pressure 8.5 bar G and max. working pressure 10 bar G. Efficiency calculation following the EN 12953-11.

1)28 t/h achieved only with Economizer. 2) Calculated with 26.5 t/h

(bosch-thermotechnology, s.f.)

#### Anexo 6 Catálogo turbina Siemens SST-200 9.6

# SST-200

### Economic and highly reliable

The Siemens SST-200 Siemens industrial steam turbine product line is based on the reaction blade technology.

The turbine series follows a modular product philosophy, ensuring a high level of performance and reliability.

The ability to combine standardized casing modules enable optimal design flexibility. This allows the turbine series to achieve high performance in combination with an optimal cost position.

Each steam path is customized for optimal fit to the specific thermal cycle requirements providing high efficiency over the entire operating range.

The inlet and exhaust sections are configured to cover different plant layout needs, and is available for both condensing and back pressure applications.

With this flexible approach the SST-200 series cover the range of both industrial power generation and mechanical drive applications.

The product design closely follows API 612 requirements.

### **Typical applications**



drive

Energy from waste plants



(Siemens, 2020)

# 9.7 Anexo 7 Catálogo condensador ITT C300

## CENTURY C300 C320

TEMA Type AEU or BEU. Can meet TEMA "B", "C" and "R", ASME Section VIII Div. 1, and ASME Section III "N" stamp.

### **Advantages:**

Allows for differential thermal expansion between shell and tubes, as well as between individual tubes.

High heat transfer surface area for given shell and tube size.

Capable of withstanding thermal shock.

The most economical of all shell-and-tube exchangers, and the least expensive of all basic designs. Shell side can be steam or mechanically cleaned.

Bundle can be removed for shell side cleaning and maintenance.

### Limitations:

Individual tube replacement is difficult.

Cannot be made single-pass on tube side, so true countercurrent flow is not possible.

Draining tube side is difficult in vertical (head-up) position.

Tube side can be cleaned by chemical means only.

Ł

- U-tube, removable bundle (C300) or suction-heater (open-end shell) construction (C320).
- Multi-pass tube arrangements for maximum efficiency over a variety of tube side flow volumes.
- The C320 is much like the C300, but has an open-end shell and special tube layout for tank suction heating applications.
- Standard shell sizes from 5 inches through 42 inches in diameter; custom designs up to 60 inches in diameter.
- Available for horizontal or vertical mounting.

### Century C300 and C320 Standard Design Capabilities

	Design Pressure	Design Temperature				
Tube side	75 – 450 psi	-20 – 650° F				
	517 – 3,102 kPa	-29 – 343° C				
Shell side	75 – 300 psi	-20 – 650° F				
	517 - 2,068 kPa	-29 - 343° C				

Note: Custom designs to 3,600 psi/24,816 kPa and 1000° F/538° C, depending on shell diameter and design temperature.



(Termotec limitada, 2020)