PONTIFICIA UNIVERSIDAD CATÓLICA DE VALPARAÍSO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA

PROYECTO PARA OPTAR AL TÍTULO DE INGENIERO CIVIL QUÍMICO

"SIMULACIÓN DE PROCESO DE SECADO DE CONCENTRADO DE COBRE" Codelco División EL TENIENTE

Mauricio Arturo Durán Lorca

Profesor Guía: Javier Silva Campino

Resumen

La Fundición Caletones, perteneciente a CODELCO-Chile, posee en su poder tres plantas de Secado de Lecho Fluidizado que tiene por finalidad secar el Concentrado de Cobre desde un 10% a cerca de un 0,1% de Humedad, concentrado que es enviado a los convertidores teniente para su posterior fusión.

En el escenario actual estas plantas funcionan con parámetros de operación definidos por manuales de diseño, sin embargo, ante cualquier tipo de alteración en el funcionamiento de los equipos o en las condiciones de trabajo no existe una herramienta capaz de predecir desempeño operacional ni ayudas de mejora. Esta situación ha generado que las plantas de secado presenten gran cantidad de fallas en su funcionamiento y en muchos de sus equipos, provocando en muchos casos perdidas en la producción debido a detenciones por mantención o por no obtener el resultado deseado.

Es por este motivo que el presente trabajo de titulo tiene como objetivo generar un simulador que sea capaz de identificar espacios de mejora, generar los balances de masa y energía de las plantas.

A través de la revisión y evaluación del proceso, se generó una herramienta que permite obtener los balances de masa y energía, así como los rangos de trabajo necesarios en caso de cambios o alteraciones a las condiciones de operación de diseño. A su vez en el caso del colector de polvos se obtiene que módulos de trabajo presenten mayor desgaste lo que nos entrega la información del orden necesario para su mantención.

Si se considera que el empleo de esta nueva herramienta de trabajo es favorable, la empresa CODELCO-Chile, Fundición Caletones debería incorporarla en su plan de trabajo, logrando de esta forma anticipar fallas y evitar pérdidas de producción.

Índice

Capítulo 1 Antecedentes

1. Intro	oducción	2
1.1.	Objetivos del Proyecto	3
1.1.1.	Objetivo General del Proyecto	3
1.1.2.	Objetivos Específicos	3
Capítulo 2	2 Antecedentes de la Empresa	
2. Ante	ecedentes de la Empresa	5
2.1. (Corporación Nacional del Cobre (CODELCO)	5
2.1.1.	Reseña Histórica División El Teniente	6
2.1.2.	Ubicación Geográfica	7
2.1.3.	Proceso Explotación del Cobre	8
2.2.	Fundición Caletones	11
2.3.	Procesos de la Fundición Caletones	13
2.3.1.	Secado Lecho Fluidizado de Concentrado	13
2.3.2.	Fusión de Concentrado en Convertidores Teniente	14
2.3.3.	Convertidores Pierce Smith	15
2.3.4.	Horno de Limpieza de Escoria	16
2.3.5.	Refinación en Horno Anódico	17
2.3.6.	Moldeo de Productos	18
2.3.7.	Limpieza de Gases	18

Capitulo 3 Marco Teórico

3. Ma	rco Teórico	21
3.1.	Descripción del Proceso	22
Capitulo 4	4 Desarrollo del Tema	
4. De	sarrollo del Tema	30
4.1.	Balance de Materia	30
4.2.	Balance de Masa a la Cámara de Combustión	33
4.2.1.	Balance de Energía a la Cámara de Combustión	36
4.2.2.	Calculo Calor de Combustión	37
4.2.3.	Calculo Δ <i>Cp</i>	38
4.3.	Balance de Masa al Mezclador	39
4.3.1.	Balance de Energía al Mezclador	40
4.4.	Balance de Masa al Plenum	41
4.4.1.	Balance de Energía al Plenum	41
4.5.	Balance de Masa al Secador	42
4.5.1.	Balance de Energía al Secador	44
4.5.2.	Calculo Calor de Vaporización	44
4.6.	Balance Masa al Colector de Polvos	45
4.6.1.	Balance de Energía al Colector de Polvos	46
4.7.	Condiciones Adicionales	47
4.8.	Análisis Fotodinámico Colector de Polvos	48
4.9.	Velocidad Terminal de una partícula de Aire	50
4.9.1	Calculo Velocidad del Gas	54
4.9.2	Análisis efecto de velocidad en las mangas	55

Capítulo 5 Resultados

	5. Re	esultados	.57
	5.1.	Calculo ΔH Reacción	.62
	5.2.	Resumen Resultados Balances de Masa y Energía	.66
	5.3.	Calor de Vaporización	.68
	5.4.	Análisis Colector de Polvos	.69
	5.5.	Resultados Granulométricos	.70
	5.6.	Simulador	71
	5.6.1.	Características Modelo de Simulación	.72
Сар	itulo	6 Análisis al Proceso y Validaciones	
	6. An	nálisis al Proceso y Validaciones	.78
	6.1.	Gas Natural	79
	6.2.	Aire de Fluidización	.86
	6.3.	Concentrado Húmedo	.88
	6.4.	Análisis variables mas influyentes en la operación9)1
Сар	itulo	7 Conclusiones y Recomendaciones	
	7. Co	onclusiones y Recomendaciones	.95
Сар	itulo	8 Bibliografía	
	8. Bil	bliografíabliografía	.97

Índice Figuras

Figura 2.1	Instalaciones División El Teniente
Figura 2.2	Diagrama Flujo Proceso de Producción de Cobre
Figura 2.3	Diagrama General Proceso Caletones10
Figura 2.4	Diagrama Fundición Caletones11
Figura 2.5	Organigrama Fundición Caletones12
Figura 3.1	Descripción del Proceso
Figura 3.2	Cámara de Expansión del Secador23
Figura 3.3	Fluocapa del Secador23
Figura 3.4	Cámara de Combustión del Secador23
Figura 3.5	Windbox del Secador24
Figura 3.6	Tolva Alimentación y Correas Transportadoras del Concentrado24
_	Secador con Quemador de Gas Natural, Ventilador de Combustión y de Fluidización25
Figura 3.8	Comportamiento del Concentrado en el Secador26
Figura 3.9	Colector de Polvos y Ventilador de Extracción
Figura 3.10	Alimentación desde el Colector de Polvos hacia la Tolva Intermedia28
_	1 Esquema General de Flujo de la Planta de Secado Fluo-Sólido de la Caletones
Figura 4.1	Diagrama Flujo (Bloques) Proceso de Secado30
Figura 4.2	Diagrama Cámara de Combustión35
Figura 4.3	Diagrama Mezclador39

Figura 4.4	Diagrama Plenum	.41
Figura 4.5	Diagrama Secador	.42
Figura 4.6	Diagrama Colector de Polvos	.45
Figura 4.7	Cálculo Calor de Combustión	17
Figura 4.8	Colector de Polvos, Movimiento Partícula de Polvo	.48
Figura 4.9	Fuerzas que actúan sobre una partícula de aire	.49
Figura 4.10	Bernoulli en el Colector de Polvos	54
Figura 5.1	Interfaz Inicial Modelo de Simulación de Lecho Fluidizado	.72
Figura 5.2	Balance Energía Global	73
Figura 5.3	Herramienta "Solver"	.74
Figura 5.4	Cálculo Parámetro utilizando Herramienta "Solver"	.76
Figura 6.1.	Balance de Masa y Energía Global	.79
Figura 6.2.	Pestaña Ingreso de Datos	80
Figura 6.3.	Primer Flujo de Gas Natural a analizar	81
Figura 6.4.	Cálculo Aire de Fluidización nuevo requerido	.82
Figura 6.5.	Flujo de Aire a Analizar	86
Figura 6.6.	Variables mas influyentes en la operación	93

Índice Tablas

Tabla 4.1	Composición Gas Natural	33
Tabla 4.2	Composición del Aire de Trabajo	34
Tabla 4.3	Calores de Formación de cada Compuesto	37
Tabla 4.4	Capacidad Calorífica del Gas	38
Tabla 4.5	Composición del Gas de Combustión	39
Tabla 4.6	Composición Gas de Fluidización	40
Tabla 4.7	Composición Gas de Salida del Secador	43
Tabla 4.8	Composición Concentrado Húmedo al 10%	43
Tabla 4.9	Composición Concentrado Húmedo al 0,1 %	46
Tabla 4.10	Datos de Trabajo del Colector de Polvos	55
Tabla 5.1	Condiciones Iniciales de Trabajo	57
Tabla 5.2	Pesos Moleculares de los Concentrados	58
Tabla 5.3	Resultados Calores Específicos en la Cámara de Combustión	59
Tabla 5.4	Moles de Cada Compuesto del Gas	60
Tabla 5.5	Moles de Aire de Combustión	60
Tabla 5.6	Moles de Aire en Exceso	61
Tabla 5.7	Flujo de Gas de Combustión	61
Tabla 5.8	Cálculo ΔH reacción	65
Tabla 5.9	Resumen Resultados Balance Masa	66
Tabla 5.10	Resumen Resultados Balance de Energía	67
Tabla 5.11	Velocidades de Gas obtenidas por Bernoulli	69
Tabla 5.12	Cálculo del diámetro de colección	70

Tabla 6.1	Valores de Operación de Diseño	78		
Tabla 6.2	Valores Reales Promedio	30		
Tabla 6.3	Aire de Fluidización obtenido con el Simulador8	3		
Tabla 6.4	Aire de Fluidización obtenido Anexo D	33		
Tabla 6.5	Comparación datos reales con datos simulados8	4		
Tabla 6.6	Porcentaje de error en el calculo entre el simulador y los datos reales	.84		
	Variación del Flujo de Gas Natural ante cambios de Temperatura er uidización			
	Variación del Flujo de Gas Natural ante cambios de Temperatura er as Natural			
Tabla 6.9	Comparación datos reales con datos entregados pro el simulador	.87		
	O Porcentaje de error al calcular la diferencia entre datos reales y da			
	1 Comparación datos reales con datos simulados ante variaciones er do húmedo			
	2 Porcentaje de error al calcular la diferencia entre datos reales y da de Temperatura de Aire de Fluidización			
	3 Porcentaje de error al calcular la diferencia entre datos reales y da de Temperatura de Concentrado			
	Comportamiento de las variables del proceso ante el aumento del flujo do a secar			
	Γabla 6.15. Comportamiento de las variables del proceso ante el aumento del flujo de			

CAPÍTULO 1: INTRODUCCION

1.- INTRODUCCION

Dada la demanda de cobre en el mundo y el aumento del precio de éste en los últimos años es que La Corporación Nacional del Cobre de Chile, CODELCO, en su rol de principal productor de cobre del mundo, controlando alrededor del 20 por ciento de las reservas mundiales de este elemento metálico, se ha visto en la necesidad de optimizar sus procesos. CODELCO, es una de las empresas más grandes de Chile y las operaciones de explotación, procesamiento de minerales y envío a los mercados son realizados por sus 5 divisiones, Codelco Norte (Fusión de las Divisiones Chuquicamata y Radomiro Tomic), la División El Salvador, la División Andina y la División El Teniente.

En la actualidad la División el Teniente, en particular las plantas de secado de la fundición, trabajan en función a manuales de diseño entregados por la empresa constructora de cada planta. Estos manuales entregan los parámetros en los cuales debe operar cada planta para alcanzar su óptimo funcionamiento.

Sin embargo estas plantas no siempre trabajan con los parámetros de diseño, y por lo tanto es necesario que exista una herramienta que permita identificar como se ven alteradas las variables de trabajo ante cualquier cambio o alteración.

Es por esto que para optimizar el proceso de secado se requiere de una herramienta de trabajo que sea capaz de permitir detectar e identificar los parámetros de trabajo ante los diferentes cambios que se lleven a cabo en la planta.

Esto se puede llevar a cabo obteniendo los Balances de Masa y Energía para cada equipo de trabajo y a nivel global además de realizar un trabajo en el colector de polvo que nos permita analizar su comportamiento y nos entregue la velocidad del Flujo de Gas.

Para esto último se utilizará la herramienta "solver" complemento de programación incorporado en todas las aplicaciones de MS Office y se analizará el cambio que presentan los parámetros de operación bajo diferentes condiciones de trabajo.

1.1.- OBJETIVOS DEL PROYECTO

1.1.1.- OBJETIVO GENERAL

Simular el proceso de secado de concentrado de cobre a través del programa de simulación Excel

1.1.2.- OBJETIVOS ESPECÍFICOS

- Identificar y analizar variables operacionales más influyentes en la operación.
- Generar simulador capaz de entregar balances de masa y energía.
- Conocer el comportamiento Fluidodinámico en el colector de polvos.

Capítulo	2 ^	ntacad	lantac	4015	Emproce
Capitulo	Z - A	птесео	entes	ue 16	i cilibresa

CAPÍTULO 2: ANTECEDENTES DE LA EMPRESA

2.- ANTECEDENTES DE LA EMPRESA

2.1.- CORPORACION NACIONAL DEL COBRE (CODELCO)

CODELCO-CHILE es la empresa minera estatal encargada de explotar los yacimientos cupríferos nacionalizados el 11 de Julio de 1971. Por el tamaño de sus instalaciones y el volumen de producción es considerada una de las compañías mineras más grandes del mundo. El Decreto Ley N°1.350 del 1 de abril de 1976 estableció la creación de CODELCO, una empresa de Estado, minera, industrial y comercial, con personalidad jurídica y patrimonio propio.

Su principal producto es el cobre refinado en la forma de cátodos con 99.99 % de pureza. La corporación, también, produce concentrado de cobre, cobre Blister y Anódico y subproductos como Molibdeno, barro anódico y ácido Sulfúrico.

Codelco cuenta con cinco Divisiones mineras, están ubicadas en la zona norte y centro de Chile, las cuales son:

- División CODELCO NORTE
- División EL SALVADOR
- División VENTANAS
- División ANDINA
- División EL TENIENTE

2.1.1.- RESEÑA HISTÓRICA DIVISIÓN EL TENIENTE

En 1905 el pionero estadounidense William Braden, con su empresa BRADEN COOPER COMPANY, comenzó la explotación del mineral en plena Cordillera de los Andes. En el año 1911, se alcanza un nivel de producción importante, 6000 ton/año de cobre blister, que marca el inicio de un largo camino de proyectos y acciones tendientes a consolidar al Teniente, como un productor de reconocida importancia a nivel mundial.

Posteriormente, su administración fue traspasada a la KENECOTT CORPORATION, que catapultó El Teniente al liderazgo de la gran minería mundial, introduciendo paulatinamente la tecnología e ingeniería en minas.

Su sitial como mina subterránea más grande del mundo se vio confirmado a partir de 1968, cuando el Estado chileno adquirió el 51% de la propiedad El Teniente a través del proceso de Chilenización del cobre. Buscando consolidar esa posición y aportar al máximo para el desarrollo de Chile, en 1971, con la nacionalización de la gran minería, se convirtió en una empresa ciento por ciento estatal.

2.1.2.- UBICACIÓN GEOGRÁFICA

El Teniente es una de las cinco Divisiones operativas de CODELCO CHILE. Sus instalaciones se encuentran ubicadas principalmente en la VI región de Chile. A casi 80 Km al sur de Santiago y a cerca de 2500 metros sobre el nivel del mar. Sus actividades se desarrollan en la localidad de RANCAGUA, COLON, SEWELL, CALETONES, COYA y el tranque de relaves CAREN. Las dimensiones del yacimiento fluctúan entre los 2.800 metros de largo por 1.900 metros de ancho.

En la figura 2.1 se ven representadas las instalaciones de la división EL TENIENTE.

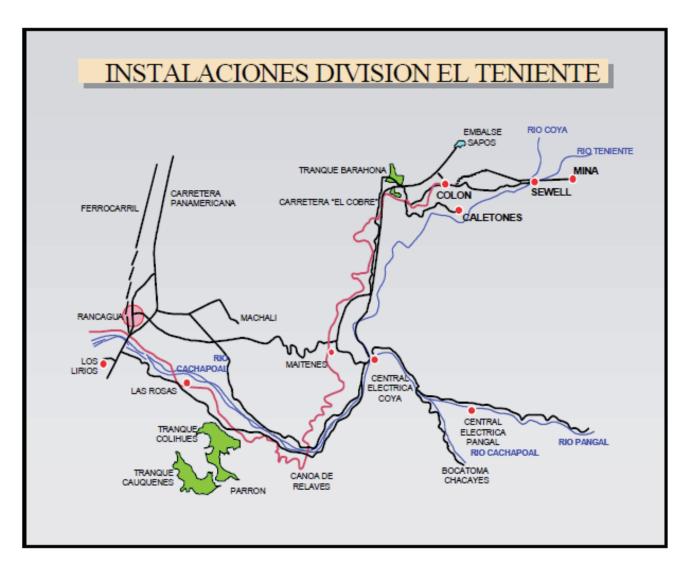


Figura 2.1 Instalaciones división El Teniente

2.1.3.- PROCESO DE EXPLOTACIÓN DEL COBRE.

En el proceso de la minería se deben conocer las distintas etapas que se deben llevar a cabo. En la Figura 2.2 queda representado el Diagrama de Flujo del Proceso de Producción de Cobre y en la Figura 2.3 queda representado el Diagrama de Flujo el Proceso de Caletones.

- 1. Explotación Geológica: Se identifica la presencia de un yacimiento y sus características. Se determinan la Ley del Mineral y la forma más adecuada de explotarlo.
- **2. Extracción, Carguío y Transporte**: La roca mineralizada extraída de la mina y de un tamaño adecuado, es cargada y transportada de forma eficiente y segura a la planta en trenes.
- **3. Chancado:** A partir de la etapa de chancado primario y secundario se obtiene un material mineralizado de un tamaño de 1,5 pulgadas.
- **4. Molienda**: Mediante molino se reducen las partículas del mineral, hasta obtener un tamaño de 180 micrones. Con esto se forma una pulpa con agua y reactivos que se llevan a la flotación.
- **5. Flotación:** Se genera una espuma cuyas burbujas atrapan el cobre y otros minerales sulfurados contenidos en la pulpa. Luego de varios ciclos, se recolecta y se seca esta espuma para obtener el concentrado de cobre, que continúa su purificación.
- **6. Fundición**: Para poder separar el cobre de otros minerales e impurezas, el concentrado de cobre seco se trata a altas temperaturas en hornos especiales. Luego de varios procesos se obtiene el cobre refinado, el que es moldeado en placas de 275 kilogramos de peso llamadas ánodos.

- **7. Electro refinación:** Los ánodos provenientes de la fundición se llevan a celdas electrolíticas para su refinación. De este proceso se obtienen cátodos de alta pureza.
- **8. Cátodos:** Éstos son examinados cuidadosamente, seleccionados y enzunchados, para su despacho. El cual se realiza por medio de trenes al puerto de embarque.

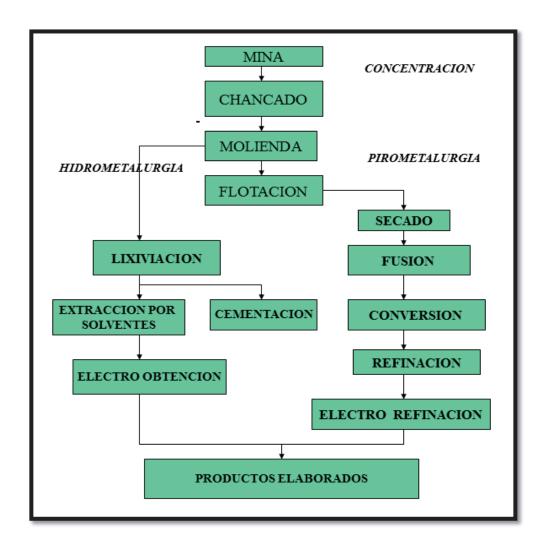


Figura 2.2 Diagrama de Flujo proceso de producción de cobre

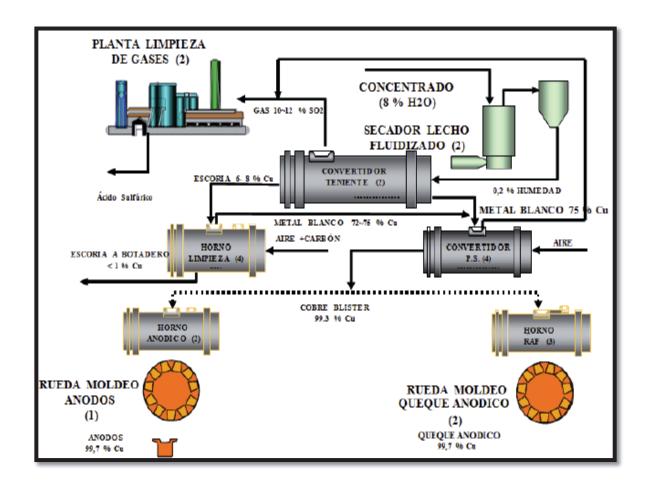


Figura 2.3 Diagrama del proceso de Caletones.

2.2. FUNDICIÓN CALETONES

Figura 2.4 Fundición CALETONES

La fundición CALETONES está ubicada en la zona central, VI región de chile a 1.540 metros sobre el nivel del mar, en la cordillera de los Andes.

Latitud : 34°06'16" (N.6.225.250)


Longitud O : 70°26'50" (E.336.500)

Altura aproximada : 1550 m.s.n.m

El inicio de sus operaciones data del día 20 de Abril de 1907, con el objeto de procesar el concentrado de cobre proveniente de SEWELL. El organigrama de la división se puede observar en la Figura 2.5.

En la actualidad la fundición CALETONES opera con 15 hornos giratorios donde se cuentan:

- 2 convertidores Teniente.
- 4 convertidores Pierce Smith
- 4 hornos de limpieza de escoria (HLE)
- 2 hornos anódicos
- 4 hornos refinación a fuego (RAF)

^{*} Preparación Carga

Figura 2.5 Organigrama Fundición Caletones

2.3.- PROCESOS DE LA FUNDICIÓN CALETONES

La Fundición CALETONES actualmente posee una capacidad instalada para procesar 1.250 kta de concentrado de cobre operando 361 días al año. El total de concentrado alimentado proviene del complejo Mina-Concentrador de la División El Teniente.

El concentrado que ingresa a la Fundición es un material constituido por una mezcla de minerales entre los que se destacan principalmente, calcopirita ($CuFeS_2$), bornita (Cu_5FeS_4), digenita ($Cu_{1.8}S$), pirita (FeS_2), calcosina (Cu_2S), covelina (CuS), tenantita-tetrahedrita ($Cu_{12}(As,Sb)_4S_{13}$), molibdenita (MoS_2) y el resto del material llamado ganga está compuesto principalmente por cuarzo (SiO_2), magnetita (MgO), óxido de calcio (CaO), y alúmina (Al_2O_3). Este material es alimentado a la fundición con una humedad promedio de 7 a 10 %.

2.3.1.- SECADO LECHO FLUIDIZADO DE CONCENTRADO

El concentrado recibido con 7 a 10 % de humedad, es sometido a una etapa de secado a muerte (<0.2% de humedad) en 2 hornos secadores de lecho Fluidizado donde es tratado con una corriente de aire caliente, aire de fluidización, con temperatura que fluctúa entre los 250 y 300°C.

El aire de fluidización es generado por la mezcla de aire fresco con gases de combustión y tiene por objetivo trasferir su calor, a través de la fluidización de un lecho compuesto por gravilla (material de ¼" a ½" de diámetro, redondeado) al concentrado y de este modo producir el secado. El concentrado seco es arrastrado por los gases que son extraídos por un ventilador y es separado de la corriente gaseosa por un filtro de mangas. Luego el concentrado seco recuperado es transportado neumáticamente (planta 1 y 2) o a través de vasos presurizados (planta 3) a los buzones de almacenamiento de los Convertidores Teniente para su posterior fusión.

2.3.2.- FUSIÓN DE CONCENTRADO EN CONVERTIDORES TENIENTE.

El proceso de fusión de concentrado se realiza en los 2 convertidores Teniente, y se inicia con la inyección de concentrado seco, en forma neumática, por medio de toberas al baño fundido del reactor. Aquí se aprovecha el calor generado por la reacción del oxígeno presente en el aire de soplado (enriquecido al 33-36% O₂) con los sulfuros de hierro y cobre contenidos en el concentrado, el que genera un eje de alta ley o metal blanco de 74 a 76% de cobre, una escoria con 6 a 10% de cobre y 16 a 25% de Fe₃O₄ y una corriente continua de gases con un 20 a 26 % de SO₂ en la boca del reactor, concentración que depende principalmente de enriquecimiento en oxigeno del aire soplado y de la calidad del concentrado alimentado.

La separación entre el metal blanco (solución rica en Cu, más S) y la escoria (solución rica en óxidos de Fe y otros óxidos) se produce por diferencias de densidad, siendo el metal blanco el de mayor densidad. El metal blanco producido, es evacuado periódicamente y trasferido, mediante tazas (ollas), a los convertidores PIERCE SMITH, en donde se efectúa la etapa final de conversión de cobre BLISTER. La escoria generada es evacuada por un sector ubicado en el extremo opuesto al punto de extracción del metal blanco y transferido a los hornos de limpieza de Escorias, donde se lleva a cabo un proceso de reducción, sedimentación y recuperación de los contenidos de valor metálico.

Los gases del Convertidor Teniente arrastran una cantidad de polvo que es recuperado en los precipitadores electroestáticos y posteriormente enviados a la planta de tratamiento de polvos, ubicada en Colon, donde se recupera el cobre soluble por métodos hidro-metalúrgicos y el mineral no soluble (Cu, sulfuro y otros) es retornado a la fundición y mezclado con el concentrado Teniente. Este retorno representa alrededor del 0,1 % del concentrado alimentado a la fundición.

Además de concentrado en el convertidor teniente se alimentan otros materiales:

- Carga Fría Fina (<2"), que es una mezcla de materiales con contenido de Cu proveniente del enfriamiento de los líquidos transportados en la nave de la fundición.
- Ripios, material recirculado desde Planta de tratamiento de polvos Fundición mezclado con el concentrado.
- Líquidos internos recirculados, metal de hornos limpieza de escoria, escorias de conversión y etapas de refinado.

2.3.3.- CONVERTIDOS PIERCE SMITH

El metal blanco con un 74 a 76 % de cobre, producido en los Convertidores Teniente y Hornos de Limpieza de Escoria (HLE), es transportado en ollas de 42 toneladas de capacidad a los convertidores PIERCE SMITH para realizar el proceso de conversión. El propósito de la conversión del metal blanco es eliminar principalmente el azufre y fierro remanentes, así como otras impurezas, mediante un proceso de oxidación a alta temperatura. Para lograr este resultado se inyecta en el baño liquido aire de soplado de toberas. Una vez obtenido el cobre metálico o BLISTER con un 99,3 % de pureza pasa a la etapa de refinado y moldeo, donde es tratado en los hornos anódicos para su refinamiento.

Este proceso es batch y se puede dividir en tres etapas principales:

- Carguío metal blanco.
- Soplado del metal para la conversión a cobre BLISTER
- Vaciado de productos, Cobre BLISTER a procesos de refinado.

En la actualidad también es posible operar este proceso en forma continua, en la cual el carguío del metal blanco y la producción de cobre BLISTER son en forma periódica y los tiempos de no soplado mínimos, manteniendo un inventario permanente de líquidos en el horno.

2.3.4.- HORNO DE LIMPIEZA DE ESCORIA (HLE)

Es un reactor en el que se realiza la reducción de magnetita contenida en la escoria del Convertidor TENIENTE con el objetivo de disminuir la viscosidad de la escoria y así facilitar la recuperación del cobre atrapado mecánicamente en ella, a través de la sedimentación debido a su mayor densidad. La fundición cuenta con cuatro equipos para procesar la totalidad de la escoria producida por los convertidores TENIENTE.

Básicamente la operación del Horno de Limpieza de Escoria comprende cuatro etapas:

- Carga de la escoria al horno.
- Reducción de la magnetita contenida en la escoria alimentada.
- Sedimentación de la mata o separación de las fases metal y escoria.
- Extracción de la escoria final y mata de alta ley.

La carga de la escoria fundida proveniente del Convertidor TENIENTE se realiza en forma semicontinua por medio de tazas de 38 toneladas de capacidad, transportadas por grúas desde los convertidores a los Hornos de Limpieza de Escoria.

Las reacciones químicas de reducción que se producen son endotérmicas. Por este motivo, se requiere generar calor con un quemador, sobre la base de petróleo ENAP-6, de modo de mantener la temperatura del baño y de esa manera favorecer las condiciones de viscosidad que se generan con la reducción de la magnetita de la escoria, sedimentando en forma rápida el cobre metálico o los sulfuros de cobre.

El agente reductor más utilizado es el carboncillo inyectado por toberas al baño.

En la etapa de sedimentación se deja en reposo la escoria reducida para permitir la decantación de las partículas con contenido metálico. La separación de fases se produce debido a la mayor densidad de las gotas de sulfuro de cobre respecto de la escoria.

Los productos obtenidos, después de la sedimentación son una escoria descartable con un contenido bajo de cobre (0,7 a 1.0 % de Cu) y un metal blanco con contenidos de 65 a 74% de Cu.

Una vez cumplido el tiempo de sedimentación se procede a extraer la escoria y la mata. La escoria, por su bajo contenido de cobre es enviada a botadero, transportadas en ollas, en forma de líquidos, con una temperatura entre 1100 °C y 1200 °C, mientras que la mata con el cobre recuperado es reincorporada al proceso de fundición, usualmente a los convertidores PIERCE SMITH.

2.3.5.- REFINACIÓN EN HORNO ANÓDICO

El cobre BLISTER es demasiado impuro para ser empleado directamente en los procesos de transformación para la obtención de productos finales. Las impurezas presentes en este cobre BLISTER son: oxigeno, níquel, plomo, arsénico, selenio, telurio, azufre, bismuto, plata, oro, zinc y antimonio. El cobre anódico debe reunir propiedades físicas y químicas bajo norma, para ser aceptados comercialmente, lo que se consigue sometiéndolo a refinación.

El cobre líquido con un 99,3% de pureza que es extraído de los Convertidores PIERCE SMITH puede ser refinado o tratado en los dos hornos anódicos.

En los hornos anódicos el ciclo comienza con el carguío del cobre BLISTER, hasta completar 400 toneladas de capacidad operativa del horno basculante de refinación.

Una vez finalizado el carguío se retira la escoria luego se inicia la oxidación del azufre contenido en el cobre BLISTER. Para ellos se inyecta aire y petróleo por tobera al baño y se mantiene una atmosfera oxidante. Terminada la oxidación, se da inicio a la reducción para la escorificación y eliminación de arsénico y disminución del contenido de oxígeno a calidad de ánodo, usando carbonato de calcio (CaCO₃) y carbonato de sodio (NaCO₃) como fundentes, si fuera necesario. Una vez finalizado el tratamiento se extrae la escoria generada. El cobre queda limpio y el horno está dispuesto para la etapa siguiente, el moldeo.

2.3.6.- MOLDEO DE PRODUCTOS

Una vez terminados los procesos de refinación se realiza el moldeo del producto final. Para lo cual la fundición cuenta con una rueda para moldeo de ánodos de cobre de 28 moldes.

2.3.7.- LIMPIEZA DE GASES

La Fundición dispone de dos plantas de Limpieza de Gases con capacidades de 1.500 tpd y 2.350 tpd de ácido sulfúrico respectivamente.

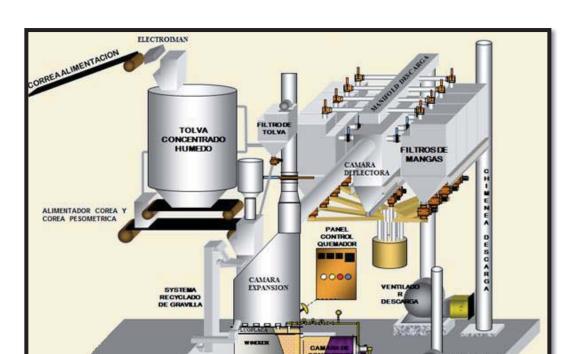
Los gases metalúrgicos ricos en Anhídrido Sulfuroso (SO₂), que son producidos en los Convertidores TENIENTE y los Convertidores PIERCE SMITH poseen una concentración que varía entre 7 y 10 %. Estos gases son dirigidos hacia las plantas de Limpieza de Gases a través de campanas de captación y ductos desde los Convertidores TENIENTE y Convertidores PIERCE SMITH, son enfriados en cámaras de enfriamiento por evaporación de agua en (CT) o en sistema de enfriamiento radiactivo (en CPS), posteriormente ingresan a un precipitador electroestático para la recuperación de material particulado y conducidas a la planta por ductos de alta velocidad 250 m de largo y 2,3 a 3,0 m de diámetro, hasta la entrada del sistema de enfriamiento y limpieza de gases compuestos por torres de lavado y precipitadores electrostáticos húmedos, en los cuales los gases son lavados con ácido débil para el enfriamiento y eliminación de impurezas contenidas (principalmente As y Pb) y así constituir el fluente liquido de estas plantas.

Las plantas disponen de la instrumentación necesaria para monitorear en forma permanente las concentraciones de SO₂ para el correcto control de concentración y caudal de gases.

En la planta de ácido el gas limpio y humedecido es secado y posteriormente conducido al convertidor catalítico que permite la transformación del SO₂ contenido a SO₃ el cual se transforma en ácido sulfúrico en torres de absorción que posteriormente es almacenado para su despacho y comercialización.

Todos los efluentes líquidos evacuados desde el Sistema de Limpieza, Secado y Absorción se tratan en una planta para neutralizarlos y separar el arsénico contenido en ellos obteniendo un residuo sólido estable que es almacenado en un vertedero acondicionado para ello.

CAPÍTULO 3: MARCO TEÓRICO


3.- MARCO TEÓRICO

Hoy en día el proceso de secado es de considerable importancia, ya sea desde el punto de vista económico y práctico.

El principio de este proceso radica en la eliminación de un líquido por conversión en vapor, que se separa del sólido. La energía para conseguir la extracción del porcentaje de líquido contenido en las partículas es transferida por medio de las tres formas de trasmisión de calor conocidas: conducción, radiación y convección.

Debido a la gran variedad de materiales que necesitan ser secados antes de transformarlos en productos utilizables, se han desarrollado varios tipos de secadores, entre los cuales podemos encontrar los denominados secadores de dispersión (lecho Fluidizado) donde el material es secado en forma de partículas sólidas en estado de suspensión. Su principal característica es la alta capacidad de transferencia de calor y materia. (Anexo A Ver diferencia con otros tipos de secadores).

La División El Teniente, cuenta con tres Secadores de Lecho Fluidizado en la Fundición de Caletones, uno de los cuales se encuentra operando desde el año 1988 y el otro de similares características, pero de mayor capacidad, comenzó su operación el año 1993. A partir del 2004, acorde al Proyecto de Desarrollo del Teniente (PDT) entró en funcionamiento un tercer Secador de Lecho Fluidizado de mayor capacidad que los dos anteriores. La descripción del Proceso de Secado lo podemos observar en la Figura 3.1.

3.1.- DESCRIPCION DEL PROCESO

Figuran 3.1 Descripción del Proceso de Secado

El secado en Lecho Fluidizado¹, emplea los principios de fluidización como medio para secar el concentrado desde 7 - 10 a 0.02 - 0.1 % de humedad como producto final.

Un secador de Lecho Fluidizado típico consiste en cuatro componentes principales:

La cámara de expansión que proporciona el espacio para la separación del aire y la gravilla. Ver Figura 3.2.

Figura 3.2 Cámara de Expansión

➤ La Fluocapa que soporta el lecho de gravilla y permite introducir el aire en el lecho. Ver Figura 3.3.

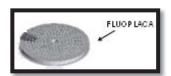


Figura 3.3 Fluocapa

➤ La cámara de combustión calienta el aire para el secado del concentrado de cobre. Ver Figura 3.4

Figura 3.4 Cámara de Combustión

El windbox lugar donde se introduce el aire fluidizado. Ver Figura 3.5

Figura 3.5 Windbox

Este proceso comienza desde que la correa transportadora de concentrado húmedo comienza a alimentar la tolva de alimentación de concentrado húmedo, que es capaz de almacenar 400 toneladas de concentrado de cobre con un 7% al 10% humedad y con una capacidad de secado de 130 TMS/H. (Ver Proceso en Figura 3.6.)

El concentrado húmedo, se saca de la tolva por medio de una correa, de velocidad variable, correa 3, que descarga sobre una correa transportadora con pesómetro, correa 5, la que descarga dentro del secador de lecho fluidizado. Ver Figura 3.6.

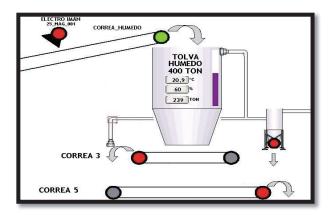


Figura 3.6 Tolva de Alimentación y correas transportadoras.

El concentrado húmedo se seca térmicamente dentro de un secador de lecho fluidizado bajo condiciones operativas, el combustible para el secador es gas natural, así el combustible se quemará con el aire de combustión introducido por el ventilador de combustión. Este proceso lo podemos observar en la Figura 3.7.

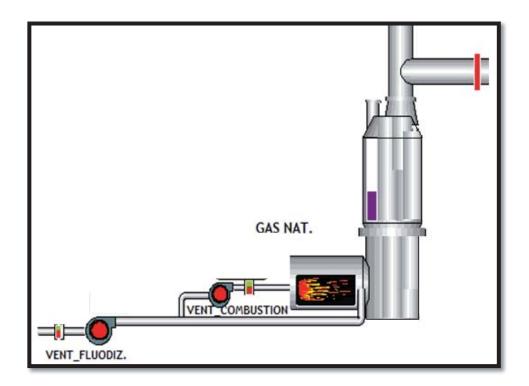


Figura 3.7 Secador con Quemador de Gas Natural y ventiladores de fluidización y combustión.

Al ingresar el concentrado húmedo al secador comienza el proceso de disminución de humedad de éste, es decir el concentrado debe bajar su porcentaje de humedad de entre 7 - 10 al 0,02 - 0.1%.

Al secador de lecho fluidizado se le introduce aire de fluidización mediante un ventilador de fluidización. Este se calienta al pasar por la cámara de combustión (entre 60.000 y 100.000 metros cúbicos por hora para las tres Plantas). Los gases producto de la combustión, más el aire de dilución, se juntan y se homogeneizan en el PLENUM, luego pasan a través del LECHO produciendo la fluidización de la capa inerte de gravilla de río, la cual se suspende y se agita tendiendo a adoptar las características de un fluido.

La mezcla de gases caliente, que fluye en forma ascendente y la gravilla en movimiento, rompen las aglomeraciones de concentrado convirtiéndolo en partículas

sólidas perfectamente diseminadas y produciéndose entonces el óptimo intercambio de calor.

El concentrado es alimentado en forma descendente desde la parte superior de FREE BOARD por la válvula rotatoria húmeda (dosifica la carga y produce un sello en el secador, la Planta Nº3 no posee válvula rotatoria), éste al encontrarse con el gas caliente que asciende, es secado y arrastrado hacia el colector de polvos (filtros de mangas: 1.536 mangas en Planta Nº 1 y 2.560 mangas en Planta Nº 2 Planta Nº3 1680 mangas). El concentrado más pesado hace un recorrido en forma de "U" en el lecho, o sea, ingresa, baja y con la fluidización del aire con la gravilla, el concentrado que se va secando sube para ingresar al sistema de recolección de polvo. El comportamiento del Concentrado queda expresado en la Figura 3.8.

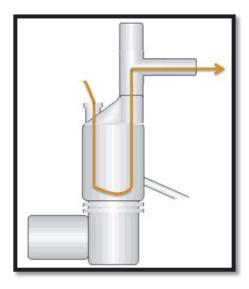


Figura 3.8 Comportamiento del Concentrado en el Secador

El tiraje forzado que produce el ventilador del colector de polvos (Planta Nº1 es de 350HP, en Planta Nº2 es de 350 HP y en planta Nº3 es de 550 HP), permite la evacuación de los gases que arrastran el concentrado hacia la zona del colector de polvos, separándolos. Los gases son enviados a la atmósfera a través de una chimenea y los sólidos son recolectados en el colector de polvos. Ver Figura 3.9.

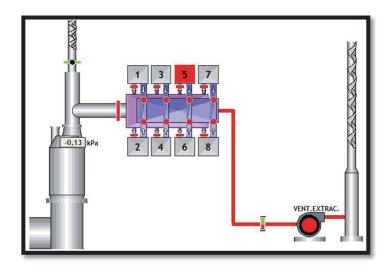


Figura 3.9 Colector de Polvos y Ventilador de Extracción.

El concentrado seco es evacuado del colector de polvo, a través de canales aireadas hacia un tolvín que alimenta la válvula rotatoria seca. En estas canales, mediante la acción de un aire de baja presión, el concentrado se fluidiza parcialmente, permitiendo su fácil escurrimiento a través de éstas.

En Planta Nº1 y Nº2 la válvula rotatoria seca, dosifica el concentrado que se alimenta a la bomba de transporte neumático, en Planta Nº3 alimenta vasos presurizados, donde se mezcla el concentrado seco con un flujo de aire de alta presión, transportándolo hacia la tolva intermedia de 500 toneladas. Ver Figura 3.10.

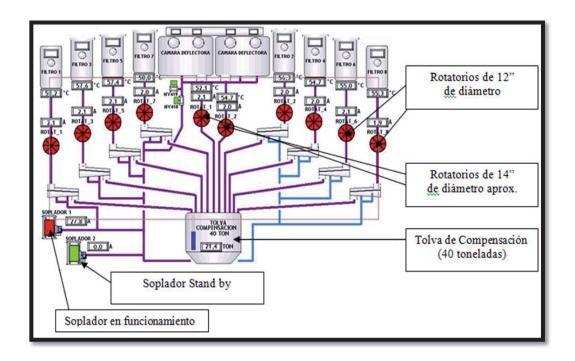


Figura 3.10 Alimentación desde el colector de polvos hacia la tolva intermedia.

En la Figura 3.11, se muestra un esquema general de flujo de la Planta de Secado Fluo-Sólido de la Fundición Caletones.

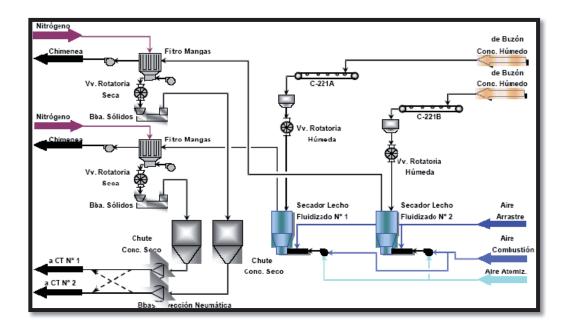


Figura 3.11 Esquema General de Flujo de la Planta de Secado Fluo-Solido de la Fundición Caletones

Capítulo 4 –	Desarrollo	del F	Problema
--------------	------------	-------	----------

CAPÍTULO 4: DESARROLLO DEL PROBLEMA

Desarrollo del Problema

Con la necesidad de establecer los parámetros óptimos de trabajo es necesario llevar a cabo en las plantas de secado los balances de masa y energía.

4. Balance de Materia²

Nos permiten definir los flujos de masa y energía que entran y salen de cada una de las unidades del proceso, así como del proceso en su conjunto.

Para realizarlos se parte de la información disponible y reflejada en el diagrama de bloques. Una vez terminados podemos conocer el consumo de materias primas y de servicios adicionales necesarios para el funcionamiento de la planta. Lo normal es comenzar con un balance global a toda la planta y seguir equipo por equipo. Con los datos obtenidos de los balances podremos realizar el dimensionamiento preliminar de los equipos y obtener el diagrama de flujo de cada una de las alternativas. Cada corriente ha de quedar especificada en cuanto a su caudal, composición, temperatura, presión, etc.

El objetivo del balance de materia es determinar ciertos parámetros de operación con los cuales debe trabajar el proceso: Cantidad de combustible necesario, Aire de proceso, Cantidad de Concentrado, % de Humedad del Concentrado entre otros. Estos parámetros son calculados a partir de un porcentaje de composición conocido, ley de concentrado, cálculo de humedad, etc.

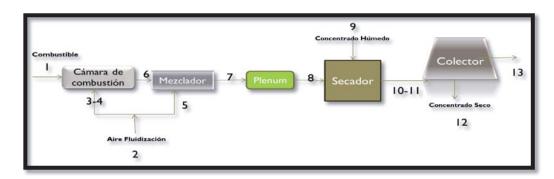


Figura 4.1 Diagrama de Bloques Proceso de Secado

4.1 Los Flujos de trabajo para resolver los balances de masa y energía son los siguientes:

Flujo1: Flujo de combustible, en este caso Gas Natural, que ingresa a la cámara de combustión para ser quemado en conjunto con el aire proveniente del ventilador de combustión.

Flujo 2: Flujo de aire proveniente del ventilador de Fluidización. Este ventilador de fluidización cumple dos funciones; parte del aire transportado es enviado por el ventilador de combustión a la cámara de combustión y el resto es enviado directamente al secador con la finalidad de transportar el gas caliente proveniente de la cámara de combustión que secara el concentrado que entra al secador con aproximadamente un 10% de humedad.

Flujo 3: Flujo de Aire de combustión que reacciona con el Gas Natural.

Flujo 4: Flujo de Aire que entra en exceso a la cámara de combustión, este exceso se lleva a cabo con la finalidad de lograr una combustión completa, y en el caso de los hornos de las plantas de secado alcanza alrededor del 35,79%.

Flujo 5: Flujo de Aire de dilución, es el aire proveniente del ventilador de fluidización que no fue utilizado en la combustión y tiene por finalidad transportar hacia el concentrado el Gas de Combustión. Se junta con el Gas de Combustión en el Quemador.

Flujo 6: Flujo de Gas de Combustión, se forma en la cámara de combustión al hacer reaccionar el aire de combustión con el combustible, sale a gran temperatura a mezclarse con el aire de dilución dentro de la parte baja del secador, Plenum.

Flujo 7: Flujo de Gas de Fluidización que transporta la mezcla del gas de combustión con el aire de dilución utilizado para secar el concentrado.

Flujo 8: Flujo de Gas de Fluidización que se diferencia del flujo 7 en que a medida que el gas avanza en dirección del concentrado pierde temperatura produciéndose un cambio en su entalpia.

Flujo 9: Flujo de concentrado de cobre proveniente de la tolva húmeda a través de las correas transportadoras que se seca con el aire de fluidización. Proviene con una humedad entre el 7 al 10 %.

Flujo 10: Flujo de Gas de fluidización que adquiere gran parte de la humedad del concentrado en forma de vapor de agua. Se dirige al Colector de Polvos con la ayuda del ventilador de extracción.

Flujo 11: Flujo de Concentrado de cobre secado con menos del 0,1 % de humedad. Se dirige al Colector de Polvos con la ayuda del ventilador de extracción.

Flujo 12: Flujo de Gas de Salida del colector de polvos que va en dirección a ser expulsado por la chimenea con ayuda del ventilador de extracción.

Flujo 13: Flujo de Concentrado de cobre seco que se dirige a las tolvas intermedias para seguir con su posterior transformación.

Los Balances de Masa se trabajaran en estado estacionario.

4.2. Balance de Masa a la Cámara de combustión:

A la cámara de combustión entra el flujo de combustible (Flujo 1) en compañía del aire de combustión y el aire en exceso (Flujo 3 y Flujo 4) con la finalidad de obtener el gas de combustión que entra al secador (Flujo 6).

El flujo de combustible, Gas Natural, presenta cierta composición que puede ser variada en caso que el suministrador así lo indique. La composición actual del combustible trabajado en las plantas de secado de la División El Teniente que expresado en la Tabla N° 4.1.

Tabla 4.1 Composición Gas Natural

Compuesto	%
N ₂	0,0144
CH ₄	96,606
C ₂ H ₆	3,0779
C ₃ H ₈	0,2527
ISO-C ₄ H ₁₀	0,0267
N-C ₄ H ₁₀	0,0177
ISO-C ₅ H ₁₂	0,0026
N-C ₅ H ₁₂	0,0012
C ₆ H ₁₄	0,0008
TOTAL	100

Del ventilador de fluidización sale una corriente de aire de fluidización (Flujo 2) que se divide en dos corrientes, (flujo 3-flujo 4 y flujo 5), la primera se dirige al ventilador de combustión, flujo 3 y flujo 4, en proporción al flujo de combustible ingresado. (15,24 veces el combustible) y el aire restante se denomina aire de dilución, flujo 5, que entra directamente al mezclador.

El aire de combustión, fluidización y en exceso, se considera en proporción de oxígeno y nitrógeno como esta representado en la Tabla N°4.2.

Tabla 4.2 Composición Aire de trabajo.

Compuesto	%	
O ₂	21	
N2	79	
Total	100	

(3)

Además el porcentaje de aire en exceso es del 35,79%.

Dado que los flujos se leen desde las salas de control en unidades de $\left(\frac{Nm3}{hr}\right)$ es necesario transformar las unidades hasta llegar a (mol/hr).

$$n_i = \frac{F_i * \rho_i * 1000}{PM_i} \tag{1}$$

O también

$$n_i = \frac{P_i * F_i * 1000}{0.082 * T_i} \tag{2}$$

Donde:

$$n_i = moles para cada flujo. \left(\frac{mol}{hr}\right)$$

$$F_i = Flujos de trabajo.$$
 $\left(\frac{Nm3}{hr}\right)$

 $\rho_i = densidad para cada flujo de trabajo. \left(\frac{kg}{Nm3}\right)$

 $PM_i = Peso\ Molecular\ para\ cada\ flujo\ de\ trabajo.$ $\left(\frac{gr}{mol}\right)$

 $P_i = Presión de trabajo para cada flujo de trabajo. (atm)$

 $T_i = Temperatura para cada flujo de trabajo (K).$

F1 + F3 + F4 = F6

Balance de Masa a la cámara:

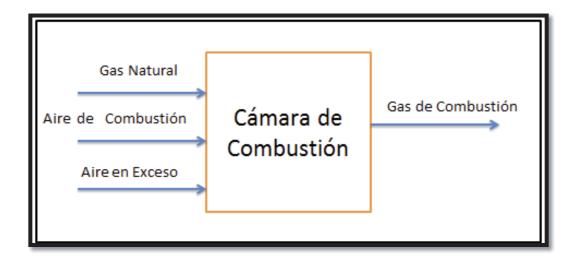


Figura 4.2 Diagrama Cámara de Combustión

Las reacciones que se forman en la cámara entre el combustible y el aire son:

$$CH_4(g) + 2O_2(g) \to CO_2(g) + 2H_2O(g)$$
 (4)

$$2C_2H_6(g) + 7O_2(g) \to 4CO_2(g) + 6H_2O(g)$$
 (5)

$$C_3H_8(g) + 5O_2(g) \to 3CO_2(g) + 4H_2O(g)$$
 (6)

$$2NC_4H_{10}(g) + 13O_2(g) \to 8CO_2(g) + 10H_2O(g) \tag{7}$$

$$2isoC_4H_{10}(g) + 13O_2(g) \to 8CO_2(g) + 10H_2O(g)$$
(8)

$$NC_5H_{12}(g) + 8O_2(g) \to 5CO_2(g) + 6H_2O(g)$$
 (9)

$$isoC_5H_{12}(g) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(g)$$
 (10)

$$2C_6H_{14}(g) + 19O_2(g) \to 12CO_2(g) + 14H_2O(g)$$
 (11)

Cada ecuación esta relacionada con la composición del Gas Natural teniendo mayor importancia la ecuación (4) del metano.

Para el cálculo del Oxigeno necesario como aire de combustión:

$$2(nCH_4) + \frac{7}{2}(nC_2H_5) + 5(nC_3H_8) + \frac{13}{2}(nNC_4H_{10}) + \frac{13}{2}(nisoC_4H_{10}) + 8(nisoC_5H_{12}) + 8(nNC_5H_{12}) + \frac{19}{2}(nC_6H_{14})$$
(12)

Los moles de Nitrógeno se obtienen:

$$n(Nitrogeno) = n(oxigeno) * \frac{0.79}{0.21}$$
 (13)

4.2.1.- Balance de Energía de la cámara de combustión³:

Calculamos el calor sensible para cada flujo:

$$Qs_{i} = H = Cp_{i} * n_{i} * \Delta T \qquad \left(\frac{Mcal}{hr}\right)$$

$$Qs_{i} = H = Cp_{i} * n_{i} * (Ti - Tref) \qquad \left(\frac{Mcal}{hr}\right)$$
(14)

Dónde:

 $Qs_i = Calor Sensible de cada flujo.$

 $Cp_i = \text{capacidad calorífica para cada compuesto.}$ $\left(\frac{\text{cal}}{mol*K}\right)$

 n_i = moles de cada corriente del proceso.

 $\Delta T = \text{Diferencia}$ de temperatura entre la temperatura de trabajo y la referencial. (K)

 $T_{ref}=0^{\circ}C=$ diferencia de temperatura entre la temperatura de trabajo y la referencial. (K)

Balance de Energía a la Cámara

$$H1 + H3 + H4 = H6 \tag{15}$$

$$Cp_1 * n_1 * \Delta T_1 + Cp_2 * n_2 * \Delta T_2 + Cp_3 * n_3 * \Delta T_3 = Cp_6 * n_6 * \Delta T_6$$

$$Cp_1 * n_1 * (T_1 - T_{ref}) + Cp_2 * n_2 * (T_2 - T_{ref}) + Cp_3 * n_3 * (T_3 - T_{ref})$$

$$= Cp_6 * n_6 * (T_3 - T_{ref})$$

4.2.2.- Calculo Calor de combustión: Ver ANEXO B

$$\Delta H = \Delta H \ 298^{\circ} + \int (Cp \ productos - Cp \ reactivos) dT$$
 (16)

$$\Delta H \ 298^{\circ} = \Delta H \ productos - \Delta H \ reactivos$$

Los Calores de Formación quedan expresados en la Tabla N°4.3.

Tabla 4.3 Calores de Formación

Compuesto	Entalpia de formación		
Químico	(Mcal/mol) ⁴		
H ₂ 0(g)	-0,57798		
CO ₂ (g)	-0,94050		
CH ₄ (g)	-0,17830		
C ₂ H ₆ (g)	-0,20240		
C ₃ H ₈ (g)	-0,24856		
N-C ₄ H ₁₀ (g)	-0,30239		
N-C ₅ H ₁₂ (g)	-0,40172		
ISO-C ₄ H ₁₀ (g)	-0,30214		
N-C ₄ H ₁₀ (g)	-0,36592		
C ₆ H ₁₄ (g)	-0,44013		

4.2.3. Calculamos el delta Cp:

$$\int_{T_{ref}}^{T_i} Cp \, H_2 O + Cp \, CO_2 - (Cp \, O_2 + Cp \, X)$$

$$Cp = A + B * 10^{-3} * T + C * 10^5 * T^{-2} + D * 10^{-6} * T^2$$
(18)

Las Capacidades Caloríficas del Gas quedan expresadas en la Tabla N°4.4.

Tabla 4.4 Capacidades Caloríficas del Gas (cal/mol*K)

Compuesto (x)	А	B*10^3	C*10^6	D*10^9
H ₂ 0	6,790	2,982	0,307	0,086
CO ₂	7,006	9,533	-0,594	-3,533
SO ₂	6,963	8,896	0,014	-0,690
CH ₄	8,120	-3,722	0,000	16,776
C ₂ H ₆	7,690	4,046	0,000	40,869
C ₃ H ₈	-16,300	128,824	3,708	-95,201
N-C ₄ H ₁₀	-16,300	139,887	5,200	-80,700
N ₂	7,002	-0,375	-0,002	0,817
O ₂	5,272	4,992	0,387	-1,962
N-C ₅ H ₁₂	6,983	88,570	-1,892	-24,036
C ₆ H ₁₄	6,016	107,056	0,000	-33,421

4.3. Balance de Masa al Mezclador:

Al mezclador entra el gas de combustión (Flujo 6) en compañía del aire de dilución (Flujo 5) con la finalidad de obtener el aire caliente que entra al Plenum (Flujo 7). La composición del gas de combustión está representada en la Tabla 4.5.

$$(Aire\ de\ Dilución) + (Gas\ de\ Combustión) = (Gas\ de\ Fluidización)$$

$$F5 + F6 = F7 \tag{19}$$

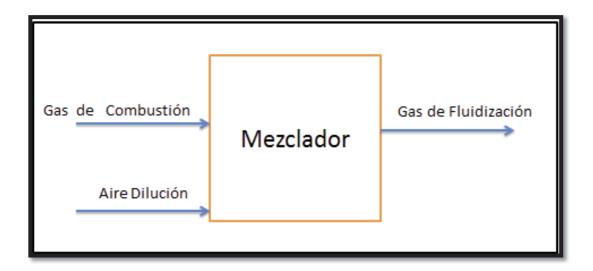


Figura 4.3 Diagrama del Mezclador

Tabla 4	.5 Com	posición	Gas de	: Com	bustión

Compuesto	%
CO ₂	6,475
H ₂ 0	12,717
O ₂	6,836
N ₂	73,971

El aire de dilución se obtiene restando el aire de fluidización entrante con el aire que entra al ventilador de combustión.

Es decir:

$$F2 - F3 = F5 (20)$$

4.3.1.- Balance de Energía del Mezclador:

La composición del Gas de Fluidización está representada en la Tabla 4.6.

Calculamos el calor sensible para cada flujo:

$$H5 + H6 = H7$$
 (21)

De la Ec. (14) reemplazamos

$$Cp_5 * n_5 * \Delta T_5 + Cp_6 * n_6 * \Delta T_6 = Cp_7 * n_7 * \Delta T_7$$

$$Cp_5 * n_5 * (T_5 - T_{ref}) + Cp_6 * n_6 * (T_6 - T_{ref}) = Cp_7 * n_7 * (T_7 - T_{ref})$$

Tabla 4.6 Composición Gas de Fluidización

Compuesto	%
CO ₂	0,925
H ₂ 0	1,817
O ₂	18,977
N ₂	78,282

4.4.- Balance de Masa al Plenum:

(Gas de Fluidización) = (Gas de Fluidización)

$$F7 = F8 \tag{22}$$

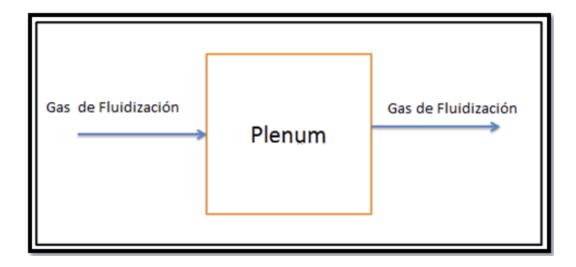


Figura 4.4 Diagrama Plenum

4.4.1.- Balance de Energía al Plenum:

La finalidad es elevar la temperatura a medida que el Gas de Fluidización avanza por el secador. Se considera comportamiento Adiabático.

$$H7 = H8 \tag{23}$$

D la Ec (14) reemplazamos:

$$Cp_7*n_7*\Delta T_7 = Cp_8*n_8*\Delta T_8$$
 $Cp_7*n_7*(T_7-T_{ref}) = Cp_8*n_8*(T_8-T_{ref})$

4.5.- Balance de Masa al Secador:

Por la parte alta del secador ingresa el flujo de Concentrado que vienen dados en toneladas por hora.

Por lo tanto es necesario transformar los flujos a (Nm3/hr)

$$Flujo\ Volumetrico = \frac{Flujo\ masico}{\rho\ del\ concentrado} \tag{24}$$

$$\rho \ concentrado = (\frac{kg}{Nm3})$$

 $(Gas\ de\ Fluidizaci\'on) + (Concentrado\ Humedo\ al\ 10\%) = (Gas\ de\ Salida) + (Concentrado\ Humedo\ al\ 0,1\%)$

$$F8 + F9 = F10 + F11 \tag{25}$$

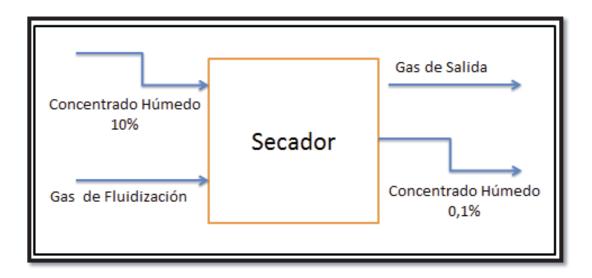


Figura 4.5 Diagrama Secador

En el caso del gas de salida, en éste se aumenta la cantidad de vapor de agua debido a que se suma la cantidad de vapor de agua perdido en el proceso de vaporización. La composición del Gas de Salida queda expresado en la Tabla N°4.7

Tabla 4.7 Composición Gas de Salida del Secador

Compuesto	%
CO ₂	0,798
H ₂ 0	15,289
O ₂	16,373
N ₂	67,539

La composición del concentrado húmedo al 10% queda expresado en la Tabla 4.8.

Tabla 4.8 Composición Concentrado Húmedo al 10%

Concentrado	Composición en	
Húmedo	peso Húmedo	
Bornita	6,691	
Calcocina	0,126	
Calcopirita	41,484	
Covelina	0,321	
Cu	0,401	
Pirita	23,586	
Molibdenita	0,120	
Rutilo	0,161	
Esfalerita,	0,053	
Blenda		
Ganga	17,057	
Agua	10,000	

4.5.1.-. Balance de Energía al Secador:

$$H8 + H9 = H10 + H11 + Q\lambda \tag{26}$$

De la Ec. (26)

$$Cp_8*n_8*\Delta T_8+Cp_9*n_9*\Delta T_9=Cp_{10}*n_{10}*\Delta T_{10}+Cp_{11}*n_{11}*\Delta T_{11}$$

$$Cp_8*n_8*(T_8-T_{ref})+Cp_9*n_9*(T_9-T_{ref})=Cp_{10}*n_{10}*(T_{10}-T_{ref})+Cp_{11}*n_{11}*(T_{11}-T_{ref})+Q\lambda$$

Donde Calor de Vaporización:

Se considerará que la evaporación se producirá a los 100°C.

Calor Latente de Vaporización del agua obtenido por tablas de vapor:

$$\lambda = 2257 \frac{kJ}{kg} = 539 \frac{kcal}{kg} = 0.539 \frac{Mcal}{kg}$$
 a 100°C

Por lo tanto:

$$Q_{\lambda} = \lambda \left(\frac{Mcal}{kg} \right) * kg_{h20}$$

Reemplazar en ecuación (26).

4.6. Balance de Masa al Colector de Polvos:

Los flujos de Concentrado vienen dados en toneladas por hora.

Por lo tanto de Ec (24) transformamos las unidades.

(Gas de Salida) + (Concentrado Humedo al 0.1%) = (Gas de Salida) + (Concentrado Humedo al 0,1%)

$$F10 + F11 = F12 + F13 \tag{28}$$

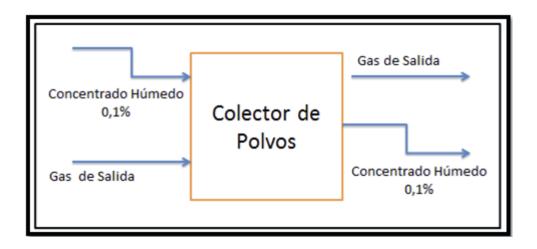


Figura 4.6 Diagrama Colector de Polvos

En el caso del gas de salida que entra al colector éste disminuye su % de humedad debido a la cantidad de vapor de agua perdido en el proceso de vaporización. A su vez el gas de salida que sale del colector de polvos tiene una perdida de aproximadamente 1% de concentrado seco.

La composición del concentrado húmedo al 0.1% queda expresado en la Tabla 4.9.

Tabla 4.9 Composición Concentrado Húmedo al 0,1%

Concentrado	Composición en	
Húmedo	peso Húmedo	
Bornita	7,435	
Calcocina	0,139	
Calcopirita	46,093	
Covelina	0,356	
Cu	0,446	
Pirita	26,207	
Molibdenita	0,134	
Rutilo	0,179	
Esfalerita,		
Blenda	0,059	
Ganga	18,952	
Agua	0,020	

4.6.1. Balance de Energía al Colector de Polvos:

Calculamos el calor sensible para cada flujo:

$$H10 + H11 = H12 + H13 \tag{29}$$

De la Ec (13)

$$\begin{split} Cp_{10}*n_{10}*\Delta T_{10} + Cp_{11}*n_{11}*\Delta T_{11} &= Cp_{12}*n_{12}*\Delta T_{12} + Cp_{13}*n_{13}*\Delta T_{13} \\ & Cp_{10}*n_{10}*(T_{10} - T_{ref}) + Cp_{11}*11*(T_{11} - T_{ref}) \\ &= Cp_{12}*n_{12}*(T_{12} - T_{ref}) + Cp_{13}*n_{13}*(T_{13} - T_{ref}) \end{split}$$

4.7. Consideraciones Adicionales:

Pérdidas de cobre en el proceso:

A la salida del colector el concentrado sale con un porcentaje de polvo cercano al 1% por lo que se consideran despreciables las perdidas de cobre en el sistema.

Pérdidas de Calor en el Secador:

Considerando que los equipos del secador tienen un gran recubrimiento y las pérdidas de calor en el sistema se consideran bajas no se llevarán a cabo el cálculo de estas.

Sin embargo, estas perdidas pueden afectar en el balance de masa y energía para lo cual se considerará un porcentaje de perdidas global que considerará las perdidas ocurridas en las diferentes etapas del secado.

Entre estas perdidas de calor consideramos el calor de combustión, el proceso de secado, transporte de material, ingreso de aire y combustible, etc.

Para efectos de cálculos se considerará que en el cálculo del calor de combustión éste tendrá una efectividad del 90%. Siendo el 10% restante el calor perdido en las diferentes etapas de trabajo.

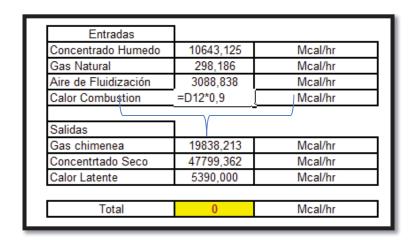


Figura 4.7 Calculo Calor de Combustión

4.8. Análisis Fluidodinámico Colector de Polvos:

Uno de los equipos que presenta mayores fallas dentro de los equipos de la planta de secado es el colector de polvo. Esto debido a que actualmente en las plantas de secado se ha cambiado la composición del concentrado, mezclando el concentrado mineral con concentrado de escoria, produciendo de esta manera un desgaste en la estructura del colector de polvo, principalmente por el aumento de silicatos y fierro. Debido a esto se requiere conocer el comportamiento Fluidodinámico en el colector de polvos, para conocer que módulos poseen mayor desgaste y realizarle las mantenciones con anterioridad. En la Figura 4.8 esta representado el Colector de Polvos de las Plantas de Secado con sus 8 módulos de trabajo.

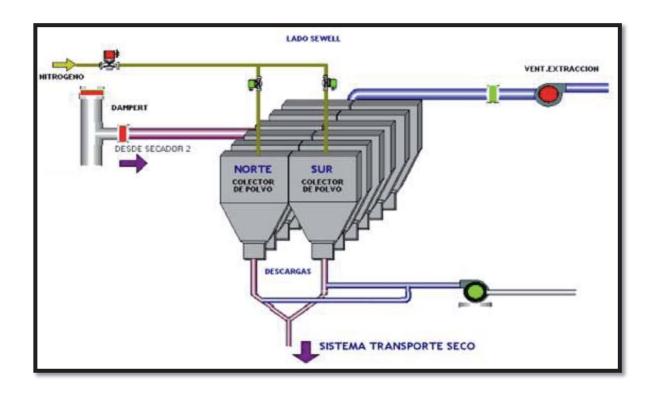


Figura 4.8 Colector de Polvos, Movimiento partículas de Gas

Cuando las partículas de polvo quedan suspendidas en el aire, se ven sujetas a la acción de gravedad. La atracción gravitacional hace que ellas comiencen a caer, pero a diferencia de lo que sucede en el vacío, en el cual la velocidad de caída es uniformemente acelerada, al caer la partícula en el aire esta se ve sometida a las fuerzas de roce con el aire y empuje que producen una resistencia a la caída. La partícula cae inicialmente en movimiento acelerado pero a medida que aumenta la velocidad, se hace mayor el efecto de la resistencia del aire y llega un momento en que la resistencia al aire equilibra a la fuerza de gravedad. En este momento, la partícula alcanza una velocidad uniforme que corrientemente se denomina "Velocidad Terminal"

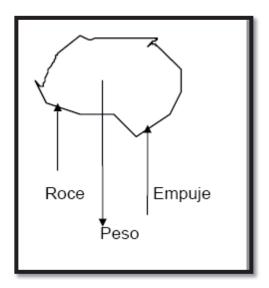


Figura 4.9 Fuerzas que actúan sobre una partícula de aire

4.9 Velocidad Terminal de una partícula de aire.

Se define la velocidad terminal, como la velocidad constante que alcanzan las partículas cuando la fuerza de gravedad se iguala a las fuerzas de roce y empuje, es decir, cuando no existe aceleración.

De la definición anterior, podemos decir que cuando una partícula alcanza su velocidad terminal, el balance de fuerzas quedará expresado de la siguiente forma:

$$P = R + E \tag{30}$$

Dónde:

P: Fuerza de Gravedad

R: Fuerza de Roce

E: Fuerza de Empuje

A. Fuerza de Gravedad

$$F = m * A \tag{31}$$

Dónde:

F : Fuerza de Gravedad

m : Masa del objeto

A : Aceleración del objeto

$$P = V_p \cdot \rho_p \cdot g \tag{32}$$

Dónde:

P : Fuerza de Gravedad o peso

 m_p : Masa de la partícula de aire

g: Aceleración de gravedad

 V_p : Volumen de la partícula de aire

 ρ_p : Densidad de la partícula de aire

B. Fuerza Empuje

$$E = m_a \cdot g \tag{33}$$

Dónde:

E : Fuerza de Empuje

 $m_{\scriptscriptstyle a}$: Masa de aire desplazado por la partícula de aire

g : Aceleración de Gravedad

Expresada de otra forma, la expresión anterior será:

$$E = V_a \cdot \rho_a \cdot g \tag{34}$$

Donde:

 V_a : Volumen de aire desplazado por la partícula de aire

 ρ_a : Densidad del aire

C. Fuerza Roce para flujo laminar

$$R = \left(\frac{\rho_a \cdot v^2}{2}\right) A_p \cdot \frac{24}{\text{Re}} \tag{35}$$

Donde:

R : Fuerza de Roce

 ρ_a : Densidad del aire

v : Velocidad de la partícula

 A_n : Proyección del área de la partícula

Reemplazando la expresión para el número de Reynolds y área de la partícula obtenemos lo siguiente:

$$A_p = \frac{\pi \cdot D_p^2}{4}$$

$$R = \left(\frac{\rho_a \cdot v^2}{2}\right) \cdot \left(\frac{\pi \cdot D_p^2}{4}\right) \cdot \left(\frac{24 \cdot \mu_a}{D_p \cdot v \cdot \rho_a}\right)$$

Simplificando términos semejantes tenemos:

$$R = 3 \cdot \pi \cdot D_p \cdot v \cdot \mu_a$$

Reemplazando las formulas en el balance de fuerzas:

$$V_{p} \cdot \rho_{p} \cdot g = 3 \cdot \pi \cdot D_{p} \cdot v \cdot \mu_{a} + V_{p} \cdot \rho_{a} \cdot g$$

Considerando partículas esféricas, tenemos que el volumen será igual a:

$$V_p = \frac{1}{6}\pi \cdot D_p^3$$

Finalmente, de la ecuación de balance de fuerzas obtenemos:

$$\left(\frac{1}{6}\pi \cdot D_p^3\right) \cdot \rho_p \cdot g = 3 \cdot \pi \cdot D_p \cdot v \cdot \mu_a + \left(\frac{1}{6}\pi \cdot D_p^3\right) \cdot \rho_a \cdot g$$

Ordenando la ecuación anterior y despejando la velocidad como velocidad terminal, tenemos:

$$Vt = \frac{D_p^2 \cdot g \cdot (\rho_p - \rho_a)}{18 \cdot \mu} \tag{36}$$

Invirtiendo esta formula podemos dejar la expresión de cálculo del diámetro de partícula a colectar:

$$Dp^2 = \frac{Vt * 18 * \mu}{g * (\rho_p - \rho_a)}$$

Calcular el diámetro de partícula tiene por finalidad obtener la velocidad a la que entra el gas al colector de polvos. Como también en el caso inverso si es que tenemos la velocidad con la que entra el gas podemos obtener a que tamaño esta colectando el colector de polvos. Esto nos permite conocer el comportamiento que existe en los módulos de trabajo.

Para llevar a cabo el cálculo del diámetro de partícula y de velocidad del gas fue necesario previamente hacer un análisis de granulometría del concentrado utilizado en la planta de secado en la división. Además del cálculo de la densidad del polvo. Dichas pruebas fueron realizadas en el laboratorio de Metalurgia Extractiva de nuestra Escuela. (Desarrollo de estas en el anexo C).

4.9.1. Calculo Velocidad del Gas:

Para calcular la velocidad de entrada del gas a cada uno de los módulos del colector de polvos consideramos la ecuación de Bernoulli entre el punto de entrada del gas al colector y el punto en cada modulo.

Ec. de Bernoulli:

$$\frac{PA}{\rho} + \frac{VA^2}{2*gc} + Z1 * \frac{g}{gc} = hf + \frac{P1}{\rho} + \frac{V1^2}{2*gc} + Z1 * \frac{g}{gc}$$
 (37)

Considerando nula diferencia de alturas y pérdidas despreciables:

$$\frac{PA}{\rho} + \frac{VA^2}{2*gc} = \frac{P1}{\rho} + \frac{V1^2}{2*gc}$$
 (38)

Como V = Q/A

$$\frac{PA}{\rho} + \frac{(QA/AA)^2}{2 * gc} = \frac{P1}{\rho} + \frac{V1^2}{2 * gc}$$

Por lo tanto considerando PA, P1, ρ, QA, AA, A1 y gc conocidos,

$$V1 = \sqrt{\left(\frac{PA - P1}{\rho} + \frac{QA^2}{2*gc*AA^2}\right) * 2 * gc}$$
 (39)

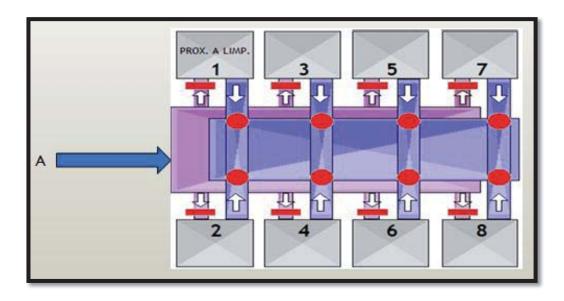


Figura 4.10 Bernoulli entre el punto de inicio a la entrada al Colector (A) y cada uno de los módulos (1 - 8)

De la información recopilada desde el balance de Masa y Energía y de los Manuales de operación obtenemos los datos de trabajo representados en la Tabla 4.10:

Tabla 4.10 Datos de Trabajo del Colector de Polvos. Ver ANEXO C.

	Datos		
	Símbolo	Valor	Unidades
Velocidad Gas	Va	BM	(m/s)
Área Ducto	Aa	1,7556	(m2)
Presión Ducto	Pa	-0,133	kpa
		-0,00131254	atm
	gc	1	(kg*m)/(N*s2)
_	g	9,8	m/s ²
Densidad			
Concentrado	ρ	0,02623564	(kg/m³)
Área Modulo	Ab	0,16	m ²

4.8.2. Análisis efecto de velocidad en las mangas.

Los módulos del colector cuentan con mangas de colección, aproximadamente 1580 mangas para cada modulo, a medida que estas mangas se encuentren operando de forma correcta se presume que la velocidad del colector se mantendrá de forma constante y con pocas alteraciones.

A medida que la velocidad de estos módulos comienza a disminuir se puede considerar que las mangas del colector están deterioradas y deben ser removidas por unas nuevas. De igual forma si la velocidad del gas es mayor en cada modulo se puede considerar que estos módulos poseen mangas en mejores condiciones operativas.

CAPÍTULO 5: RESULTADOS

5.- RESULTADOS

El programa de simulación quedara desarrollado con las condiciones iniciales del proceso, para definir cuales son las condiciones iniciales consideramos las condiciones promedio de trabajo de los equipos y para ello se hizo un análisis diario y mensual del comportamiento de cada uno de los parámetros en los últimos 5 años. Ver Anexo D.

Las condiciones iniciales de trabajo quedan expresadas en la Tabla N°5.1:

Tabla 5.1 Condiciones Iniciales de trabajo⁵

	Flujo	Unidades	T (°C)	P (Kpa)
F1 GAS NATURAL	944	(Nm³/hr)	20	230,46
F2 AIRE DE FLUIDIZACIÓN	100000	(Nm³/hr)	35	10,5
F3 AIRE COMBUSTION		(Nm³/hr)	40	15
F4 AIRE EXCESO		(Nm³/hr)	40	15
F5 AIRE DILUCION		(Nm³/hr)	35	11
F6 GAS COMBUSTION		(Nm³/hr)	350	10,5
F7 GAS FLUIDIZACION		(Nm³/hr)	270	10,5
F8 GAS DE FLUIDIZACION		(Nm³/hr)	170	10,5
F9 CONCENTRADO HUMEDO 10%	100	(Ton/hr)	30	
F10 GAS DE FLUIDIZACIÓN		(Nm³/hr)	65	-1,33
F11 CONCENTRADO HUMDO 0,1%		(Ton/hr)	65	
F12 CONCENTRADO SECO		(Ton/hr)	50	
F13 GAS DE SALIDA		(Nm3/hr)	50	-1,33

Para el caso de los concentrados los pesos moleculares quedan expresados en la Tabla N°5.2:

Tabla 5.2 Pesos Moleculares de los Concentrados

Concentrado	Formula	PM	Unidad
Bornita	Cu ₅ FeS ₄	501,817	(gr/mol)
Calcocina	Cu ₂ S	159,152	(gr/mol)
Calcopirita	CuFeS ₂	183,513	(gr/mol)
Covelina	CuS	95,606	(gr/mol)
Cu	Cu	63,546	(gr/mol)
Pirita	FeS ₂	119,967	(gr/mol)
Molibdenita	MoS ₂	160,06	(gr/mol)
Rutilo	TiO ₂	79,899	(gr/mol)
Esfalerita	ZnS	97,44	(gr/mol)
Ganga		172,536	(gr/mol)
Agua	H ₂ 0	18,015	(gr/mol)

PM Promedio:
$$PM_A * xA + PM_B * xB + PM_C * xC$$
 (40)

- > Peso Molecular Promedio Concentrado Húmedo al 10%: 191.3
- Peso Molecular Promedio Concentrado Húmedo al 0.1%: 209.2

En el caso de los calores específicos estos fueron calculados con la siguiente regresión variando con el cambio de temperatura.

$$Cp = A + B * 10^{-3} * T + C * 10^{5} * T^{-2} + D * 10^{-6} * T^{2}$$
 $(\frac{cal}{mol * K})$

Considerando la temperatura de trabajo inicial en la cámara de combustión de 350°C (630 K), los Calores Específicos obtenidos están expresados en la Tabla N°5.3.

Tabla 5.3 Resultados Calores Específicos en la cámara de combustión

	Α	B*10^3	C*10^-5	D*10^9	Ср
H ₂ 0	6,790	2,982	0,307	0,086	2869
CO ₂	7,006	9,533	-0,594	-3,533	3774
SO ₂	6,963	8,896	0,014	-0,690	3807
CH ₄	8,120	-3,722	0,000	16,776	2866
C ₂ H ₆	7,690	4,046	0,000	40,869	4808
C ₃ H ₈	-16,300	128,824	3,708	-95,201	11315
N-C ₄ H ₁₀	-16,300	139,887	5,200	-80,700	13685
N ₂	7,002	-0,375	-0,002	0,817	2421
O ₂	5,272	4,992	0,387	-1,962	2585
N-C ₅ H ₁₂	6,983	88,570	-1,892	-24,036	15320
C ₆ H ₁₄	6,016	107,056	0,000	-33,421	17679

Con todos los parámetros iniciales podemos obtener los resultados de los balances de cada equipo de trabajo y el balance global del sistema.

Ingresamos el flujo de gas: F1 = 944 (Nm3/h)

De la ecuación 1. Calculamos los moles del flujo 1 para $\,$ cada compuesto quedando expresados estos en la Tabla N° 5.4

Tabla 5.4 Moles de cada compuesto del Gas

	Flujo Gas Natural				
Compuesto	%	Nm3/hr	kg/hr	kmol/hr	
Combustible		944	697,813	42,116	
N ₂	0,0144	0,135	0,169	0,006	
CH ₄	96,606	911,960	652,738	40,686	
C ₂ H ₆	3,0779	29,055	38,979	1,296	
C ₃ H ₈	0,2527	2,385	4,693	0,106	
ISO-C ₄ H ₁₀	0,0267	0,252	0,653	0,011	
N-C ₄ H ₁₀	0,0177	0,167	0,433	0,007	
ISO-C ₅ H ₁₂	0,0026	0,024	0,079	0,001	
N-C ₅ H ₁₂	0,0012	0,011	0,036	0,0006	
C ₆ H ₁₄	0,0008	0,007	0,029	0,0003	

Luego obtenemos por estequiometria los moles aire de combustión. Expresados en la Tabla N° 5.5.

Tabla 5.5 Moles de Aire de Combustión

Aire Combustión	%	Nm³/hr	kg/hr	kmol/hr
		9237,444	11890,393	412,288
N ₂	79	7296,790	9119,816	325,707
O ₂	21	1940,654	2770,577	86,580

Por consecuencia el aire en exceso queda expresado en la Tabla Nº 5.6

Tabla 5.6 Moles de Aire en Exceso

Aire en Exceso	%	Nm3/hr	kg/hr	kmol/hr
		5149,115	6627,837	229,817
N ₂	79	4067,801	5084,098	181,575
O ₂	21	1081,314	1543,739	48,242

Luego calculamos el gas de combustión estequiométricamente quedando expresado en la Tabla N°5.7.

Tabla 5.7 Flujo de Gas de Combustión

Gas de Combustión					
	kmol/hr	kg/hr	Nm3/hr		
CO ₂	43,684	1922,516	979,112		
H ₂ 0	85,794	1545,576	1923,076		
N ₂	507,283	14203,915	11364,591		
O ₂	48,242	1543,7395	1081,314		

5.1.- Calculo ∆H de formación

Calculamos el AH de formación 298° para cada reacción:

1)
$$CH_4(g) + 2O_2(g) = CO_2(g) + 2H_2O(g)$$

 $\Delta H \ reacci\'on = (Hf \ del \ H20 + Hf \ del \ CO2)-(Hf \ del \ CH4)$

 $\Delta H \ reacci\'on = \{[2*-0.57798+ (-0.9405)]-(-0.1783)\}$

 $\Delta H \ reacci\'on = (-2,096+0,1783)$

 Δ H reacción = -1,918 (Mcal/mol)

2) $2C_2H_6(g) + 7O_2(g) = 4CO_2(g) + 6H_2O(g)$

 $\Delta H \ reacción = (Hf \ del \ H20 + Hf \ del \ CO2)-(Hf \ del \ C2H6)$

 $\Delta H \ reacci\'on = \{[6*-0.57798+ (4*-0.9405)]-(2*-0.20240)\}$

 $\Delta H \ reacci\'on = (-7,23+0,40480)$

 $\Delta H \ reacci\'on = -6.825 \ (Mcal/mol)$

3) $C_3H_8(g) + 5O_2(g) = 3CO_2(g) + 4H_2O(g)$

 $\Delta H \ reacci\'on = (Hf \ del \ H20 + Hf \ del \ CO2)-(Hf \ del \ C3H8)$

 $\Delta H \; reacci\'on = \{ [4*-0.57798 + (3*-0.9405)] - (-0.24856) \}$

 $\Delta H \ reacci\'on = (-5,133+0,24856)$

 $\Delta H \ reacci\'on = -4,885 \ (Mcal/mol)$

4) $2 \text{ N-C}_4\text{H}_{10}(g) + 13\text{O}_2(g) = 8\text{CO}_2(g) + 10\text{H}_2\text{O}(g)$

 $\Delta H \ reacci\'on = (Hf \ del \ H20 + Hf \ del \ CO2)-(Hf \ del \ N-C4H10)$

 $\Delta H \; reacci\'on = \{ [10^* \text{--}0.57798 + \; (8^* \text{--}0.9405)] \text{--} (2^* \text{--}0.30239) \}$

 $\Delta H \ reacci\'on = (-13,304+0,60478)$

 $\Delta H \ reacci\'on = -12,699 \ (Mcal/mol)$

5) $2 \text{ ISO-C}_4H_{10}(g) + 13O_2(g) = 8CO_2(g) + 10H_2O(g)$

 $\Delta H \ reacci\'on = (Hf \ del \ H20 + Hf \ del \ CO2)-(Hf \ del \ ISO-C4H10)$

 $\Delta H \ reacci\'on = \{[10^*-0.57798 + (8^*-0.9405)] - (2^*-0.30214)\}$

 $\Delta H \ reacci\'on = (-13,304+0,60428)$

 $\Delta H \ reacci\'on = -12,7 \ (Mcal/mol)$

6) N-C₅H₁₂(g) + 8O₂(g) = 5CO₂(g) + 6H₂O(g)

 $\Delta H \ reacci\'on = (Hf \ del \ H20 + Hf \ del \ CO2)-(Hf \ del \ N-C5H12)$

 $\Delta H \ reacci\'on = \{[6*-0.57798+ (5*-0.9405)]-(-0.40172)\}$

 $\Delta H \ reacci\'on = (-8,170+0,40172)$

 $\Delta H \ reacci\'on = -7,769 \ (Mcal/mol)$

7) $ISO-C_5H_{12}(g) + 8O_2(g) = 5CO_2(g) + 6H_2O(g)$

 $\Delta H \ reacci\'on =$ (Hf del H20 + Hf del CO2)-(Hf del ISO-C5H12)

 $\Delta H \; reacci\'on = \{ [6^*\text{-}0,57798 + (5^*\text{-}0,9405)] - (-0,36592) \}$

 $\Delta H \ reacci\'on = (-8,170+0,36592)$

 $\Delta H \ reacci\'on = -7,804 \ (Mcal/mol)$

8) $2C_6H_{14}(g) + 19O_2(g) = 12CO_2(g) + 14H_2O(g)$

 $\Delta H \ reacci\'on = (Hf \ del \ H20 + Hf \ del \ CO2)-(Hf \ del \ N-C5H12)$

 $\Delta H \; reacci\'on = \{ [14*-0.57798 + \; (12*-0.9405)] - (-0.44013) \}$

 $\Delta H \ reacci\'on = (-19,378+0,88026)$

 $\Delta H \ reacci\'on = -18,497 \ (Mcal/mol)$

Calculamos para cada ecuación el ΔC p considerando la temperatura de trabajo 350°C con base de entalpia de 0°C:

- 1. [2*2869,86 + 3774,875-(2866,896+2*2585,347)] = 1477,05 (cal/mol)
- 2. [6*2869,86 + 4*3774,875-(2*4808,329+7*2585,347)] = 4604,573 (cal/mol)
- 3. [4*2869,86 + 3*3774,875-(11315,158+5*2585,347)] = -1437,828(cal/mol)
- 4. [10*2869,86 + 8*3774,875-(2*13685,96+13*2585,347)] = -2083,831 (cal/mol)
- 5. [10*2869,86 + 8*3774,875-(2*11212,23+13*2585,347)] = 2863,629 (cal/mol)
- 6. [6*2869,86 + 5*3774,875-(15320,317+8*2585,347)] = 90,317 (cal/mol)
- 7. [6*2869,86 + 5*3774,875-(14852,221+8*2585,347)] = 558,539 (cal/mol)
- 8. [14*2869,86 + 12*3774,875-(2*17679,721+19*2585,347)] = 995,505 (cal/mol)

De la ecuación 10 calculamos el ΔH reacción quedando expresado en la Tabla 5.8.

Tabla 5.8 Calculo ΔH reacción

Reacción	∆ H 298	∆Ср	Δ H	mol/h	Mcal/h
	(Mcal/mol)	(cal/mol)	(Mcal/mol)		
1	-1,918	1477,050	-1,917	40,6860	-77977,188
2	-6,825	4604,573	-6,820	1,2960	-8841,551
3	-4,885	-1437,828	-4,886	0,1060	-520,064
4	-12,699	-2083,831	-12,701	0,0075	-94,674
5	-12,700	2863,629	-12,697	0,0110	-142,779
6	-7,769	90,317	-7,769	0,0005	-3,926
7	-7,804	558,539	-7,803	0,0010	-8,194
8	-18,497	995,505	-18,496	0,0003	-6,231

Considerando los porcentajes de cada reacción calculo el ΔH de reacción total:

 Σ %compuesto * Mcal/h = Δ H total de reacción

 ΔH total de reacción = -75610 (Mcal/h)

5.2.- Resumen Resultados Balances de Masa y Energía:

Tabla 5.9 Resumen Resultados Balance de Masa

Flujo 1 GAS NATURAL	944	(Nm³/hr)
Flujo 2 AIRE DE FLUIDIZACIÓN	100000,00	(Nm³/hr)
Flujo 4 AIRE EXCESO	4262,56	(Nm³/hr)
Flujo 3 AIRE COMBUSTION	9237,45	(Nm³/hr)
Flujo 6 GAS COMBUSTION	14461,53	(Nm³/hr)
Flujo 5 AIRE DILUCION	86500,00	(Nm³/hr)
Flujo 7 GAS FLUIDIZACION	100961,53	(Nm³/hr)
Flujo 8 GAS DE FLUIDIZACION	100961,53	(Nm³/hr)
Flujo 9 CONCENTRADO HUMEDO 10%	100	(Ton/hr)
Flujo 10 GAS DE FLUIDIZACIÓN	102549,88	(Nm³/hr)
Flujo 11 CONCENTRADO HUMDO 0,2%	117,23	(Ton/hr)
Flujo 12 CONCENTRADO SECO	117,23	(Ton/hr)
Flujo 13 GAS DE SALIDA	102549,88	(Nm³/hr)

Tabla 5.10 Resumen Resultados Balances de Energía

Flujo	$\Delta T(K)$	n(mol)	Cp (Mcal/mol*K)	H(Mcal/hr)
F 1	293	89361	0.000171	298.18
F 2	308	410285	0.000244	1415.71
F 3	313	24584	0.000278	566.48
F 4	313	53277	0.000278	301.87
F 5	308	371797	0.000244	2750.53
F 6	623	29333	0.002585	26456.61
F 7	543	234959	0.001914	109380
F 8	443	287998	0.001198	52855.35
F 9	303	48564	0.000678	10643
F 10	338	679681	0.000461	10917
F 11	338	560394	0.001539	47799
F 12	323	560394	0.001539	36768
F 13	323	50819	0.0003563	6779

5.3 Calor de Vaporización:

$$\tau = 2257 \frac{kJ}{kg} = 539 \frac{kcal}{kg} = 0.539 \frac{Mcal}{kg}$$
 a 100°C

Por lo tanto de la Ec (27):

$$Q_{vap} = 0.539 * 13000$$

$$Q_{vap} = 5390 \quad (\frac{MCal}{hr})$$

5.4 Análisis Colector de Polvos

Con los datos obtenidos de los manuales del colector de polvos y la velocidad obtenida desde el balance de masa calculamos un Bernoulli desde el punto de entrada al colector (Sector A) hasta cada uno de los módulos (1 al 8), es decir, A-1, A2,..., A8.

Con ello calculamos la velocidad con que entra el gas en cada modulo lo que queda expresado en la Tabla 5.11:

Tabla 5.11 Velocidades de Gas Obtenidas por Bernoulli

	Presión (Kpa)	Presión (atm)	Velocidad del Gas según balance de Masa (m/s)	Velocidad del Gas según granulometría (m/s)
Modulo 1	-3.28	-0.0324	18.6635	18.4293
Modulo 2	-1.6	-0.016	18.6296	18.3950
Modulo 3	-1.68	-0.017	18.6312	18.3966
Modulo 4	-2.13	-0.021	18.6403	18.4058
Modulo 5	-1.6	-0.016	18.6296	18.3950
Modulo 6	-2.9	-0.029	18.6558	18.4215
Modulo 7	-1.6	-0.016	18.6296	18.3950
Modulo 8	-1.63	-0.016	18.6302	18.3956

A medida que mayor es la presión en el modulo menor es la velocidad del gas que ingresa al modulo.

Al mismo tiempo mientras mayor es la velocidad del gas que ingresa a cada modulo del colector mayor es el trabajo de colección en estos. Con esto podemos analizar que módulos tienen mayor trabajo y por consiguiente mayor desgaste.

5.5 Resultados Granulométricos (Ver Anexo D)

La velocidad del gas que entra al colector de polvos se pueda calcular de dos formas diferentes, directamente del balance de masa global al secador o mediante la ecuación de velocidad terminal.

Utilizando la Ec (36) para el caculo de la velocidad terminal del gas obtenemos los diferentes diámetros de partícula que se pueden colectar a dicha velocidad. Quedando expresados en la tabla 5.12.

Para los cálculos se considera para la Viscosidad del Aire y la Gravedad Especifica los siguientes valores:

$$\mu = 1.76 * 10^{-5} \qquad \left(\frac{kg}{m * s}\right)$$
$$g = 9.8 \quad \left(\frac{m}{s^2}\right)$$

Tabla 5.12 Calculo del Diámetro de Colección

Velocidad Terminal (m/s)	Densidad Aire (kg/m³)	Densidad Polvo (kg/m3)	Diámetro Partícula (m)	Diámetro Partícula (Micrón)
17,923	0,026	5144	0,000335	335,615
15,822	0,026	5144	0,000315	315,330
16,613	0,026	5144	0,000323	323,117
12,657	0,026	5144	0,000282	282,040

Las velocidades terminales se obtienen conociendo el diámetro de la partícula a la cual esta colectando el colector de polvos. Según varía este diámetro varía la velocidad a la cual se colecta. También es posible invertir los papeles y con la misma ecuación despejar el diámetro de partícula en función de la velocidad del gas. Es decir según la velocidad a la cual se colecte podemos saber el tamaño al cual colecta.

5.6 Simulador

El modelo de simulación para un secador de Lecho Fluidizado, ha sido desarrollado íntegramente utilizando Excel y su herramienta Solver, lenguaje de programación incorporado en todas las aplicaciones de MS Office.

El objetivo de este modelo de simulación, es proporcionar las herramientas matemáticas necesarias, para realizar un balance de masa y energía de un Secador de Lecho Fluidizado.

Elegí a Microsoft Excel, como la herramienta de desarrollo aprovechando que un porcentaje muy alto de profesionales hacen uso de esta aplicación, por lo cual ya están familiarizados con la interfaz y las herramientas disponibles.

Con el modelo de simulación, es posible determinar los requerimientos de insumos y productos para la correcta operación del equipo. Entre ellos se puede mencionar:

- Requerimientos de Combustible (Gas Natural).
- Requerimiento de Aire de Combustión.
- Requerimiento Aire de Fluidización.
- Temperaturas en Plenum, Lecho, etc.
- Presiones de trabajo.
- Cantidad de Concentrado Seco

- > Flujo y Composición de los Gases.
- Cantidad de polvo contenido en los Gases

5.6.1.- Características del Modelo de Simulación

La interfaz gráfica del Modelo de Simulación del Secador de Lecho Fluidizado es muy sencilla y auto-explicatica.

La pantalla de inicio consta de todos los datos de trabajo.

En primer lugar en color "Rojo" se especifican los datos que debe introducir el operador.

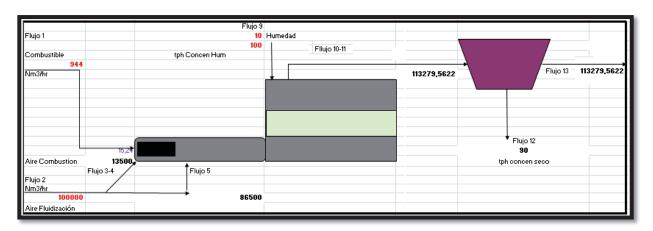


Figura 5.1 Interfaz Inicial del Modelo de Simulación de Lecho Fluidizado

Además en la primera pestaña de Excel también van detalladas las propiedades de trabajo, Calores de Formación, Densidades, Capacidades Caloríficas del Gas como del Concentrado. Todos estos datos están en cuadros de color "Celeste".

Las reacciones de formación también están desarrolladas en la primera pestaña en cuadros de color "Lila".

Al final de la pestaña están desarrollados los Balances de Masa y Energía en un cuadro de Resumen color "Amarillo".

Las siguientes pestañas entregan los resultados de los balances tanto de Masa y Energía para cada equipo y también el resultado del balance global.

Dentro del Simulador en las siguientes pestañas cada Balance queda representado como en la Figura 5.2.

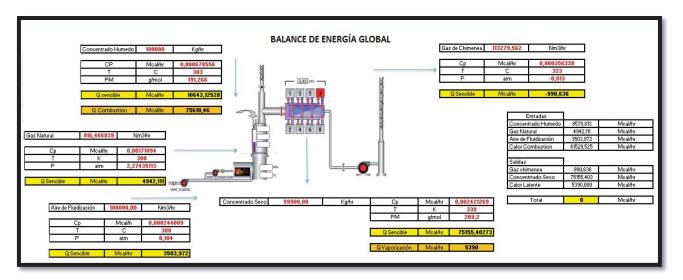


Figura 5.2 Balance de Energía Global dentro del simulador

De la forma que esta desarrollado el simulador el operador al ingresar los datos solicitados al inicio obtendrá de manera directa el resultado de los Balances de Masa y Energía como también el comportamiento Fluido dinámico del colector de polvos.

Sin embargo si el operador requiere invertir la operación y conocer los parámetros solicitados al inicio del programa teniendo en conocimiento los valores de las corrientes de salida se utilizará la herramienta "Solver" del Excel.

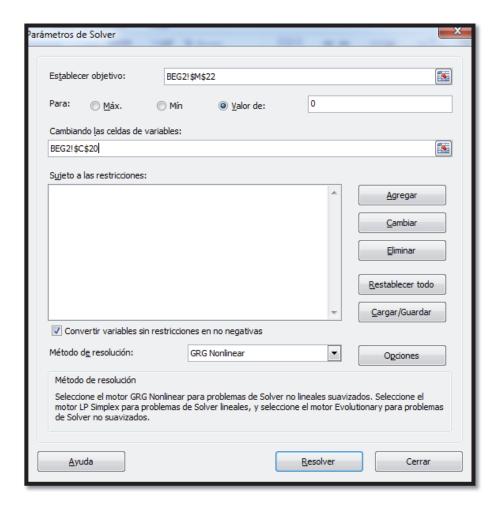


Figura 5.3 Herramienta "Solver"

Esta herramienta además nos permitirá analizar que cambios son necesarios de realizar al momento de alterar un valor.

Por ejemplo:

Si mis datos de funcionamiento de la planta son:

- ➤ Flujo de Gas: 944 (*Nm*3/*hr*)
- ➤ Flujo de Aire de Fluidización (Nm3/hr)
- Flujo de concentrado de 100 (Ton/hr) al 10% Humedad.

Y quiero conocer que Flujo de Gas es necesario si aumento el Flujo de Concentrado a 130 (Ton/hr) con la ayuda de la herramienta "solver" podré obtener dicha información.

Queda expresada en la Figura 5.4.

Por lo tanto Gracias a la herramienta Solver podemos obtener el nuevo Flujo de Gas Natural necesario para Secar 130 (Ton/hr) de Concentrado Seco al 10% y de esta misma forma con el resto de Parámetros.

Como queda Expresado en la Figura 5.4 el Gas Natural necesario para Calcular el nuevo Flujo de Concentrado es de $1012.82 \ (Nm3/hr)$.

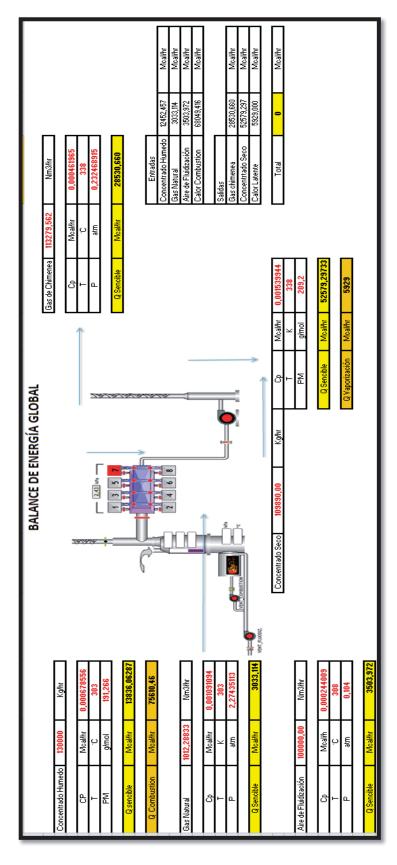


Figura 5.4 Calculo Flujo Necesario de Gas Natural para nuevo Flujo de Concentrado

CAPITULO 6: ANÁLISIS AL PROCESO Y VALIDACIONES

6. ANALISIS AL PROCESO Y VALIDACIONES

Terminado el simulador de las plantas de secado es importante conocer y comprobar su funcionamiento y para ello se realizará la validación del simulador.

Esta validación tiene por finalidad comparar los resultados que entrega el simulador con las condiciones de operación de diseño expresadas en la Tabla 6.1 con diferentes cambios en algunos de los parámetros de trabajo así como también comparar resultados con datos ya conocidos y analizar el margen de error existente.

Ingresando como antecedentes los valores ya conocidos que se pueden encontrar en el Anexo D de este informe podremos hacer un análisis importante al proceso.

Tabla 6.1 Valores de operación de diseño.

	Flujo	Unidades	T (°C)	P (Atm)
F1 GAS NATURAL	900	(Nm³/hr)	20	2,274
F2 AIRE DE FLUIDIZACIÓN	90000	(Nm³/hr)	35	0,104
F3 AIRE COMBUSTION		(Nm³/hr)	40	0,148
F4 AIRE EXCESO		(Nm³/hr)	40	0,148
F5 AIRE DILUCION		(Nm³/hr)	35	0,109
F6 GAS COMBUSTION		(Nm³/hr)	350	0,104
F7 GAS FLUIDIZACION		(Nm³/hr)	270	0,104
F8 GAS DE FLUIDIZACION		(Nm³/hr)	170	0,104
F9 CONCENTRADO HUMEDO 10%	100	(Ton/hr)	30	
F10 GAS DE FLUIDIZACIÓN		(Nm³/hr)	65	
F11 CONCENTRADO HUMDO 0,1%		(Ton/hr)	65	
F12 CONCENTRADO SECO		(Ton/hr)	50	
F13 GAS DE SALIDA		(Nm³/hr)	50	

Con las condiciones de diseño de operación, expresadas en la Tabla 6.1 el Balance Global que entrega el Simulador queda demostrado en la Figura 6.1.

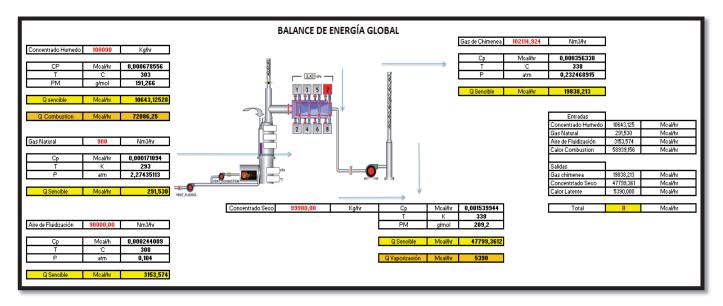


Figura 6.1 Balance de Masa y Energía Global

Ingresaremos en el simulador valores con los cuales ya se ha trabajado en las plantas de secado en los últimos 5 años. Para ello promediaremos los valores que estén dentro del rango de trabajo recientemente por año y lo compararemos con los valores resultantes del simulador.

6.1. Gas Natural

Primero se analizará el comportamiento existente dentro del simulador al variar el Flujo de Gas Natural. El rango de operación de este flujo varía entre los 900 y los $1100 \left(\frac{Nm3}{hr}\right)$.

Se analizaron los valores reales obtenidos en los últimos 5 años y se promediaron quedando los resultados expresados en la Tabla 6.2. Revisar estos valores en el Anexo D

Tabla 6.2 Valores Reales Promedio

	Gas Natural
Año	(Nm³/hr)
2008	1006
2009	985
2010	1062
2011	954
2012	947
2013	954

En primer lugar vamos a la pestaña de ingreso de datos:

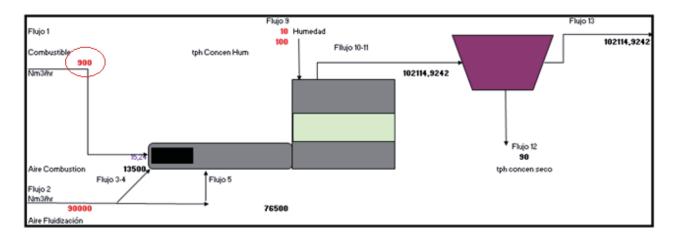


Figura 6.2 Pestaña Ingreso de datos

Ingreso los valores a analizar, en este caso los promedios obtenidos en la Tabla 6.2.

Utilizando la herramienta "solver" analizaré bajo las condiciones de la tabla 6.2 que cantidad de aire de fluidización será necesario ingresar para cada corriente de Gas Natural.

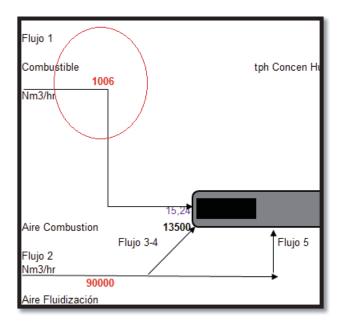


Figura 6.3 Primer Flujo de Gas Natural a analizar

Al variar el flujo de entrada de Gas Natural por consiguiente nos variará el Balance de Energía. Para ello utilizaremos las herramientas "solver" que nos entregará el valor necesario de Aire de Fluidización para Balancear el sistema. Esto queda representado en la Figura 6.4.

Bajo las nuevas condiciones ingresadas al simulador los valores proporcionados de aire de fluidización necesarios para cada flujo de Gas Natural quedan expresados en la Tabla 6.3.

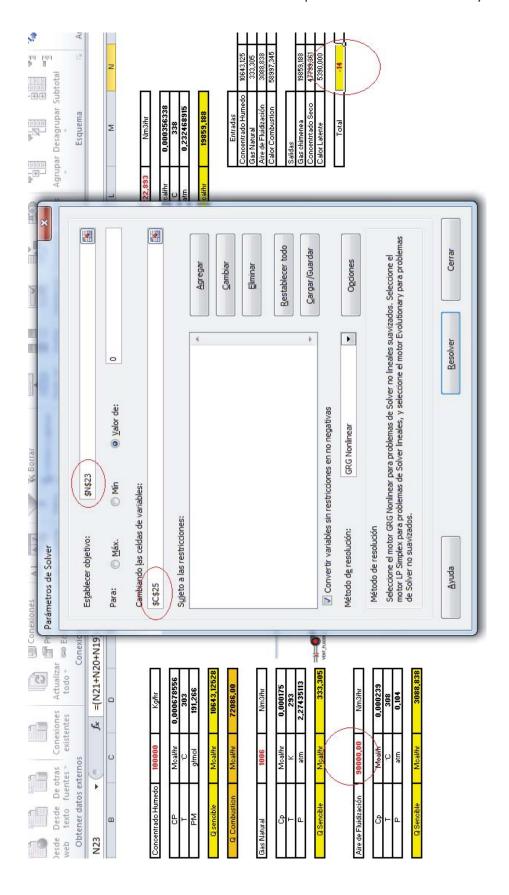


Figura 6.4 Cálculo Aire de Fluidización nuevo requerido.

Tabla 6.3 Aire de Fluidización Obtenido con el Simulador

	Gas Natural	Aire de Fluidización
Año	(Nm³/hr)	(Nm³/hr)
2008	1006	89590.21
2009	985	89671.86
2010	1062	89372.48
2011	954	89792.38
2012	947	89819.60
2013	954	89792.38

Del Anexo D obtenemos los valores promedio en los mismos periodos de aire de fluidización y los comparamos con los obtenidos por el simulador.

Tabla 6.4 Aire de Fluidización Obtenido Anexo D

	Gas Natural	Aire de Fluidización
Año	(Nm3/hr)	(Nm³/hr)
2008	1006	92727
2009	985	85234
2010	1062	84865
2011	954	88576
2012	947	90552
2013	954	93077

Tabla 6.5 Comparación Datos Reales con Datos entregados por el Simulador

		Aire de	Aire de	Diferencia
		Fluidización	Fluidización	
	Gas Natural	Simulador	Anexo	
Año	(Nm³/hr)	(Nm3/hr)	(Nm³/hr)	
2008	1006	89590	92727	-3137
2009	985	89671	85234	4437
2010	1062	89372	84865	4507
2011	954	89792	88576	1216
2012	947	89819	90552	-733
2013	954	89792	93077	-3085

En la tabla 6.5 podemos observar la diferencia que se produce entre los datos reales de trabajo y los entregados por el simulador, esta diferencia en porcentaje la obtenemos en la tabla 6.6.

Tabla 6.6 Porcentaje de error en el calculo entre el simulador y los datos reales.

Año	Gas	Aire Fluidización	Aire Fluidización	Diferencia	Porcentaje
	Natural	Simulado	Real		de error
	(Nm³/hr)	(Nm³/hr)			
2008	1006	89590	92727	-3137	-3.5
2009	985	89671	85234	4437	4.9
2010	1062	89372	84865	4507	5.0
2011	954	89792	88576	1216	1.3
2012	947	89819	90552	-733	-0.8
2013	954	89792	93077	-3085	-3.4
Promedio	985	89672	89171	501	0.55

El porcentaje de error entre el simulador y las condiciones reales no presentan una diferencia importante entre los rangos de los últimos 5 años. Sin embargo esta diferencia al promediar los rangos promedios se reducen a menos del 1%.

Este análisis realizado al flujo de Gas Natural con el Flujo de Aire de Fluidización se puede llevar a cabo no solo para flujos de operación sino que también para diferentes parámetros como es el caso de las variables temperatura, presión, etc.

En la tabla 6.7 representaremos el comportamiento de los flujos de Gas Natural ante cambios de temperatura en el Aire de Fluidización.

Tabla 6.7 Variación del Flujo de Gas ante cambios de Temperatura en el Aire de Fluidización.

Temperatura Aire	Flujo de Gas Natural
Fluidización (K)	(Nm3/hr)
307	1166
308	900
309	695

Tabla 6.8 Variación del Flujo de Gas ante cambios de Temperatura en el Flujo de Gas Natural.

Temperatura Gas Natural	Flujo de Gas Natural
(K)	(Nm3/hr)
288	1181
293	900
298	733

En base a las tablas 6.7 y 6.8 podemos concluir que es necesario mantener la temperatura de los flujos de Aire de Fluidización y de Gas Natural constantes para no provocar ningún tipo de alteración en el Balance del sistema.

6.2. Aire de Fluidización

Junto al Gas Natural y al Concentrado Húmedo a secar son las corrientes que es necesario que el operador ingrese en el simulador, es por ello su vital importancia. El flujo de Aire de Fluidización divide su corriente en 2; la corriente de aire que ingresa al proceso de combustión y la corriente de aire que ingresa al sistema como transporte del Gas Secador.

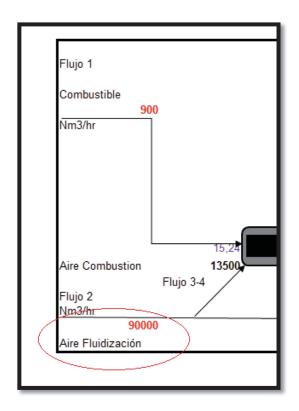


Figura 6.5 Flujo de Aire a analizar

Ahora veremos como varía el Flujo de Aire de Fluidización ante diferentes cambios en los parámetros trabajados. El flujo de Aire de Fluidización debe variar entre los 85000 y los 95000 $\binom{Nm3}{hr}$).

Analizaremos el comportamiento del Flujo de Aire de Fluidización variando la temperatura de ingreso de esta al sistema.

Tabla 6.9 Comparación Datos Reales con datos entregados en el Simulador

Año	Aire Fluidización	Temperatura	Temperatura	Diferencia
	(Nm3/hr)	Simulada (K)	Real (K)	
2008	92727	293	288	5
2009	85234	278	285	7
2010	84865	277	284	7
2011	88576	285	286	1
2012	90552	289	285	4
2013	93077	294	288	6

En la tabla 6.9 podemos observar la diferencia que se produce entre los datos reales de trabajo y los entregados por el simulador, esta diferencia en porcentaje la obtenemos en la tabla 6.10.

Tabla 6.10 Porcentaje de error al calcular la diferencia entre datos reales y simulados

Año	Aire	Temperatura	Temperatura	Diferencia	Porcentaje
	Fluidización	Simulada	Real		
	(Nm3/hr)	(K)	(K)		
2008	92727	293	288	5	1.7
2009	85234	278	285	7	2.5
2010	84865	277	284	7	2.5
2011	88576	285	286	1	0.3
2012	90552	289	285	4	1.3
2013	93077	294	288	6	2.0
Promedio	89171	286	286	0	0%

El porcentaje de error entre el simulador y las condiciones reales no presentan una diferencia importante entre los rangos de los últimos 5 años siendo la mayor la ocurrida en los años 2009 y 2010 cercana al 2,5 %.

Sin embargo esta diferencia al promediar los rangos promedios queda en 0 por lo que el simulador cumple con las expectativas del operador.

El procedimiento es el mismo para cada variable de proceso en el simulador.

6.3. Flujo de Concentrado

Ahora analizaremos que sucede si queremos alterar la cantidad de concentrado a secar. Este flujo de concentrado varía entre las 90 y las 110 toneladas. En la tabla 6.11 podemos observar la variación que ocurre entre los valores simulados y los valores reales ante diferentes alteraciones en el flujo de concentrado húmedo que ingresa al secador.

Tabla 6.11 Comparación datos reales con datos simulados ante variaciones en el concentrado.

Flujo de Concentrado Húmedo al 10% (Ton/hr)	Temperatura de Aire de Fluidización (K)	Temperatura Concentrado Seco (K)	Temperatura Gas de Salida (K)
92	252	343	353
95	265	341	347
98	278	339	341
100	288	338	338
102	298	336	334
105	315	335	329
108	334	333	324

Podemos ver que con la ayuda del programa sabremos que valores de temperatura para cada caso necesitamos para que el sistema se mantenga estable. El porcentaje de error expresado entre la diferencia de temperaturas reales y simuladas ante cambios en el concentrado húmedo que ingresa al secador lo podemos ver reflejado en la Tabla 6.12.

Tabla 6.12 Porcentaje de error al calcular la diferencia entre datos reales y simulados de Temperatura de Aire de Fluidización

Flujo de Concentrado Húmedo al 10% (Ton/hr)	Temperatura de Aire de Fluidización Simulada (K)	Temperatura Aire de Fluidización Real (K)	Diferencia	%
92	252	284	32	11.26
95	265	287	22	7.60
98	278	288	10	3.47
100	288	290	2	0.60
102	298	297	1	0.30
105	315	304	11	3.60
108	334	315	19	6.03

Para el caso de la Temperatura de Fluidización Simulada los valores tienen un margen de error superior en muchos casos al 5% que se puede considerar un alto % de error. Sin embargo esto permite apreciar que a medida que aumentamos el flujo de concentrado a secar es necesario aumentar la cantidad de Aire de Fluidización. Para que el sistema quede balanceado es necesario cambiar más de una variable para que estas se encuentren presentes en el rango de trabajo.

Cuando el sistema arroja un resultado que se sale del rango óptimo de operación una alternativa es cambiar más de una variable de operación. Es así como en el caso de la Temperatura de aire de Fluidización que arroja el simulador para rangos de Flujo de concentrado entre 92 a 95 toneladas por hora expresada en la Tabla 6.12. En estos casos donde la temperatura que el simulador arroja no esta en el

margen de los parámetros de trabajo se hace necesario buscar otro parámetro para mantener balanceada la simulación.

Tabla 6.13 Porcentaje de error al Calcular la diferencia entre datos reales y simulados de Temperatura de Concentrado

Flujo de Concentrado Húmedo al 10% (Ton/hr)	Temperatura Concentrado Seco Simulada (K)	Temperatura Concentrado Seco Real (K)	Diferencia	%
92	343	338	5	1.40
95	341	338	3	0.90
98	339	337	2	0.59
100	338	336	2	0.59
102	336	336	0	0.00
105	335	335	0	0.00
108	333	335	2	0.59

En el caso de la Temperatura del Concentrado la diferencia entre lo que entrega el Simulador y el valor real prácticamente es el mismo. A medida que queramos secar más cantidad de concentrado húmedo es necesario que disminuya la Temperatura a la que sale el concentrado seco.

Como podemos observar el simulador entrega resultados muy similares a los valores reales trabajados. Es por ello que su utilidad es de gran importancia para la Unidad de Preparación Carga de la Fundición Caletones.

Otro factor importante es que el simulador es capaz de predecir el comportamiento que tienen que tener las variables para que el sistema se mantenga estable.

Es decir si yo quiero alterar el Flujo de Gas Natural, ya sea para aumentarlo o disminuirlo, el simulador mediante la herramienta "solver" me entrega la información de como debo variar las el resto de los parámetros para que el sistema mantenga su estabilidad.

6.4. Análisis variables más influyentes en la operación.

Una característica importante del simulador es que puede entregar un análisis al trabajo que desarrolla cada variable de operación.

Para ello se hizo un análisis para cada variable.

Flujo Concentrado: Si aumentamos o disminuimos el flujo de concentrado a trabajar se hace necesario conocer como deben alterarse el resto de los parámetros para que el sistema siga siendo estable. En el caso del Flujo de Concentrado el comportamiento lo podemos observar en la Tabla 6.14.

Tabla 6.14 Comportamiento de las variables del proceso ante el aumento del Flujo de Concentrado.

Aumentando el Flujo de Concentrado al Secador	Comportamiento
Flujo de Gas Natural	Aumentar
Temperatura del Gas Natural	Aumentar
Presión Gas Natural	Aumentar
Flujo Aire de Fluidización	Aumentar
Temperatura Aire de Fluidización	Aumentar
Presión Aire de Fluidización	Aumentar
Flujo Gas de Chimenea	Disminuir
Temperatura del Gas der Chimenea	Disminuir
Presión Gas de Chimenea	Disminuir
Temperatura Concentrado al 0.02% Humedad	Disminuir
Presión Concentrado al 0.02% Humedad	Disminuir
Temperatura Concentrado al 10% Humedad	Aumentar
Presión Concentrado al 10% Humedad	Aumentar

En el caso de disminuir el Flujo de Concentrado que se quiere secar las variables tendrán un comportamiento inverso.

Flujo de Gas Natural: de igual forma que con el flujo de concentrado al variar el flujo de combustible el comportamiento que deban tener las diferentes variables puede ser entregado en forma directa por el simulador. El comportamiento de las diferentes variables con un aumento en el flujo de Gas lo podemos observar en la Tabla 6.15

Tabla 6.15 Comportamiento de las variables del proceso ante el aumento del Flujo de Combustible.

Aumentando el Flujo de Gas Natural	Comportamiento
Flujo de Concentrado al 10% Humedad	Aumentar
Temperatura Concentrado al 10% Humedad	Aumentar
Presión Concentrado al 10% Humedad	Aumentar
Flujo Aire de Fluidización	Aumentar
Temperatura Aire de Fluidización	Aumentar
Presión Aire de Fluidización	Aumentar
Flujo Gas de Chimenea	Disminuir
Temperatura del Gas der Chimenea	Disminuir
Presión Gas de Chimenea	Disminuir
Temperatura Concentrado al 0.02% Humedad	Disminuir
Presión Concentrado al 0.02% Humedad	Disminuir
Temperatura Flujo de Gas Natural	Aumentar
Presión Flujo de Gas Natural	Aumentar

De igual forma si se busca disminuir el flujo de Gas Natural el comportamiento será inverso.

Dentro de las variables más influyentes en la operación están el flujo de combustible y el flujo de concentrado a secar.

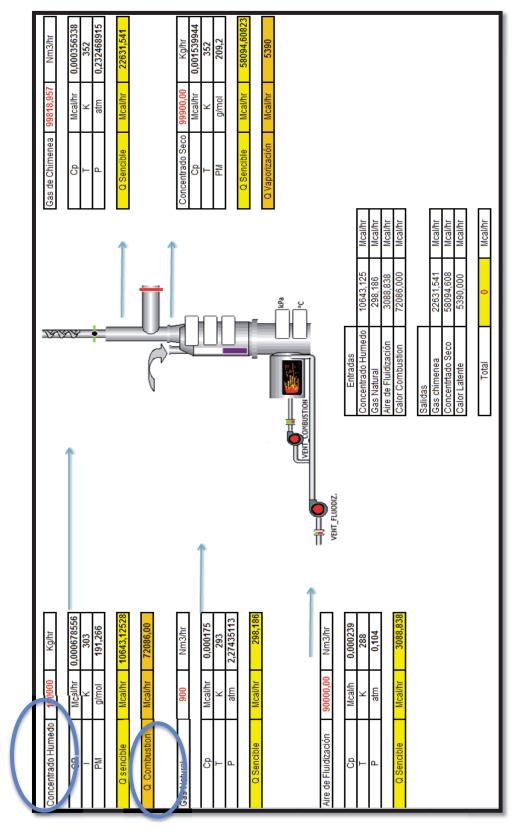


Figura 6.6 Variables más Influyentes en la operación

CAPITULO 7: CONCUSIONES Y RECOMENDACIONES

7.- Conclusiones y Recomendaciones

Con los balances de masa y energía e implementado el simulador programado en Excel, quedan simuladas las Plantas de Secado de la Fundición Caletones, CODELCO-Chile, la información de trabajo la obtuvimos de los análisis del comportamiento de los parámetros de los últimos 5 años y del los manuales de trabajo.

El simulador es de fácil acceso pudiendo hacer uso de este cualquier operario de la Fundición. Es de suma importancia considerar el comportamiento de estos parámetros en los últimos años para no salirse del rango óptimo de trabajo.

La Fundición quedo con una herramienta de gran utilidad que le permitirá identificar espacios de mejora en la operación, predecir performance operacional ante un cambio o alteración por ejemplo el Flujo de Combustible. Además con la generación de los Balances de Masa y Energía podría predecir y recomendar parámetros operacionales.

Este simulador también nos entrega un análisis al comportamiento de los fluidos en el Colector de Polvos que nos permitirá en un futuro anticipar mantenciones que eviten en muchos casos que los equipos se dañen hasta no tener solución.

Finalmente podemos decir que se cumple con el objetivo general de este Trabajo que es Generar una herramienta de gran utilidad para la Fundición Calentones, específicamente para las Plantas de Secado.

CAPITULO 8: BIBLIOGRAFÍA

8. - Bibliografía

- (1) J. M. Smith y H. C. Van Ness. "Introducción a la termodinámica en Ingeniería Química", 7ma edición
- (2) G. V. Reklaitis y D. R. Schneider. "Balances de Materia y Energía".
- (3) Donald Q. Kern. 1965. "Process Heat Transfer".
- **(4) HSC 6.1 Chemistry,** 2007 "Simulador de Procesos Químicos", Biblioteca de Datos de los Gases.
- (5) PI System, "Base Datos Codelco Fundición Caletones".

Anexos A

SECADO DE CONCENTRADO, COMPARACIÓN TÉCNICA

VENTAJAS	DESVENTAJAS			
SISTEMA ROTATORIO DE CALOR DIRECTO				
Menor volumen de gases generados que un secador de lecho fluidizado, por mayor temperatura del gas generado	Mayor potencial de combustionar el azufre y evaporar impurezas por la alta temperatura de entrada del gas			
Secado rápido por mejor coeficiente de transferencia de calor (convección)	Gran requerimiento de espacio físico			
	Mayores requerimientos de mantención			
SISTEMA ROTATORIO DE INYECCIO	ON DE VAPOR EN TUBOS			
Menor volumen de gases generados	Construcción en acero inoxidable con mayor corrosión en el primer tercio tubos			
Menor posibilidad de combustionar el azufre por menor temperatura	Personal de mantención más calificado para trabajar con sistemas de vapor			
Nivel de manutención reducido				
Costo operacional menos significativo al existir vapor				
SISTEMA DE LECHO FLUIDIZADO				
Menor requerimiento de espacio físico	Frecuentes incendios en mangas			
Menor consumo de combustible que el secador de calor directo	Mayor volumen de gases con mayor dificultad de control			
Ningún equipo en movimiento				
Buena agitación y mezclado del lecho; permite temperatura pareja y ausencia de zonas calientes				

Figura 28 Cuadro Comparativo Diferentes Secadores

Anexos

ANEXO B COMBUSTIÓN

Principios Básicos de Combustión

La combustión es una reacción química de oxidación que produce energía en forma

de calor, que como otras formas de energía, puede ser transferida de un lugar a otro

o transformada en otra forma de energía. Por ejemplo, en un calefactor de aceite, el

calor producido por la combustión del combustible, se transfiere al aceite que está

pasando a través de los tubos del calefactor. Por otra parte, el calor que se produce

por la combustión del combustible, se puede transformar en energía eléctrica

(termoeléctrica).

Para que se produzca la combustión tienen que estar presente tres factores:

Combustible

Comburente (oxígeno)

> Fuente de Ignición

A continuación se muestra una reacción típica de combustión:

Dónde:

Reactivos: son los compuestos que participan en la reacción o que reaccionan.

$$2C_XH_Y + (2X + \frac{Y}{2})*O_2 \rightarrow 2XCO_2 + YH_2O + Calor$$

CxHy: Combustible

O2 : Oxígeno

2 y (2X+Y/2): Factores estequeométricos para el combustible y el oxígeno

respectivamente.

97

Anexos

Productos: son los compuestos que se producen de la reacción.

CO2: Dióxido de Carbono

H2O: Agua

2X e Y : Factores estequeométricos para el CO2 y H2O, respectivamente.

Para formar anhídrido carbónico (CO2), cada molécula de carbono requiere de dos moléculas de oxígeno. Al no existir oxígeno suficiente, se forma monóxido de carbono (CO), donde algunas de las moléculas de carbono se unen con una

molécula de oxígeno. Este fenómeno es conocido como Combustión Incompleta.

En el Sistema Internacional de Unidades, el calor liberado por la combustión se mide

en calorías o Kilo calorías o Mega calorías (1 Mcal = 1.000 Kcal = 1.000.000 cal). La

combustión completa de 1 Kg de carbón, es decir la transformación de todo el C en

CO2, libera 7.000 a 8.000 Kcal aproximadamente, mientras que cuando se produce

una combustión incompleta, es decir todo el C se transforma en CO, 1 Kg de carbón

libera 2.000 a 2.500 Kcal aproximadamente. Al ver estos valores se concluye que la

combustión incompleta reduce en forma drástica la producción de calor, pudiendo

generar combustible no quemado, el cual representa un riesgo de explosión dentro

de un horno.

Para entender en forma más clara estos conceptos, es necesario conocer las

siguientes definiciones:

Reactivo Limitante: Es aquel material que está reaccionando (reactivo) y se

encuentra en cantidad sub-estequiométrica respecto del otro reactivo. La cantidad

estequiométrica es el valor teórico de un reactivo respecto del otro, para que ambos

se consuman en forma total, dado por la respectiva reacción química.

Exceso de Reactivo: Es el reactivo en exceso con respecto al reactivo limitante.

98

El porcentaje de exceso de reactivo, está basado en la cantidad que sobra de reactivo respecto de la cantidad requerida, de acuerdo a:

$$\%$$
 de exceso = $\frac{Masa\ de\ Reactivo\ en\ Exceso}{Masa\ de\ Reactivo\ Requerido}*100$

En el caso de los quemadores el término es "exceso de aire" y representa la cantidad de aire disponible para reaccionar que se encuentra en demasía respecto del aire requerido teóricamente para quemar completamente el material combustible. La cantidad requerida de un reactivo queda definida por el reactivo limitante.

Porcentaje de Conversión: Es la proporción de cualquiera de los reactivos que se transforma en producto. Este concepto está relacionado con el grado de consumación de una reacción, el cual normalmente se define como el porcentaje o la fracción del reactivo limitante que se convierte en producto.

Rendimiento: Para un solo reactivo y producto, es el peso del producto final dividido por el peso del reactivo inicial. En caso de que sea más de un solo producto y más de un reactivo, se debe establecer claramente el reactivo en el cual se basa el rendimiento.

Anexo C Granulometría y Cálculo de la Densidad del concentrado

GRANULOMETRIA CONCENTRADO SECO FLUOSOLIDO N° 3

Módulos Zona Norte

				Retenido	
Malla	Abertura	Peso	Parcial	Acumulado	Pasante
Nº	Micrones	Gramos	%	%	%
100	150	0,92	0,77	0,77	99,23
150	106	0,87	0,73	1,49	98,51
200	75	3,25	2,71	4,20	95,80
250	63	3,28	2,73	6,93	93,07
270	53	4,89	4,08	11,01	88,99
325	45	23,73	19,78	30,78	69,22
400	38	38,43	32,03	62,81	37,19
-400	-38	44,63	37,19	100,00	0,00

Peso

muestra grs.

120,00

Módulos Zona Sur

				Retenido	
Malla	Abertura	Peso	Parcial	Acumulado	Pasante
Nº	Micrones	Gramos	%	%	%
100	150	0,56	0,47	0,47	99,53
150	106	0,46	0,38	0,85	99,15
200	75	1,59	1,33	2,18	97,83
250	63	2,74	2,28	4,46	95,54
270	53	3,14	2,62	7,08	92,93
325	45	6,65	5,54	12,62	87,38
400	38	25,39	21,16	33,78	66,23
-400	-38	79,47	66,23	100,00	0,00

Peso

muestra grs.

120,00

CAMARA DEFLECTORA

				Retenido	
Malla	Abertura	Peso	Parcial	Acumulado	Pasante
Nº	Micrones	Gramos	%	%	%
100	150	1,96	1,63	1,63	98,37
150	106	3,21	2,68	4,31	95,69
200	75	11,53	9,61	13,92	86,08
250	63	8,34	6,95	20,87	79,13
270	53	9,69	8,08	28,94	71,06
325	45	10,58	8,82	37,76	62,24
400	38	17,95	14,96	52,72	47,28
-400	-38	56,74	47,28	100,00	0,00

Peso

muestra grs.

120,00

Calculo Densidad del concentrado:

Se determina el peso específico del mineral seco, como valor de referencia para futuras pruebas. Se define densidad real como una propiedad inherente del mineral que relaciona la masa de este con el volumen real que esta ocupa.

Materiales:

- > Picnómetro de 25 ml.
- Parafina.
- Pipeta.
- Balanza Analítica.
- Espátula.
- > Papel absorbente.

Procedimiento 1:

- 1. Extraer aproximadamente 10 g del lote de 0,5 kg,
- 2. Las masas deben ser registradas con precisión de 0,0001 g.
- 3. Manejar el picnómetro con guantes para no contaminarlo con grasa de la piel.
- 4. Registrar la masa del picnómetro vacío (M1).
- 5. Con una pipeta extraer parafina de su envase y enrasar el picnómetro (tratando de que escurra por las paredes del picnómetro) y aforar el picnómetro dejando caer suavemente la tapa. Secar el exterior del picnómetro acuciosamente con papel absorbente, hasta dejarlo completamente limpio.
- 6. Masar el picnómetro tapado incluyendo la parafina agregada en el punto 5 (M2).
- 7. Lavar y secar el picnómetro usado.
- 8. Una vez seco el picnómetro, introducir la muestra separado en el punto 1 en el picnómetro vacío. Tener mucho cuidado para no botar polvo de la muestra agregada en el punto 8 (M3).
- 9. Masar el picnómetro tapado incluyendo la muestra agregada en el punto 8 (M3)
- 10. Con una pipeta extraer parafina de su envase.
- 11. Dejar caer la parafina suavemente, tratando de que escurra por las paredes del picnómetro.
- 12. Eliminar todas las burbujas de aire que puedan quedar dentro del picnómetro golpeándolo suavemente hasta que salgan a la superficie.
- 13. Enrasar el picnómetro con parafina.
- 14. Aforar el picnómetro dejando caer suavemente la tapa. Secar el exterior del picnómetro acuciosamente con papel absorbente, hasta dejarlo completamente limpio.

- 15. Masar el picnómetro tapado incluyendo la muestra agregada en el punto 8 y la parafina en el punto 14 (M4).
- 16. Repetir procedimiento al menos 3 veces.
- 17. Calcular el peso específico para cada una de las repeticiones.
- 18. Calcular el promedio de las mediciones para obtener el peso especifico.

Formula:

$$\rho_{s}, \frac{g}{mL} = \frac{M_{3,g} - M_{1,g}}{\left(M_{3,g} - M_{1,g}\right) - \left(M_{4,g} - M_{2,g}\right)} * \rho_{parafina}$$

Calculo densidad de la parafina:

Materiales:

- > Vaso precipitado de 59 ml.
- > Pipeta graduado 20 ml.
- > Balanza analítica.

Procedimiento 2:

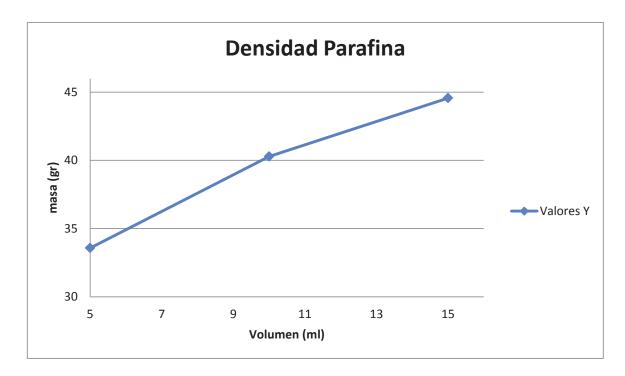
- Masar el vaso precipitado.
- > Extraer 5 ml de parafina de su envase
- > Agregar los 5 ml al vaso y masarlo
- > Repetir los pasos del 1 al 3 para 10,15 y 20 ml.
- > Calcular y promediar la densidad de la parafina.
- > Crear un ajuste lineal con los valores obtenidos entre volumen y masa
- Verificar que el factor de ajuste no tenga un error mayor a 1%

Datos obtenidos del procedimiento 1:

> Experiencia 1:

M1	43.2148
M2	68.2069
M3	53.1749
M4	76.1111

> Experiencia 2:


M1	42.5421
M2	67.5600
M3	52.5331
M4	75.3900

> Experiencia 3:

M1	41.6965
M2	66.5315
M3	51.6786
M4	74.3290

Datos obtenidos de Procedimiento 2:

	5 ml	10 ml	15 ml
Vacío	33.6531	33.5357	32.5968
Lleno	37.5751	41.2864	44.5703

$$\rho_{parafina} = 1.0995 \left(\frac{gr}{ml}\right)$$

De los datos obtenidos del procedimiento 1 obtenemos la densidad del concentrado.

Anexo D Análisis comportamiento parámetros últimos 5 años extraídos del sistema PI de Codelco El Teniente.

> Correa de Alimentación

Fecha	Temperatura	% humedad
01-01-2008	23,43366241	0,23182052
01-02-2008	19,80743408	139,189819
01-03-2008	21,93442154	136,761536
01-04-2008	19,17195129	140,11972
01-05-2008	11,05315781	0,15903521
01-06-2008	13,07637691	99,504364
01-07-2008	16,26681709	133,585983
01-08-2008	15,32006264	134,071548
01-09-2008	15,9879818	141,570084
01-10-2008	15,64429569	139,920853
01-11-2008	20,76068878	121,151512
01-12-2008	23,44403458	140,44902
01-01-2009	26,00678444	0,14438774
01-02-2009	23,7760601	143,418335
01-03-2009	22,19380379	150,904236
01-04-2009	29,63817596	115,292664
01-05-2009	20,05385399	136,552017
01-06-2009	17,04498482	151,566025
01-07-2009	12,79105091	131,822052
01-08-2009	13,02912045	145,027634
01-09-2009	14,86612892	148,898499
01-10-2009	18,58694458	146,532272
01-11-2009	22,43373108	139,508408
01-12-2009	20,55965614	119,128113
01-01-2010	22,9256382	0,18462838

Fecha	Temperatura	% humedad
01-02-2010	24,55421829	146,462097
01-03-2010	22,36239052	0,16694474
01-04-2010	21,59720612	145,646454
01-05-2010	19,48320198	158,755539
01-06-2010	15,59160328	145,824127
01-07-2010	14,45112133	146,878143
01-08-2010	10,36253452	131,290833
01-09-2010	13,60810375	152,456299
01-10-2010	15,07364273	155,501923
01-11-2010	18,56239128	-0,01728903
01-12-2010	21,32486153	144,58049
01-01-2011	23,95763016	0,20864719
01-02-2011	23,06814575	151,673889
01-03-2011	25,31939316	146,395386
01-04-2011	17,25249863	0,04364668
01-05-2011	18,49754143	147,921143
01-06-2011	18,62724304	146,096558
01-07-2011	11,07909203	149,048828
01-08-2011	17,8101635	140,971802
01-09-2011	19,02928734	146,227249
01-10-2011	30,89621162	147,182877
01-11-2011	27,05729675	149,353149
01-12-2011	34,92448425	154,254181
01-01-2012	28,47094727	0,17870559
01-02-2012	22,57207489	141,906693
01-03-2012	21,23406601	138,896439
01-04-2012	23,43884659	154,051682
01-05-2012	19,53774834	136,481323
01-06-2012	18,21221542	140,318542

Fecha	Temperatura	% humedad
01-07-2012	14,60674667	134,097885
01-08-2012	15,1255312	149,972046
01-09-2012	19,10709953	138,837448
01-10-2012	7,707081795	0,03553502
01-10-2012	7,707081795	0,03553502
02-10-2012	6,643588543	0,06875652
03-10-2012	9,010484695	0,04680048
04-10-2012	14,4540205	0,01054687
05-10-2012	11,62380028	0,01054687
06-10-2012	10,37793446	0,01054687
07-10-2012	5,680616856	0,01054687
08-10-2012	6,753831387	0,01054687
09-10-2012	6,066459656	0,01054687
10-10-2012	10,40458107	0,15203722
11-10-2012	16,41143608	0,15203722
12-10-2012	16,1111927	0,15445322
13-10-2012	20,11870575	94,5897903
14-10-2012	18,84446716	93,1248474
15-10-2012	17,57673073	103,717522
16-10-2012	17,64301109	109,075676
17-10-2012	20,29509544	121,5662
18-10-2012	18,78286743	118,136665
19-10-2012	19,64613914	111,07209
20-10-2012	19,24976349	106,313911
21-10-2012	17,25249863	102,845581
22-10-2012	15,1709137	108,523849
23-10-2012	14,53310013	111,309067
24-10-2012	16,69967079	119,477531
25-10-2012	15,8890934	142,314636

Fecha	Temperatura	% humedad
26-10-2012	19,1800499	117,420677
27-10-2012	19,17195129	131,14209
28-10-2012	17,55078697	123,109268
29-10-2012	19,98927307	137,797913
30-10-2012	19,36000633	104,985954
31-10-2012	19,22381973	124,279648
01-11-2012	18,97548485	0,16731015
02-11-2012	19,64943314	127,261093
03-11-2012	20,22570419	136,529633
04-11-2012	20,87092209	135,953384
05-11-2012	21,41693306	130,045685
06-11-2012	22,30542946	129,150528
07-11-2012	22,69960594	118,289154
08-11-2012	23,24431992	143,566895
09-11-2012	19,61290169	127,169785
10-11-2012	18,49916649	126,218941
11-11-2012	18,5440197	127,398689
12-11-2012	20,47698021	131,876938
13-11-2012	21,2891922	132,388901
14-11-2012	21,30409813	132,617737
15-11-2012	21,47109032	117,882484
16-11-2012	22,18406677	122,927567
17-11-2012	20,60181427	146,452118
18-11-2012	21,664217	142,315048
19-11-2012	22,45318604	102,433769
20-11-2012	22,39643478	129,600677
21-11-2012	23,28322029	138,82077
22-11-2012	20,88065338	127,380936
23-11-2012	19,87228584	123,272995

Fecha	Temperatura	% humedad
24-11-2012	20,06520081	124,63475
25-11-2012	22,36239624	106,229874
26-11-2012	22,05113983	117,979568
27-11-2012	22,9530468	121,245872
28-11-2012	22,73850632	111,796043
29-11-2012	20,95738983	92,6570587
30-11-2012	18,11495018	129,159515
01-12-2012	19,62424469	132,394714
02-12-2012	20,79311562	0,21712106
03-12-2012	21,84363174	114,489716
04-12-2012	21,9082737	115,402
05-12-2012	25,39559746	130,744888
06-12-2012	26,18673325	117,035416
07-12-2012	34,35252762	120,703278
08-12-2012	30,76651955	132,730377
09-12-2012	22,55694199	122,717567
10-12-2012	22,66069984	121,316269
11-12-2012	32,25798416	117,859528
12-12-2012	35,4954567	123,407753
13-12-2012	37,10850525	130,686295
14-12-2012	36,8134613	96,9826126
15-12-2012	23,31369019	113,483826
16-12-2012	28,17912865	120,010132
17-12-2012	22,86819267	121,894165
18-12-2012	29,42013359	119,125374
19-12-2012	31,56412125	102,234665
20-12-2012	16,32428741	124,052948
21-12-2012	16,513237	98,9048157
22-12-2012	21,97872925	128,543671

Fecha	Temperatura	% humedad
23-12-2012	22,79038048	120,407272
24-12-2012	23,54260254	125,911392
25-12-2012	21,0311985	117,41391
26-12-2012	21,59396362	140,194305
27-12-2012	27,07025719	113,821991
28-12-2012	29,11941147	139,256042
29-12-2012	27,09619904	128,981918
30-12-2012	26,19158554	131,985992
31-12-2012	25,55771255	123,999191
01-01-2013	24,00156784	0,20934503
02-01-2013	28,4514904	97,0916595
03-01-2013	26,97948265	127,646431
04-01-2013	24,06138802	127,174973
05-01-2013	23,48180962	123,57692
06-01-2013	23,69822884	116,378677
07-01-2013	23,84090805	131,676743
08-01-2013	24,3126545	81,2983627
09-01-2013	25,39722443	136,934326
10-01-2013	27,14807129	0,43496564
11-01-2013	28,31532097	79,8011475
12-01-2013	28,05591965	64,6160965
13-01-2013	27,31992149	88,1915665
14-01-2013	26,51366615	82,5986328
15-01-2013	30,64978218	90,3585358
16-01-2013	26,22726059	92,4171753
17-01-2013	25,88805008	93,3342896
18-01-2013	36,01908112	79,945343
19-01-2013	29,56036377	84,599617
20-01-2013	33,65940094	0,29315859

Fecha	Temperatura	% humedad
21-01-2013	29,09996414	82,3951263
22-01-2013	26,66848373	77,6259308
23-01-2013	29,01997948	75,0937042
24-01-2013	39,17711639	70,0513
25-01-2013	21,48858833	0,09161314
26-01-2013	21,80796432	0,09161314
27-01-2013	21,69924736	7,56250095
28-01-2013	21,9221096	21,9417553
29-01-2013	22,14497185	36,3210106
30-01-2013	22,36783409	50,700264
31-01-2013	22,59069633	65,0795135
01-02-2013	21,77877617	0,04894432
02-02-2013	24,3726387	101,497757
03-02-2013	26,18835449	78,8928909
04-02-2013	26,21428871	117,730743
05-02-2013	26,14943695	92,438858
06-02-2013	27,90678406	124,37281
07-02-2013	26,63254166	138,567993
08-02-2013	25,06326675	134,704422
09-02-2013	25,66956902	128,330902
10-02-2013	22,69960594	133,592239
11-02-2013	23,6074543	128,572021
12-02-2013	25,18558693	130,228104
13-02-2013	28,02567101	132,009079
14-02-2013	29,91378212	105,317749
15-02-2013	31,20098495	139,243958
16-02-2013	26,00029373	107,357071
17-02-2013	23,38697815	121,346977
18-02-2013	22,44345856	119,714455

Fecha	Temperatura	% humedad
19-02-2013	33,22744751	126,697906
20-02-2013	27,38152885	111,299721
21-02-2013	29,66411972	132,381363
22-02-2013	31,05184746	132,809219
23-02-2013	29,6349411	130,008942
24-02-2013	25,72145844	120,147476
25-02-2013	24,29482651	122,451447
26-02-2013	27,7478981	142,613663
27-02-2013	25,53988838	128,39389
28-02-2013	34,92642212	124,965919
01-03-2013	29,56036377	129,391678
02-03-2013	21,70096207	113,967072
03-03-2013	23,26053238	131,588654
04-03-2013	23,54216957	125,782021
05-03-2013	35,22363281	114,162506
06-03-2013	25,77981186	125,083466
07-03-2013	24,34670448	121,321625
08-03-2013	31,54467773	125,417847
09-03-2013	23,4907341	126,329918
10-03-2013	24,47639465	119,647346
11-03-2013	23,86684608	124,091431
12-03-2013	24,20404053	125,27623
13-03-2013	25,49125099	112,032349
14-03-2013	30,45524979	114,691093
15-03-2013	26,68117905	131,034851
16-03-2013	30,28664207	123,079201
17-03-2013	33,9861412	115,116562
18-03-2013	21,70096207	122,810349
19-03-2013	28,61792755	131,500946

Fecha	Temperatura	% humedad
20-03-2013	22,71256828	122,612373
21-03-2013	21,22758484	125,5326
22-03-2013	26,35046577	139,875504
23-03-2013	28,36718941	126,404961
24-03-2013	20,89687157	127,172592
25-03-2013	20,76976395	123,511955
26-03-2013	30,94808006	113,111443
27-03-2013	29,50687027	119,428688
28-03-2013	30,11156464	104,688683
29-03-2013	33,90509033	120,564758
30-03-2013	27,546875	121,006378
31-03-2013	26,88868332	125,249901
01-04-2013	20,05385399	112,765167
02-04-2013	25,94679832	110,714569
03-04-2013	15,73020744	0,08116329
04-04-2013	16,798563	0,08116329
05-04-2013	15,90475464	0,08116329
06-04-2013	12,22039795	0,08116329
07-04-2013	15,8129034	0,08116329
08-04-2013	18,98388672	107,11483
09-04-2013	19,63884735	120,220711
10-04-2013	15,6183567	0,0901801
11-04-2013	18,31597137	125,491104
12-04-2013	16,89583015	89,4303818
13-04-2013	17,93986893	122,10788
14-04-2013	19,36649323	126,544601
15-04-2013	20,53373337	105,495903
16-04-2013	26,11052132	117,518608
17-04-2013	27,53066254	138,784195

Fecha	Temperatura	% humedad
18-04-2013	25,87708282	119,240997
19-04-2013	25,68741608	119,864952
20-04-2013	26,67307663	122,914986
21-04-2013	22,64988899	132,829987
22-04-2013	21,66622162	120,478806
23-04-2013	22,86820221	126,010933
24-04-2013	28,61361313	125,108017
25-04-2013	33,11257172	117,682747
26-04-2013	42,63775253	120,894035
27-04-2013	25,38749504	128,306229
28-04-2013	20,44294357	121,171448
29-04-2013	24,64013863	122,080185
30-04-2013	22,71905518	122,936813
01-05-2013	27,20643616	0,18540353
02-05-2013	25,57555199	101,874374
03-05-2013	23,0281601	130,631958
04-05-2013	21,81768227	112,435226
05-05-2013	16,91780663	121,983559
06-05-2013	18,99686813	121,711296
07-05-2013	21,1667881	106,688675

Gas Natural

Fecha	Nm³/hr	Presión(Kpa)	T° gas
01-01-2008	0,315032721	167,9416351	22,67585754
01-02-2008	1070,377441	164,6356812	13,97500801
01-03-2008	1042,682007	166,6427002	15,60396099
01-04-2008	150,7533264	165,9449615	21,02807617
01-05-2008	29,93300629	188,490448	6,744476318
01-06-2008	-99,80727386	165,3095703	20,02832603
01-07-2008	-66,28678131	164,8090973	18,3359375
01-08-2008	-99,91320038	166,5141907	14,0897131
01-09-2008	-99,95726776	78,52590942	22,46199799
01-10-2008	-24,24866104	164,5993805	14,30838013
01-11-2008	941,31073	40,94288635	11,65204048
01-12-2008	974,4820557	56,75812912	15,45642662
01-01-2009	0,364638329	455,7214661	31,19231415
01-02-2009	908,5825195	56,65700912	16,09328461
01-03-2009	0,274259567	19,10769653	26,42751694
01-04-2009	0,486866206	130,7729492	21,09121704
01-05-2009	0,32421127	149,1355896	21,49710083
01-06-2009	0,406539828	87,9478302	21,2216568
01-07-2009	0,343805671	86,23406982	12,06878281
01-08-2009	0,353090763	88,16713715	15,13339806
01-09-2009	1101,359863	81,1951828	5,544708252
01-10-2009	1044,840698	82,28807068	5,260040283
01-11-2009	1004,308411	79,97303772	12,67764282
01-12-2009	823,4140015	79,81764221	12,40783691
01-01-2010	0,15239054	373,3478088	26,40707588
01-02-2010	1066,528564	78,58630371	17,12030029
01-03-2010	0,269892722	82,76899719	21,38034058
01-04-2010	1024,713501	78,7778244	14,99835205

Fecha	Nm³/hr	Presión(Kpa)	T° gas
01-05-2010	1155,407959	79,66943359	12,15223694
01-06-2010	1096,334351	80,25025177	10,64684963
01-07-2010	1166,575439	82,41151428	7,985398293
01-08-2010	0,071411572	91,30162048	12,37814331
01-09-2010	1201,776245	82,63616943	1,61133635
01-10-2010	1113,085571	81,71574402	2,534759521
01-11-2010	0,160602033	129,7919006	16,51975632
01-12-2010	890,7614746	80,65544128	12,87625122
01-01-2011	0,476787001	195,1921692	23,0484314
01-02-2011	928,6880493	80,78752899	15,7639513
01-03-2011	981,5574341	79,98442078	15,80566406
01-05-2011	940,2705078	89,46534729	10,29379272
01-06-2011	933,4891357	88,48592377	11,64511681
01-07-2011	1049,503784	94,52765656	0,029749654
01-08-2011	830,6748047	96,22701263	-0,991963029
01-09-2011	962,6157837	90,15393829	10,27822876
01-10-2011	926,8810425	74,57231903	9,747253418
01-11-2011	919,3672485	74,03152466	12,9197998
01-12-2011	758,7416382	75,15853882	17,35420418
01-01-2012	0,162028745	400,7820435	28,13440514
01-02-2012	1015,422852	205,5615234	15,98853779
01-03-2012	994,4547729	206,5923004	11,54605103
01-04-2012	967,0668335	204,6396332	16,51064873
01-05-2012	998,0513306	209,9522858	11,52827835
01-06-2012	1005,329529	210,7568817	10,86529541
01-07-2012	1089,156494	181,2740784	6,178039551
01-08-2012	941,7805786	204,9493408	8,331885338
01-09-2012	861,6699829	204,2162628	12,34036255
01-10-2012	0,184423998	325,9702148	5,181793213

Fecha	Nm ³ /hr	Presión(Kpa)	T° gas
01-10-2012	0,184423998	325,9702148	5,181793213
02-10-2012	0,202853397	-0,999935329	3,470031738
03-10-2012	0,160157412	198,1033783	7,376953125
04-10-2012	0,223073512	184,9176025	12,554245
05-10-2012	0,181260854	169,9508972	11,24068546
06-10-2012	0,069179751	156,8283997	9,154976845
07-10-2012	0,078432694	144,3704681	4,7293396
08-10-2012	-0,098288491	136,8974304	4,028686523
09-10-2012	0,043411043	131,9464417	4,442230225
10-10-2012	0,053152028	130,8361206	8,601784706
11-10-2012	0,104637735	131,0031433	13,55398655
12-10-2012	0,158047885	127,6564484	13,42987061
13-10-2012	743,5181274	205,56604	12,35205078
14-10-2012	738,7095947	206,0571136	8,39686203
15-10-2012	780,7224731	206,5342102	4,8175354
16-10-2012	807,4318237	205,7665558	7,57989502
17-10-2012	830,2281494	204,3353729	13,70167255
18-10-2012	861,2789307	205,1414948	9,582751274
19-10-2012	812,3527832	204,4841309	9,236686707
20-10-2012	781,6568604	205,3527374	8,699694633
21-10-2012	780,1211548	205,0048981	7,402038574
22-10-2012	834,7139893	205,5161133	1,716217041
23-10-2012	877,4926147	205,6722412	3,634796143
24-10-2012	919,5988159	204,6162872	7,28729248
25-10-2012	1119,378296	205,8545074	8,295779228
26-10-2012	938,0216064	204,6322632	9,308823586
27-10-2012	969,6750488	204,8997803	9,919420242
28-10-2012	935,4222412	204,4994965	11,69696045
29-10-2012	963,0339355	203,983902	12,21035767

Fecha	Nm³/hr	Presión(Kpa)	T° gas
30-10-2012	889,5927734	203,9338837	12,72113419
31-10-2012	941,9984131	205,1096497	10,27145386
01-11-2012	0,261694014	297,3704224	12,41747761
02-11-2012	897,5952759	204,0419922	12,5980835
03-11-2012	922,3105469	204,1451111	12,85162354
04-11-2012	917,223999	203,9012299	13,40234375
05-11-2012	888,5604858	204,22789	14,16064453
06-11-2012	824,1707764	203,7723694	14,81863403
07-11-2012	836,9952393	203,3274384	15,22421265
08-11-2012	897,1674805	205,4521179	13,58774281
09-11-2012	831,4512939	205,2454376	9,75510788
10-11-2012	853,3009033	205,6789551	8,271418571
11-11-2012	914,678833	205,43573	9,449603081
12-11-2012	852,1464844	204,1738892	15,20892334
13-11-2012	875,604126	203,7900085	14,28738976
14-11-2012	875,7261353	203,7812958	14,79532051
15-11-2012	840,4151001	203,8245087	14,47497082
16-11-2012	806,9554443	203,7267151	13,44629765
17-11-2012	847,1929932	204,3116455	10,22491455
18-11-2012	901,0552368	203,8125305	12,52276707
19-11-2012	714,0804443	203,8347778	15,40222168
20-11-2012	903,2698975	204,6824799	15,637146
21-11-2012	908,6137695	203,6607513	14,62649536
22-11-2012	947,2745361	204,122406	11,25848389
23-11-2012	926,8381958	202,1488647	9,28817749
24-11-2012	884,5701904	197,3220215	10,23734951
25-11-2012	759,2758789	196,4498901	13,8383131
26-11-2012	910,3463135	196,2247772	14,65713882
27-11-2012	838,5206299	196,1274719	15,08162117

Fecha	Nm³/hr	Presión(Kpa)	T° gas
28-11-2012	779,6560059	195,4502869	15,39200115
29-11-2012	682,2652588	197,2795563	10,82929993
30-11-2012	841,1143799	196,8074341	7,908508301
01-12-2012	912,8074951	195,7147064	12,99364853
02-12-2012	0,249921083	376,1502075	17,0188942
03-12-2012	725,4801025	193,6686707	14,71658325
04-12-2012	850,6913452	193,8089905	13,80822754
05-12-2012	857,0638428	193,4936523	12,93606567
06-12-2012	843,3474121	193,3884888	10,82067204
07-12-2012	651,0914307	197,2668304	7,355278969
08-12-2012	746,8862305	193,6497803	13,94171143
09-12-2012	811,4658203	192,6497955	17,34170532
10-12-2012	787,8444214	192,4124756	16,88004112
11-12-2012	708,9758301	192,9645996	13,90005493
12-12-2012	684,3670044	195,5005646	13,3578186
13-12-2012	878,8795166	195,6009979	13,75346851
14-12-2012	685,7949219	194,780426	16,15319824
15-12-2012	766,4459229	194,4805145	14,58106518
16-12-2012	787,3441162	194,0576782	15,93076515
17-12-2012	883,4405518	193,6860504	15,02147293
18-12-2012	777,3548584	193,1763153	14,84817505
19-12-2012	772,5098267	196,6691895	11,28457642
20-12-2012	975,2084961	204,8538818	5,616333008
21-12-2012	841,5634155	204,0957336	7,434326172
22-12-2012	857,5	201,4255981	14,80439377
23-12-2012	887,4169312	199,8715668	15,43608856
24-12-2012	907,342041	199,796814	13,35897827
25-12-2012	918,5683594	200,7724915	6,276245594
26-12-2012	958,786499	200,5404053	9,71194458

Fecha	Nm³/hr	Presión(Kpa)	T° gas
27-12-2012	752,7999878	199,2165985	12,54554844
28-12-2012	822,7727051	199,5397491	14,02724075
29-12-2012	925,4077148	201,4046936	15,65240479
30-12-2012	868,262207	198,8999939	16,67592239
31-12-2012	839,8502808	198,3083038	15,91604614
01-01-2013	0,311686575	346,387207	27,89458656
02-01-2013	723,2298584	199,0989532	18,24814415
03-01-2013	916,9272461	196,0054779	17,36212921
04-01-2013	1076,487061	196,858902	14,97738838
05-01-2013	1019,619141	198,0572052	14,58282471
06-01-2013	857,9161987	197,0293121	14,50845337
07-01-2013	874,4054565	197,3423615	15,95403576
08-01-2013	651,9237061	197,8034668	15,60285282
09-01-2013	988,4210205	199,8877563	17,62410355
10-01-2013	0,312391758	339,5028076	24,02200699
11-01-2013	619,7409668	196,8093414	20,4457283
12-01-2013	551,6134644	196,7291565	18,99377441
13-01-2013	605,3128662	197,6285858	19,24859619
14-01-2013	578,7619019	197,868103	18,42630005
15-01-2013	569,6016846	197,3496094	16,99212456
16-01-2013	648,4379883	199,1132813	16,26098633
17-01-2013	690,4215088	196,3628998	16,46668816
18-01-2013	409,9238892	196,8943024	17,38708496
19-01-2013	605,585083	196,1507111	17,23345947
20-01-2013	0,29232958	332,9428711	24,4435997
21-01-2013	589,4664917	197,1368103	17,99193382
22-01-2013	597,9056396	197,2319794	16,37091637
23-01-2013	485,9220276	197,8056488	18,04232788
24-01-2013	283,6468506	197,4396667	19,00902367

Fecha	Nm³/hr	Presión(Kpa)	T° gas
25-01-2013	0,259500444	-0,617654562	23,98428154
26-01-2013	0,242609948	-0,947651148	21,37863159
27-01-2013	63,73099518	19,56206703	22,86124802
28-01-2013	186,881424	58,01127243	23,17931175
29-01-2013	310,0318298	96,46047974	23,49737549
30-01-2013	433,182251	134,9096832	23,81543732
31-01-2013	556,3327026	173,3588867	24,13350105
01-02-2013	0,238474995	570,6920776	25,88354492
02-02-2013	701,7561035	188,5433655	17,7527771
03-02-2013	552,5501709	188,0118103	19,81201172
04-02-2013	828,5974121	185,3627319	19,86593628
05-02-2013	660,7740479	185,5227509	19,01351929
06-02-2013	945,1722412	185,1027679	17,75622559
07-02-2013	932,3327637	185,1027679	17,45541382
08-02-2013	839,784668	185,1870117	17,38796997
09-02-2013	888,7058105	184,8108521	17,15490723
10-02-2013	913,6787109	185,7619934	13,81155396
11-02-2013	889,6021729	186,9399719	14,81113338
12-02-2013	927,7373047	186,312561	16,42471313
13-02-2013	951,4057617	185,7403412	16,4972229
14-02-2013	760,8067627	185,6033936	16,55587769
15-02-2013	826,7020264	184,8631287	17,62722778
16-02-2013	717,5924072	185,7417908	17,52444458
17-02-2013	827,1248169	185,0170746	14,98251343
18-02-2013	809,8300171	185,1521454	13,9732666
19-02-2013	797,2195435	185,3685455	14,09506226
20-02-2013	795,1261597	185,2472839	14,06610107
21-02-2013	885,6664429	186,4004364	15,10871601
22-02-2013	778,8707275	184,8239136	17,72842407

Fecha	Nm³/hr	Presión(Kpa)	T° gas
23-02-2013	847,5305176	184,9168701	17,06280518
24-02-2013	745,6038818	185,8986511	14,36331177
25-02-2013	788,4207764	184,7389526	17,20620728
26-02-2013	857,7269287	184,1180878	17,80899048
27-02-2013	811,5765991	184,5568542	17,16757202
28-02-2013	749,4118652	184,7367859	17,73043823
01-03-2013	770,7329102	185,8066101	15,35003662
02-03-2013	858,4893799	185,7828674	11,44888306
03-03-2013	868,49646	184,80867	15,44155884
04-03-2013	833,9417725	184,7759857	15,83915329
05-03-2013	720,671875	185,3540192	16,58397102
06-03-2013	805,3240356	184,9738464	13,26037598
07-03-2013	943,7353516	184,4449005	14,46865845
08-03-2013	779,2263794	184,971344	16,01306152
09-03-2013	978,6099854	184,9107056	17,13934326
10-03-2013	825,2617188	185,1899109	15,46737671
11-03-2013	910,7976685	184,3155975	15,53047085
12-03-2013	889,7010498	185,2451019	14,00741577
13-03-2013	805,744751	185,2249756	13,37942505
14-03-2013	697,5093994	186,7780457	12,7015686
15-03-2013	817,1893311	185,5355682	14,20213127
16-03-2013	730,8092041	185,139801	16,49770927
17-03-2013	649,34552	185,6060028	15,29974365
18-03-2013	830,5197754	184,5792084	14,60025024
19-03-2013	801,6228027	184,8740234	12,61178589
20-03-2013	846,4989014	184,3373871	13,6456604
21-03-2013	882,6156006	188,2387543	13,12102985
22-03-2013	839,3016968	185,2145996	14,5607605
23-03-2013	748,3661499	185,5718689	14,86431885

Fecha	Nm³/hr	Presión(Kpa)	T° gas
24-03-2013	796,6908569	185,0562897	14,17764282
25-03-2013	786,2022705	185,2581635	13,46966553
26-03-2013	716,8193359	185,2342072	15,74728394
27-03-2013	718,9301758	184,6946564	17,41894531
28-03-2013	686,6187744	184,9960175	17,06164551
29-03-2013	720,7044067	186,1499023	16,31143188
30-03-2013	729,2114258	185,6140442	15,17349243
31-03-2013	824,3990479	184,7505798	14,14352989
01-04-2013	841,7481689	185,3460388	11,15689087
02-04-2013	836,1685181	185,5667877	9,763092041
03-04-2013	0,246421725	237,497345	18,32830811
04-04-2013	0,185814887	218,2104645	16,61352539
05-04-2013	0,25589937	202,130722	15,39904785
06-04-2013	0,214693412	10,03929234	11,96765137
07-04-2013	0,249263585	185,8761444	16,16729736
08-04-2013	790,8846436	185,8630676	12,90164185
09-04-2013	896,2685547	184,6769409	14,38592529
10-04-2013	0,288735807	242,7490082	18,13601685
11-04-2013	945,2337646	186,5964966	9,773468018
12-04-2013	635,2853394	188,5909424	8,051452637
13-04-2013	904,5354614	186,979187	11,52514648
14-04-2013	818,4932861	184,8638611	15,79382324
15-04-2013	765,8480225	184,7759857	16,82727051
16-04-2013	721,6485596	186,0656738	15,99981689
17-04-2013	755,9554443	186,1709595	16,81964111
18-04-2013	738,8966675	184,9052582	18,87731934
19-04-2013	734,9602661	184,7504272	17,1743145
20-04-2013	783,6729736	184,5915527	16,33680725
21-04-2013	835,5412598	185,0228882	12,68093109

Fecha	Nm ³ /hr	Presión(Kpa)	T° gas
22-04-2013	868,7819824	184,8950806	12,86010933
23-04-2013	836,8111572	185,0453949	13,22406006
24-04-2013	841,7581787	184,6686401	15,01275063
25-04-2013	510,2138062	186,050415	13,84603024
26-04-2013	605,9214478	186,7115631	11,74239922
27-04-2013	795,2242432	188,3616486	8,608154297
28-04-2013	974,7982788	186,2849731	10,87811279
29-04-2013	815,8100586	185,6490631	10,41213989
30-04-2013	807,2302246	185,1165619	11,35833073
01-05-2013	0,189984202	259,8270569	24,38734818
02-05-2013	665,3414917	186,4846649	10,58221436
03-05-2013	842,8585815	188,5324707	5,427538872
04-05-2013	806,7410278	187,4235992	8,224304199
05-05-2013	874,6085205	186,4315033	10,65689087
06-05-2013	836,9578857	185,3641968	12,31124878
07-05-2013	743,4344482	185,9066315	14,12920094

Ventilador de Fluidización

Fecha	°C	Presión	Flujo
01-01-2008	17,756731	-17,7891006	37,1832314
01-02-2008	14,6909103	-6,47191429	94144,1484
01-03-2008	16,6962757	-6,49835777	94595,3047
01-04-2008	11,9108887	-6,97209358	95552,2891
01-05-2008	4,20110989	-17,5854721	6,24351072
01-06-2008	13,2619181	-7,24066639	93752,0078
01-07-2008	10,2350864	-7,26482677	93659,2344
01-08-2008	10,1831131	-7,05899286	93369,4453
01-09-2008	10,7806969	-7,34536743	91961,4063

Fecha	°C	Presión	Flujo
01-10-2008	3,53593016	-6,83788443	92615,5859
01-11-2008	12,2096691	-7,35218811	93954,7891
01-12-2008	15,0379887	-7,69483423	88217,3125
01-01-2009	18,0944843	-18,0513916	54,0008736
01-02-2009	17,5748615	-7,66597891	86365,5938
01-03-2009	17,2630768	-7,9484024	85019
01-04-2009	17,5358906	-6,83250809	89688,1719
01-05-2009	15,4183893	-7,5910058	84008,7422
01-06-2009	11,196393	-7,67734146	86261,6484
01-07-2009	1,33065152	-8,12033463	83833,75
01-08-2009	3,97850204	-8,02326488	85252,625
01-09-2009	7,0783205	-8,10926723	84953,9063
01-10-2009	5,85718536	10,0395737	84888,3828
01-11-2009	14,506876	9,23236084	84449,0781
01-12-2009	14,2881975	8,81760406	84986,2266
01-01-2010	14,1193132	0,32558441	41,5727882
01-02-2010	17,1851349	11,3882713	86082,375
01-03-2010	18,1074867	-0,03224868	24,5935726
01-04-2010	16,6605129	11,019577	84202,2422
01-05-2010	14,2752161	11,7497921	87292,4922
01-06-2010	13,8675003	10,6347809	84313,8281
01-07-2010	9,46861649	9,96738529	84039,5781
01-08-2010	2,30879259	10,7253151	90241,8594
01-09-2010	2,7974956	10,4167557	89343,8594
01-10-2010	2,78485751	11,9336653	85082,9844
01-11-2010	14,6129684	0,41217688	-14,4033461
01-12-2010	14,4010181	9,70513153	91499,625
01-01-2011	18,6660805	-0,01741028	44,4953461
01-02-2011	15,5223179	10,8568354	91005,2813

Fecha	°C	Presión	Flujo
01-03-2011	18,2114162	11,4315395	91095,9688
01-04-2011	13,1969795	0,20423889	35,549263
01-05-2011	11,5991011	10,1994934	87854,9766
01-06-2011	13,4066801	9,8143425	87939,8672
01-07-2011	3,33843422	9,8486433	84112,5859
01-08-2011	-0,36379644	11,5057192	90038,7656
01-09-2011	14,2102575	10,2095165	88039,2734
01-10-2011	10,702755	11,5622978	88411,1641
01-11-2011	15,1585779	10,1194534	90154,6719
01-12-2011	18,4712276	11,8638611	89997,8984
01-01-2012	17,431963	0,05702108	20,4595661
01-02-2012	15,6782007	9,86628723	90467,3828
01-03-2012	11,1704235	10,0798292	90126,6719
01-04-2012	17,4969196	11,7561588	90242,75
01-05-2012	12,0537863	11,8571997	88735,6094
01-06-2012	12,4691467	9,28600693	90411,8281
01-07-2012	8,01365757	10,0545921	90295,4688
01-08-2012	10,8957462	9,9662466	89263,4297
01-09-2012	15,2572231	9,33889961	89502,0078
01-10-2012	4,93502808	-0,25348178	1,26846921
02-10-2012	4,1388855	-0,23801401	1,26846921
03-10-2012	8,40152073	0,07752991	1,26846921
04-10-2012	12,0537863	-0,17095184	9,47091198
05-10-2012	12,8851938	-0,19403076	9,47091198
06-10-2012	10,1831131	-0,55247813	18,7819443
07-10-2012	6,01308775	-0,36347198	18,7819443
08-10-2012	4,37814188	0,0068512	18,7819443
09-10-2012	5,3505559	0,08663396	18,7819443
10-10-2012	8,85804939	0,03573646	18,7819443

Fecha	°C	Presión	Flujo
11-10-2012	13,1969795	-0,26999664	18,7819443
12-10-2012	13,339879	-0,16808319	18,7819443
13-10-2012	14,6519394	9,85158253	90134,8281
14-10-2012	10,7547092	10,1504297	91088,2734
15-10-2012	6,72595501	10,1628456	90578,4766
16-10-2012	10,0252686	10,1475515	89417,2266
17-10-2012	15,5524082	9,67274189	91265,1563
18-10-2012	11,4951925	10,2387924	90744,1875
19-10-2012	11,1054659	10,0772781	91144,6875
20-10-2012	11,042511	9,81916523	90464,5781
21-10-2012	7,54598904	9,88940048	89670,8594
22-10-2012	2,95281029	9,56739521	90708,9922
23-10-2012	5,8701787	10,0601406	90082,9922
24-10-2012	8,08247948	9,86631775	89752,6328
25-10-2012	8,74113655	10,5924253	89022,8281
26-10-2012	10,9553146	9,98828316	87626,3828
27-10-2012	11,0664949	10,2034397	89874,0234
28-10-2012	12,7317467	10,5142937	90339,9453
29-10-2012	12,1447306	10,1363859	90624,9531
30-10-2012	17,3929977	10,8814173	99604,1875
31-10-2012	11,0145206	10,3764725	90925,625
01-11-2012	11,8849001	9,24904823	89784,5156
02-11-2012	13,5730133	10,3666	88941,8906
03-11-2012	14,2232418	11,3333702	92618,1563
04-11-2012	15,1066236	11,0537186	92449,1875
05-11-2012	15,7357407	10,3335619	89432,0469
06-11-2012	15,4989443	10,9424868	91363,8203
07-11-2012	15,6262465	10,3789148	89895,6641
08-11-2012	13,0800476	10,1087723	90179,8984

Fecha	°C	Presión	Flujo
09-11-2012	10,0313702	9,90213108	89307,5156
10-11-2012	7,02636623	10,5097275	90272,7656
11-11-2012	8,2604847	10,2898598	89396,5781
12-11-2012	17,068222	10,151947	90609,5156
13-11-2012	15,029851	10,2804899	89328,9141
14-11-2012	16,132885	10,7412977	89529,0781
15-11-2012	16,0891266	10,2624741	91097,9375
16-11-2012	13,4623518	10,2695932	89955,0625
17-11-2012	11,3652773	10,3366652	88858,9219
18-11-2012	13,1320219	10,7854767	89460,7891
19-11-2012	16,0060711	10,3123932	91344,3828
20-11-2012	17,0352783	10,3939514	90766,5938
21-11-2012	14,22616	10,6128263	88638,1406
22-11-2012	11,4013767	10,7925682	89813,4688
23-11-2012	8,6288929	11,3596764	89738,4844
24-11-2012	11,0372581	10,9228077	91074,9922
25-11-2012	14,7194214	10,7443275	88731,8594
26-11-2012	15,041666	11,2844009	90578,1875
27-11-2012	15,6762609	10,9381104	89846,3906
28-11-2012	14,7818546	9,99554443	89639,3828
29-11-2012	9,96227169	10,1168327	89347
30-11-2012	7,02222157	10,5169373	89643,0859
01-12-2012	13,9114561	10,7388039	89471,8516
02-12-2012	13,8052921	10,422575	90837,6953
03-12-2012	15,3335819	10,7500992	90267,6328
04-12-2012	14,7688513	11,3903494	91144,6172
05-12-2012	12,6253824	12,2768707	92608,3125
06-12-2012	9,39067554	11,1631804	93967,2344
07-12-2012	8,35782051	11,579546	92080,1094

Fecha	°C	Presión	Flujo
08-12-2012	14,4310989	11,6259384	92229,8281
09-12-2012	18,6271095	11,2793589	92787,9688
10-12-2012	16,821394	10,8815346	93004,0391
11-12-2012	14,7428837	12,1276093	92693,3984
12-12-2012	13,0280933	12,2756329	93778,2188
13-12-2012	13,8854885	12,304409	92011,2188
14-12-2012	15,7163076	11,8887367	92021,6328
15-12-2012	16,0280704	11,1063871	93475,0938
16-12-2012	15,9741182	13,1237535	92854,2109
17-12-2012	14,6389551	11,8339605	92579,1797
18-12-2012	15,2722397	13,1504478	93566,0547
19-12-2012	10,3389959	10,855381	91240,0078
20-12-2012	5,63634491	11,0986977	92829,5859
21-12-2012	7,27319384	11,4505577	92940,375
22-12-2012	15,6912041	10,6362152	93250,5313
23-12-2012	16,2887688	10,5604649	92853,6797
24-12-2012	13,3765278	10,3340225	93566,8438
25-12-2012	4,59793758	10,6789494	93541,8594
26-12-2012	9,3094883	10,9016447	91807,4531
27-12-2012	11,8979034	10,8605223	92349,3906
28-12-2012	15,1916151	11,465477	92656,75
29-12-2012	16,0419598	11,2661705	92112,3828
30-12-2012	17,107193	10,8611879	92579,5547
31-12-2012	15,5093346	11,3221531	91273,5078
01-01-2013	17,6917744	-0,0698503	21,2172489
02-01-2013	18,2763538	10,2619896	92837,1484
03-01-2013	17,5028267	11,0341825	90122,2734
04-01-2013	15,6860027	10,9974289	89605,4375
05-01-2013	15,0650425	10,9604816	90693,3906

Fecha	°C	Presión	Flujo
06-01-2013	13,8595018	10,8509922	90736,0391
07-01-2013	15,9380322	11,1240168	91509,4531
08-01-2013	16,1458702	10,8908195	92134,4922
09-01-2013	19,4266338	10,380085	91665,1875
10-01-2013	22,7192135	9,35100365	93703,0469
11-01-2013	21,3162079	11,5294609	92248,8203
12-01-2013	18,1724453	10,6838913	91728,8984
13-01-2013	19,9601059	11,2532854	91767,3125
14-01-2013	18,5231819	10,9142866	92203,2969
15-01-2013	16,457655	10,8807945	90968,3672
16-01-2013	16,4241276	11,3832169	91435,9531
17-01-2013	15,9730492	10,8427582	92748,0313
18-01-2013	17,756731	12,3416481	92230,0625
19-01-2013	18,0165424	10,9157972	91866,3438
20-01-2013	17,8476753	9,72447968	90332,7813
21-01-2013	17,795702	10,576932	91532,3125
22-01-2013	16,2628021	10,9965992	91685,7266
23-01-2013	17,8736439	10,8085442	92604,125
24-01-2013	18,7483559	11,6651859	91793
25-01-2013	17,9775715	-0,00668335	26,8007088
26-01-2013	18,6790848	-0,03200531	26,8007088
27-01-2013	26,314106	0,87059039	9275,98926
28-01-2013	25,3062668	2,66814852	27150,0176
29-01-2013	24,2984276	4,46570683	45024,0469
30-01-2013	23,2905884	6,26326513	62898,0742
31-01-2013	22,2827492	8,06082344	80772,1016
01-02-2013	17,470932	-0,30440521	17,162178
02-02-2013	18,1653481	10,3956985	92019,6953
03-02-2013	19,6274052	9,84492302	92796,0078

Fecha	°C	Presión	Flujo
04-02-2013	20,3548851	9,94744873	91849,2109
05-02-2013	18,4192524	9,58161163	93610,2656
06-02-2013	18,8219833	10,6854553	94235,6563
07-02-2013	18,016552	10,6986427	91291,6563
08-02-2013	17,6268158	10,198967	92998,9844
09-02-2013	18,1074867	10,0168991	91716,5781
10-02-2013	12,7812662	10,4237032	93218,4531
11-02-2013	14,2881994	10,8678093	92046,6172
12-02-2013	16,457655	10,6501846	92713,5781
13-02-2013	16,0679283	10,7146168	91363,4375
14-02-2013	17,9873199	10,7900925	93383,3438
15-02-2013	17,7697144	10,6968765	94539,8281
16-02-2013	17,6528034	9,65086365	93050,2344
17-02-2013	13,6386614	10,1506882	91444,2813
18-02-2013	13,5607195	10,1498432	92966,3047
19-02-2013	12,6253824	10,6881485	93118,7031
20-02-2013	13,0800476	10,6444092	92915,1719
21-02-2013	14,716897	10,6086655	94726,0938
22-02-2013	18,0685177	10,1515703	92575,8125
23-02-2013	17,1851349	10,3669205	90410,5469
24-02-2013	13,1839762	10,214119	97250,2734
25-02-2013	18,8349667	10,7721176	94583,6875
26-02-2013	18,1334553	10,5766678	94819,9219
27-02-2013	17,6398201	10,709506	95695,9531
28-02-2013	17,9515858	10,8886108	94120,2969
01-03-2013	14,2329893	10,8251114	95703,0313
02-03-2013	10,943078	10,7591553	94939,7578
03-03-2013	15,292819	11,6496315	95529,3828
04-03-2013	16,4057007	11,2804031	94826,3359

Fecha	°C	Presión	Flujo
05-03-2013	17,1851349	10,9884682	95269,4063
06-03-2013	12,6123791	11,4897079	94566,7813
07-03-2013	14,794838	11,462944	96000,3906
08-03-2013	17,795702	11,3630142	98913,2969
09-03-2013	18,2114162	11,1102371	95891,375
10-03-2013	15,6132631	10,6880217	94710,4453
11-03-2013	15,1066236	10,8469486	95345,4063
12-03-2013	13,6808834	10,642643	94945,5469
13-03-2013	13,2229471	10,5275135	95424,5313
14-03-2013	12,4564962	10,3227921	96270,0313
15-03-2013	14,6389551	10,6736374	95079,9531
16-03-2013	18,3543148	10,9789658	95480,7344
17-03-2013	17,1591625	11,8149109	98950,9063
18-03-2013	14,067359	11,0959396	93822,5313
19-03-2013	11,8979034	11,5509109	94547,0781
20-03-2013	13,7166023	11,5309906	93898,3984
21-03-2013	13,6906157	11,4229584	94852,3672
22-03-2013	15,1585779	11,4481583	95529,1797
23-03-2013	16,0809307	11,5007601	94019,875
24-03-2013	14,2881994	11,292778	95197,9375
25-03-2013	12,9043684	11,3158798	95415,3359
26-03-2013	16,3926964	11,0611801	95245,0156
27-03-2013	18,8497334	11,4255905	94737,3438
28-03-2013	18,4192524	11,1826935	96990,4141
29-03-2013	16,4836426	10,5137634	94726,1484
30-03-2013	15,8341036	11,1622391	95482,3984
31-03-2013	13,1060352	11,085434	95515,1953
01-04-2013	9,97525597	10,9553299	94886,5781
02-04-2013	8,72815323	11,1458206	95957,9375

Fecha	°C	Presión	Flujo
03-04-2013	13,0670643	-0,21144867	5,67799473
04-04-2013	12,8851938	-0,26590729	14,6484375
05-04-2013	12,8202362	-0,09503937	14,6484375
06-04-2013	11,638072	0,05678558	14,6484375
07-04-2013	12,6773376	1,28396356	55761,0156
08-04-2013	13,2879047	11,7267866	93256
09-04-2013	14,6909103	11,4331894	92431,7656
10-04-2013	12,6123791	-0,28253937	23,7630806
11-04-2013	8,68918228	11,2666454	93322,0547
12-04-2013	7,34787941	10,6889839	93053,4375
13-04-2013	12,3135977	11,2462692	95594,5313
14-04-2013	19,0168381	10,3149261	94134,6875
15-04-2013	18,9049969	10,9426346	96142,3203
16-04-2013	16,418684	12,4839706	94259,2344
17-04-2013	17,6787891	11,7825623	94156,9453
18-04-2013	21,9007893	11,7366867	94628,8594
19-04-2013	17,6008492	11,1525297	95450,6953
20-04-2013	18,0035591	11,0355968	94738,875
21-04-2013	12,8072529	11,2060318	94928,3984
22-04-2013	12,0837221	10,9846373	94819,3281
23-04-2013	13,7214813	11,6869888	105010,602
24-04-2013	15,6870956	10,70681	94138,6406
25-04-2013	14,1582861	10,8384476	95634,8906
26-04-2013	10,2870407	11,189539	94736,4844
27-04-2013	7,28617764	11,693573	95471,1172
28-04-2013	12,2096825	11,6567497	95099,5469
29-04-2013	10,5858231	11,5407658	96634,3203
30-04-2013	11,6900463	11,7164726	94009,75
01-05-2013	15,817997	10,665349	102014,5

Fecha	°C	Presión	Flujo
02-05-2013	10,5450983	11,9064207	98506,6875
03-05-2013	9,10793304	11,9270134	99067,8594
04-05-2013	7,27319384	11,4575462	99781,2656
05-05-2013	11,378809	12,2142143	100657,063
06-05-2013	14,3271704	11,9257879	99852,7813
07-05-2013	15,9538631	11,882515	98912,0156

Ventilador de Combustión

Fecha	Presión	Nm³/hr
01-01-2008	-0,44198608	458,007813
01-02-2008	16,3442993	12297,6074
01-03-2008	16,3297958	12010,498
01-04-2008	15,5787125	14894,5313
01-05-2008	-0,2393142	1389,16016
01-06-2008	15,5963984	11989,2578
01-07-2008	15,4582663	12876,9531
01-08-2008	15,411953	14557,6172
01-09-2008	14,4987202	16935,5469
01-10-2008	15,5864735	16405,7617
01-11-2008	15,3103924	12303,7109
01-12-2008	14,8018599	12881,3477
01-01-2009	-0,5999527	1270,50781
01-02-2009	14,9792614	11838,8672
01-03-2009	13,8914471	16839,3555
01-04-2009	15,9374943	11133,0566
01-05-2009	14,7574387	15933,3496
01-06-2009	14,6631308	15822,2656
01-07-2009	14,5911169	17044,9219

Fecha	Presión	Nm ³ /hr
01-08-2009	14,3344727	16876,2207
01-09-2009	14,9316959	14540,2832
01-10-2009	14,7400055	13678,7109
01-11-2009	13,7569904	13463,623
01-12-2009	13,6524792	10791,0156
01-01-2010	-0,44206002	2515,625
01-02-2010	15,5100403	14296,875
01-03-2010	-0,80805206	3096,67969
01-04-2010	15,472538	13668,7012
01-05-2010	16,8036346	15366,2109
01-06-2010	14,8159866	15234,375
01-07-2010	14,4478493	15528,3203
01-08-2010	15,1533451	16203,6133
01-09-2010	14,5281429	16836,4258
01-10-2010	16,904974	15559,5703
01-11-2010	-0,41236115	4046,875
01-12-2010	14,2993889	12465,8203
01-01-2011	-0,94644165	-107,055664
01-02-2011	14,7734299	13079,1016
01-03-2011	16,3417416	13738,2813
01-04-2011	-0,70723724	30,7617188
01-05-2011	14,9391699	13347,6563
01-06-2011	14,1691837	13182,6172
01-07-2011	14,396595	14817,3828
01-08-2011	16,5328369	11313,2324
01-09-2011	14,8315392	13434,3262
01-10-2011	16,630228	13047,1191
01-11-2011	14,5478458	12731,4453
01-12-2011	16,7991676	10728,0273

Fecha	Presión	Nm³/hr
01-01-2012	-0,77111459	58,59375
01-02-2012	14,1377974	14351,0742
01-03-2012	14,5113068	13843,0176
01-04-2012	16,4448853	14030,7617
01-05-2012	17,238039	14124,7559
01-06-2012	13,4911976	14168,7012
01-07-2012	14,2995844	15429,1992
01-08-2012	14,2609882	13566,4063
01-09-2012	13,8031054	12547,3633
01-10-2012	-1,1427002	1822,26563
02-10-2012	-1,21876943	1875,24414
03-10-2012	-0,94426727	1717,77344
04-10-2012	-1,05171967	1395,50781
05-10-2012	-1,1256485	1459,96094
06-10-2012	-1,48606145	1568,35938
07-10-2012	-1,25752258	1800,78125
08-10-2012	-0,9566803	1824,21875
09-10-2012	-0,882173	1814,45313
10-10-2012	-0,85684967	1607,42188
11-10-2012	-1,25780487	1292,96875
12-10-2012	-1,11816406	1321,14954
13-10-2012	14,2305527	10780,2734
14-10-2012	14,8323441	10053,7109
15-10-2012	14,7713089	10941,4063
16-10-2012	15,0183105	11394,5313
17-10-2012	14,1686754	11556,6406
18-10-2012	15,1465988	12048,8281
19-10-2012	14,5497055	11245,1172
20-10-2012	14,6599045	10835,9375

Fecha	Presión	Nm ³ /hr
21-10-2012	15,0212326	10894,5313
22-10-2012	14,3741646	11987,3047
23-10-2012	14,7733488	12460,9375
24-10-2012	14,5990295	12674,8047
25-10-2012	14,9023209	15568,3594
26-10-2012	14,5400696	13189,4531
27-10-2012	14,5836563	13498,0469
28-10-2012	15,3941498	13187,5
29-10-2012	14,69944	13508,7891
30-10-2012	15,4491959	12574,2188
31-10-2012	14,9122391	13238,2813
01-11-2012	14,395793	4404,29688
02-11-2012	14,8981552	12701,1719
03-11-2012	16,1864319	13071,2891
04-11-2012	15,6552505	12984,375
05-11-2012	14,8181124	12248,0469
06-11-2012	16,1588364	11694,3359
07-11-2012	15,3209534	11837,8906
08-11-2012	14,5547638	12596,6797
09-11-2012	14,5599136	11812,5
10-11-2012	14,8311615	12261,7188
11-11-2012	15,0263329	13067,3828
12-11-2012	15,2774124	11839,8438
13-11-2012	14,8194809	12219,7266
14-11-2012	15,5515366	12209,9609
15-11-2012	14,7450047	11745,1172
16-11-2012	15,2271957	11497,0703
17-11-2012	14,9451981	11924,8047
18-11-2012	15,8993454	12476,5625

Fecha	Presión	Nm ³ /hr
19-11-2012	14,7225876	10003,9063
20-11-2012	15,0882187	12672,8516
21-11-2012	14,9046278	12708,9844
22-11-2012	15,0582123	13508,7891
23-11-2012	16,3544121	13224,6094
24-11-2012	15,0224915	12612,3047
25-11-2012	16,1009521	10760,7422
26-11-2012	15,3686142	12720,7031
27-11-2012	15,5771637	11857,4219
28-11-2012	14,6944475	10921,875
29-11-2012	14,9838943	9600,58594
30-11-2012	15,3389359	11745,1172
01-12-2012	14,8431015	12935,5469
02-12-2012	16,1746445	4408,20313
03-12-2012	15,5572662	10352,5391
04-12-2012	16,5276031	11475,5859
05-12-2012	17,4708328	12294,9219
06-12-2012	15,678215	11684,5703
07-12-2012	16,7488632	9362,30469
08-12-2012	16,8313065	10683,5938
09-12-2012	15,6653214	11436,5234
10-12-2012	15,9130173	11184,5703
11-12-2012	16,152092	9992,1875
12-12-2012	17,8800735	9657,22656
13-12-2012	16,9393463	12287,1094
14-12-2012	17,078186	9600,58594
15-12-2012	15,4119186	10727,5391
16-12-2012	17,6753159	11020,5078
17-12-2012	15,8634262	12783,2031

Fecha	Presión	Nm³/hr
18-12-2012	18,9495087	10967,7734
19-12-2012	15,4912844	10954,1016
20-12-2012	15,3387146	13577,1484
21-12-2012	16,6998367	11875,9766
22-12-2012	15,0424881	11891,6016
23-12-2012	14,9821167	12438,4766
24-12-2012	14,741951	12523,4375
25-12-2012	15,5760727	13029,2969
26-12-2012	15,2010422	13524,4141
27-12-2012	15,5639877	10648,4375
28-12-2012	16,1694717	11640,625
29-12-2012	15,50383	13131,8359
30-12-2012	15,1181946	12099,6094
31-12-2012	16,0642776	11595,7031
01-01-2013	-0,99408472	806,640625
02-01-2013	14,7757492	10124,0234
03-01-2013	15,897789	12836,9141
04-01-2013	14,898613	14973,6328
05-01-2013	15,2141571	14349,6094
06-01-2013	15,2452621	11632,8125
07-01-2013	16,0338745	12271,4844
08-01-2013	15,6257782	9375,97656
09-01-2013	14,6586838	13876,9531
10-01-2013	14,1155624	4258,78906
11-01-2013	16,6576385	8806,64063
12-01-2013	15,112999	8042,96875
13-01-2013	15,8966599	8383,78906
14-01-2013	15,3791351	8109,375
15-01-2013	15,8245201	7880,85938

Fecha	Presión	Nm ³ /hr
16-01-2013	16,7123337	9387,69531
17-01-2013	15,3224869	9813,47656
18-01-2013	15,8436127	5769,53125
19-01-2013	15,6337662	8572,26563
20-01-2013	14,7294846	4461,91406
21-01-2013	15,7299852	8377,92969
22-01-2013	16,3472366	8491,21094
23-01-2013	15,7195816	6660,15625
24-01-2013	16,8023911	4221,67969
25-01-2013	-0,8682785	1379,88281
26-01-2013	-0,96869659	1365,23438
27-01-2013	0,54012096	2011,1134
28-01-2013	3,44937563	3524,35181
29-01-2013	6,35863018	5037,59033
30-01-2013	9,26788521	6550,82861
31-01-2013	12,1771393	8064,06689
01-02-2013	-1,1615448	1218,91272
02-02-2013	15,0690575	9809,32617
03-02-2013	14,5230389	7937,01172
04-02-2013	14,3518467	11763,4277
05-02-2013	14,2240219	9005,85938
06-02-2013	15,1401443	13043,9453
07-02-2013	14,8762894	13125,9766
08-02-2013	14,6630478	11756,8359
09-02-2013	14,4391479	12541,0156
10-02-2013	14,9551315	12840,8203
11-02-2013	15,1793976	12454,1016
12-02-2013	14,9813156	13173,8281
13-02-2013	15,2589798	13492,1875

Fecha	Presión	Nm³/hr
14-02-2013	15,0404205	10601,5625
15-02-2013	15,278511	11587,8906
16-02-2013	14,2134933	10234,375
17-02-2013	14,9599533	11634,7656
18-02-2013	14,8252106	11347,6563
19-02-2013	15,4141998	11217,7734
20-02-2013	15,1139908	11028,3203
21-02-2013	15,0184097	12581,0547
22-02-2013	14,6539459	10961,9141
23-02-2013	14,7956543	11841,7969
24-02-2013	14,8376389	10502,9297
25-02-2013	15,3768692	11040,0391
26-02-2013	15,0355015	12118,1641
27-02-2013	15,3515396	11369,1406
28-02-2013	15,3841476	10441,4063
01-03-2013	15,2664719	11286,1328
02-03-2013	15,5245533	12048,8281
03-03-2013	16,9001465	12190,4297
04-03-2013	15,8141022	11810,5469
05-03-2013	15,5682755	10154,2969
06-03-2013	17,0033951	11434,5703
07-03-2013	15,7637711	13153,3203
08-03-2013	16,0335922	11093,75
09-03-2013	15,2955523	13878,9063
10-03-2013	15,5923538	11568,3594
11-03-2013	15,3905487	12759,7656
12-03-2013	15,3389435	12637,6953
13-03-2013	15,1943769	11529,2969
14-03-2013	15,0950203	9693,35938

Fecha	Presión	Nm³/hr
15-03-2013	15,6078644	11280,2734
16-03-2013	15,6879196	10274,4141
17-03-2013	16,6346054	9298,82813
18-03-2013	16,0924072	11576,1719
19-03-2013	16,1001968	11308,5938
20-03-2013	16,0017395	11973,6328
21-03-2013	15,5930176	12261,7188
22-03-2013	15,9728012	11785,1563
23-03-2013	16,1427498	10545,8984
24-03-2013	15,7457504	11115,2344
25-03-2013	16,0035172	11074,2188
26-03-2013	15,7339478	10118,1641
27-03-2013	16,1326275	10288,0859
28-03-2013	16,0096207	9666,01563
29-03-2013	15,3389206	10150,3906
30-03-2013	15,9694138	10331,0547
31-03-2013	15,8600235	11544,9219
01-04-2013	15,5648069	11879,8828
02-04-2013	15,9247818	11591,7969
03-04-2013	-1,09081268	2060,54688
04-04-2013	-1,31023407	2079,10156
05-04-2013	-1,05496979	2105,46875
06-04-2013	-0,87202454	2287,10938
07-04-2013	5,94026041	4361,32813
08-04-2013	16,8602219	11198,2422
09-04-2013	16,1383133	12468,75
10-04-2013	-1,16260529	1980,46875
11-04-2013	15,7707367	13189,4531
12-04-2013	16,2031784	8918,94531

Fecha	Presión	Nm³/hr
13-04-2013	15,3847351	12627,9297
14-04-2013	14,7708435	11566,4063
15-04-2013	15,4883804	10788,0859
16-04-2013	17,674675	10005,8594
17-04-2013	17,079216	10569,3359
18-04-2013	15,7975998	10447,2656
19-04-2013	16,0503845	10311,5234
20-04-2013	15,8742599	11043,9453
21-04-2013	16,1516647	11771,4844
22-04-2013	15,6716232	12257,8125
23-04-2013	16,1909046	11832,0313
24-04-2013	15,1733475	11915,0391
25-04-2013	16,1741409	7150,39063
26-04-2013	15,939537	8424,80469
27-04-2013	17,4284363	11176,7578
28-04-2013	15,5911484	13788,0859
29-04-2013	15,8694916	11396,4844
30-04-2013	15,9971466	11382,8125
01-05-2013	15,8095322	4286,13281
02-05-2013	17,0394058	9389,64844
03-05-2013	16,695282	11889,6484
04-05-2013	16,1025944	11367,1875
05-05-2013	16,7146606	12366,2109
06-05-2013	16,5970383	11752,9297
07-05-2013	16,6018295	10489,2578