PONTIFICIA UNIVERSIDAD CATÓLICA DE VALPARAÍSO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA QUÍMICA

PROYECTO PARA OPTAR AL TITULO DE INGENIERO CIVIL QUIMICO

EVALUACIÓN TÉCNICO-ECONÓMICA DE TECNOLOGÍA DE CONEXIÓN MULTICIRCUITAL EN PROCESO DE ELECTROREFINACIÓN, REFINERÍA Nº 2, CODELCO CHILE-DIVISIÓN CODELCO NORTE.

Ana Vargas Olivares

Profesores Guías: Carlos Carlesi Jara Jaime Fernández Celis

AGRADECIMIENTOS

"Nuestra recompensa se encuentra en el esfuerzo y no en el resultado. Un esfuerzo total es una victoria completa (Mahatma Gandhi)"

Agradezco:

...A Dios por brindarme la vida, por su compañía y guía a lo largo de mi carrera y por ser mi fortaleza en los momentos de debilidad...

...A mis padres Iván y Marcela por su infinito amor, su apoyo incondicional y haber creído siempre en mí, a mis hermanos Paulina y Raulito porque mi fin son ustedes...

... Al profesor patrocinarte de la memoria Alfonso Pidal López por su persistente guía, orientación y consejos...

... A mis tutores Jaime Fernández Celis y Carlos Carlesi Jara por sus constantes aportes y colaboración desinteresada...

... Finalmente a todas las personas que se cruzaron en este camino y que me dieron palabras de aliento y apoyo...

RESUMEN

En la presente memoria de título, se llevó a cabo la realización de un proyecto de cambio tecnológico en la Refinería N°2, División Codelco Norte.

Para esto se realizo el análisis de la incidencia de la nueva tecnología de conexión Multicircuital en el proceso actual de Electrorefinación.

Para la realización de la prueba industrial se consideraron relevantes las siguientes mediciones: distribución de densidad de corriente catódica en las celdas, consumo especifico de energía, pesos catódicos cosechados, eficiencia de corriente asociada, temperatura de operación promedio de barras interceldas, cantidad e intensidad de cortocircuitos por ciclo y cantidad de cátodos rechazados, siendo estos los parámetros de mayor importancia.

Al realizar un contraste de datos entre la tecnología convencional y la tecnología multicircuital, se determinó el impacto real de modificar las barras interceldas en el proceso de Electrorefinación.

Dos de los parámetros más relevantes para el proyecto son tanto el peso del cobre como el consumo de Energía debido a que ellos inciden de forma directa en la prueba industrial. Al finalizar el estudio se destaca un incremento de 1,19% de peso promedio cosechado con respecto al logrado a través de la Tecnología Convencional, además de una reducción del consumo especifico de energía promedio de 8,3 [kWh/Ton].

Por lo cual, en base a los resultados referente al peso de cobre y consumo de energía los resultados de la Evaluación Económica para el proyecto en un escenario medio se alcanza un VAN = 16932 [kUS\$] y un TIR 492%. Siendo el proyecto rentable incluso al posicionarse en un escenario negativo.

INDICE GENERAL

RESUMEN		iii
1.	INTRODUCCION	18
1.1	Objetivo General	19
2.	ANTECEDENTES GENERALES	21
2.1	Proceso del Cobre	21
2.1.1	Producción de Sulfuros	22
2.1.2	Producción de Sulfuros	22
2.2	Productos	22
2.2.1	Cátodos cCc.	22
2.2.2	Cátodos cCc SX-EW.	23
2.2.3	Cátodos Chuqui-p.	23
2.2.4	Cátodos cCc SBL.	23
2.3	Proyecto Cambio Tecnológico en Refinería	24
2.4	FICHA TÉCNICA DE CODELCO NORTE.	26
2.4.1	Historia:	26
2.4.2	Ubicación:	26
2.4.3	Dotación:	27
2.4.4	Características:	27
2.4.5	Recurso Geológico:	27
2.4.6	Organización.	27
2.4.7	Gerencias de Plantas.	28
2.4.8	Subgerencia Refinería.	28
2.4.9	Superintendencia de Ingeniería de Proceso.	30
2.5	ANTECEDENTES GENERALES DEL PROCESO	31
2.5.1	Composición Química del Ánodo	31
2.5.2	Características de los Ánodos	32
2.5.3	Parámetros de Diseño de Producción	33
2.5.4	Tipos de Celdas	33
2.5.5	Características Cátodos	34
2.5.6	Análisis Químico del Cátodo	34
2.5.7	Placa Catódica Permanente	35
2.5.8	Electrólito	35

iv

2.5.9	Reactivos	36
2.5.10	Energía Eléctrica	36
2.6	MANEJO DE MATERIALES	36
2.6.1	Ánodos	36
2.6.2	Cátodos	37
2.6.3	Scrap	37
2.7	Proceso de Electrorefinación	38
2.8	SISTEMA DE PREPARACIÓN DE ADITIVOS	40
2.8.1	Consumo Especifico de Aditivos	43
2.9	Operaciones	43
2.9.1	Cosecha	43
2.10	Servicios	44
2.10.2	Energía Eléctrica	44
2.11	SISTEMA DE CORRIENTE ALTERNA Y CONTINUA	45
2.11.1	Corriente Continua	45
2.11.2	Rol de la Corriente Eléctrica	48
3.	FUNDAMENTOS TEORICOS	50
3.1	REFINERÍA ELECTROLÍTICA DEL COBRE	50
3.1.1	Descripción de Refinación Electrolítica de Cobre	50
3.2	Teoría de Circuitos Eléctricos	52
3.2.1	Circuito Eléctrico	52
3.2.2	Teoría de Circuitos	53
3.2.3	Ley de Ohm	54
3.2.4	Ley de Kirchhoff	54
3.2.5	Circuito en Serie	57
3.2.6	Circuito en Paralelo	57
3.3	Configuración Walker	58
3.3.1	Distribución de Corriente Actualmente Utilizada: Conexión Walker	61
3.3.2	Situación Actual en Refinería de Conexión Walker	63
3.4	CONEXIÓN MULTICIRCUITAL	63
3.4.1	Distribución de Corriente en Prueba: Conexión Multicircuital	64
3.4.2	Beneficios de la Conexión Multicircuital	67
4.	DESARROLLO DEL ESTUDIO	68
4.1	ETAPA DE EVALUACIÓN CON OPTIBAR 1.0	69

v

4.1.1	Procedimiento de Medición de Prueba Industrial con Optibar 1.0	72
4.1.2	Mediciones de Variables del Proceso	73
4.1.3	Consumo de Energía	78
4.1.4	Pesos Cosechados y eficiencia de Corriente	84
4.1.5	Consumo Específico de Energía	88
4.1.6	Ocurrencia de Cortocircuitos	90
4.1.7	Temperatura de Operación Barras Intercelda	93
4.1.8	Rechazo Catódico	96
4.1.9	Cuadro Resumen Prueba	98
4.2	ETAPA DE EVALUACIÓN CON OPTIBAR 2.0	100
4.2.1	Medición de Prueba Industrial con Optibar 2.0	105
4.2.2	Problemas operacionales detectados asociados al uso de capping board de goma en Refinería N°2	106
5.1	Costo Total Del Proyecto	115
5.2	Requerimientos a División Codelco Norte	116
5.3	COSTOS DE INVERSIÓN	116
5.4	COSTOS DE PRODUCCIÓN	117
5.5	FLUJO DE CAJA	117
5.6	VAN y TIR del Proyecto	120
5.7	ANALISIS DE SENSIBILIDAD	122
5.7.1	VAN v/s Producción Cu	122
5.7.2	VAN v/s Precio de Energía Eléctrica	126
6.	CONCLUSIONES	131
7.	BIBLIOGRAFÍA	135
ANEXO A:	DESARROLLO DEL ESTUDIO	138
ANEXO B:	EVALUACIÓN ECONÓMICA	160

INDICE DE TABLAS

Tabla 2- 1:	Composición Química Promedio de Ánodos por Proveedores	2
Tabla 2- 2:	Composición Química Promedio de Cátodos	4
Tabla 2- 3:	Distribución de Celdas y Traforectificadores	9
Tabla 2- 4:	Distribución de sistemas de preparación y dosificación de aditivos en circuitos hidráulicos	2
Tabla 2- 5:	Concentración y Flujo de Aditivos por Circuitos del Nº 9 al Nº 124	2
Tabla 2- 6:	Concentración y Flujo de Aditivos por Circuitos del Nº 13 al Nº 16 4	3
Tabla 2- 7:	Consumos específicos de aditivos	3
Tabla 2- 8:	Voltaje por Circuitos4	4
Tabla 2- 9:	Listado de Circuito Eléctrico y sus Caracterizas	7
Tabla 4- 1:	Dimensiones Capping Board para Correcto Funcionamiento Refinería	9
Tabla 4- 2:	Valores de Densidad de Corriente Promedio Calculados para cada tecnología de barra intercelda durante un primer ciclo catódico de un ciclo anódico de producción	5
Tabla 4- 3:	Valores de Densidad de Corriente Promedio Calculados para cada tecnología de barra intercelda durante un segundo ciclo catódico de un ciclo anódico de producción	5
Tabla 4- 4:	Valores de Densidad de Corriente Promedio Calculados para cada tecnología de barra intercelda durante un ciclo anódico de producción7	6
Tabla 4- 5:	Voltajes de Semisección y Consumos de Energía Promedio Calculados en cada ciclo catódico de producción durante la prueba industrial de conexión Multicircuital	2
Tabla 4- 6:	Porcentajes de Reducción de Voltajes de Semisección Promedio Calculados por ciclo anódico de producción durante la prueba industrial de conexión Multicircuital	3
Tabla 4-7:	Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción por cada tecnología durante la prueba	5

Tabla 4- 8:	Resumen eficiencia de corriente obtenida en cada ciclo durante la prueba industrial de conexión Multicircuital
Tabla 4- 9:	Resumen consumo específico de energía obtenido en cada ciclo durante la prueba industrial de conexión Multicircuital
Tabla 4- 10:	Resumen de ocurrencia de cortocircuitos en primer ciclo catódico de un ciclo anódico de producción durante la prueba industrial de conexión Multicircuital.92
Tabla 4-11:	Resumen de ocurrencia de cortocircuitos en segundo ciclo catódico de un ciclo anódico de producción durante la prueba industrial de conexión Multicircuital.93
Tabla 4-12:	Resumen temperatura de operación promedio barras intercelda durante un ciclo anódico completo de producción94
Tabla 4-13:	Resumen porcentaje de rechazo de producción de cátodos durante Prueba Industrial de Conexión Multicircuital97
Tabla 4-14	Comparación de resultados obtenidos con barras convencionales y Multicircuitales Optibar 1.0 durante Prueba Industrial
Tabla 4- 15:	Comparación de pesos de cátodos cosechados en semisección 14-1B al utilizar Capping board de Goma y Capping board de polímero vinil éster moldeado. 110
Tabla 4- 16:	Comparación de pesos promedio de cátodos cosechados en semisección 14-1B al utilizar Capping board de Goma y Capping board de polímero vinil éster moldeado
Tabla 5-1:	Datos Referente al Estudio Económico de la Prueba Industrial de Conexión Multicircuital
Tabla 5-2:	Flujo Caja de Evaluación Económica "Prueba Industrial de Tecnología de Conexión Multicircuital
Tabla 5-3:	Indicadores Económicos de Flujo Caja120
Tabla 5-4:	Escenarios respecto a la producción de cobre123
Tabla 5-5:	% Variación de Producción de cobre125
Tabla 5-6:	VAN v/s Producción Cu
Tabla 5-7:	Consumo v/s Valor energía
Tabla 5-8:	VAN v/s Precio Energía Eléctrica

Tabla A-1:	Datos filtrados referentes a los Valores de Densidad de Corriente Promedio Calculados para la Tecnología Convencional durante un primer ciclo catódico de un ciclo anódico de producción
Tabla A-2:	Datos filtrados referentes a los Valores de Densidad de Corriente Promedio Calculados para la Tecnología Multicircuital durante un primer ciclo catódico de un ciclo anódico de producción
Tabla A-3:	Datos filtrados referentes a los Valores de Densidad de Corriente Promedio Calculados para la Tecnología Convencional durante un segundo ciclo catódico de un ciclo anódico de producción
Tabla A- 4:	Datos filtrados referentes a los Valores de Densidad de Corriente Promedio Calculados para la Tecnología Multicircuital durante un segundo ciclo catódico de un ciclo anódico de producción
Tabla A-5:	Datos Filtrados referentes a los Valores de Densidad de Corriente Promedio Calculados para la Tecnología Convencional durante un ciclo anódico de producción
Tabla A-6:	Datos Filtrados referentes a la Tecnología Multicircuital durante un ciclo anódico de producción
Tabla A-7:	Datos Referentes a los Voltajes de Semisección y Consumos de Energía Promedio Calculados en cada ciclo catódico de producción durante la prueba inºdustrial de conexión Multicircuital
Tabla A-8:	Datos Referentes a los Porcentajes de Reducción de Voltajes de Semisección Promedio Calculados por ciclo anódico de producción durante la prueba industrial de conexión Multicircuital
Tabla A- 9:	Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-1A de tecnología multicircuital del 24 junio 2009, Renovación Parcial
Tabla A-10:	Datos Referentes a Resumen Pesos Totales de Cátodos cosechados por ciclo Anódico de producción en semisección 14-1B de tecnología convencional del 24 junio 2009, Renovación Parcial
Tabla A-11:	Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-1B de tecnología convencional del 07 julio 2009, Renovación Total
Tabla A-12:	Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-1A de tecnología multicircuital del 23 julio 2009, Renovación Parcial

Tabla A- 13:	Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-1B de tecnología convencional del 23 julio 2009, Renovación Parcial
Tabla A-14:	Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-1A de tecnología multicircuital del 04 agosto 2009, Renovación Parcial
Tabla A-15:	Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-1B de tecnología convencional del 04 agosto 2009, Renovación Parcial
Tabla A-16:	Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-1A de tecnología multicircuital del 12 agosto 2009, Renovación Total
Tabla A-17:	Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-1B de tecnología convencional del 12 agosto 2009, Renovación Total
Tabla A-18:	Datos Referente al Resumen eficiencia de corriente obtenida en cada ciclo durante la prueba industrial de conexión Multicircuital
Tabla A-19:	Datos Referente al Resumen eficiencia de corriente obtenida en cada ciclo durante la prueba industrial de conexión Convencional
Tabla A-20:	Datos Referente al Resumen del Consumo Específico de Energía obtenido en cada ciclo durante la prueba industrial de conexión Multicircuital
Tabla A-21:	Datos Referente al Resumen del Consumo Específico de Energía y su Reducción obtenido en cada ciclo durante la prueba industrial de conexión Multicircuital
Tabla A-22:	Datos Referente al Resumen temperatura de operación promedio barras intercelda durante un ciclo anódico completo de producción, semisección 14- 1A
Tabla A-23:	Datos Referente al Resumen temperatura de operación promedio barras intercelda durante un ciclo anódico completo de producción, semisección 14- 1B
Tabla A-24:	Datos Referente al Resumen porcentaje de rechazo de producción de cátodos durante Prueba Industrial de Conexión Multicircuital159
Tabla B-1:	Datos de Escenario Referente al Flujo de Caja del Proyecto de Tecnología de Conexión Multicircuital

Tabla B-2:	Datos de Ingresos Referente al Flujo de Caja del Proyecto de Tecnología d	de
	Conexión Multicircuital	162
T-11. D 2.	Deter de Derevier de Encarée Eléctrice Decenerte de Defensate el Elecie de Ce	• -

INDICE DE FIGURAS

Figura 2-1:	Organigrama perteneciente a Subgerencia Refinería.	. 30
Figura 2-2:	Organigrama Superintendencia de Ingeniería de Procesos	.31
Figura 3-1:	Ejemplo de circuito eléctrico	. 53
Figura 3-2:	Primera Ley de Circuitos de Kirchhoff	. 55
Figura 3-3:	Segunda Ley de Circuitos de Kirchhoff	. 56
Figura 3-4:	Circuito en serie	. 57
Figura 3-5:	Circuito en paralelo.	. 58
Figura 3-6:	Nave con celdas electrolíticas y electrodos	. 60
Figura 3-7:	Actual Configuración Walker	. 62
Figura 3- 8:	Whitehead basada en la Configuración Multicircuital	. 65
Figura 3-9	Modelo de circuito eléctrico de Configuración Walker (izquierda) Multicircuital (derecha)	у .66
Figura 4-1:	Despiece de la barra intercelda Multicircuital diseño Optibar 1.0 para implementar la tecnología Multicircuital en Refinería Nº 2, Codelco Norte	.70
Figura 4-2:	Barras intercelda de conexión Multicircuital diseño Optibar 1.0 instaladas en 2 celdas de la semisección 14-1A en Refinería Nº 2, Codelco Norte	0 . 70
Figura 4-3:	Vista superior de barra Multicircuital diseño Optibar 1.0 con capping board de compuesto polimérico cargada con ánodos y cátodos durante la etapa de prueba.	.71
Figura 4-4:	Vista de semisección 14-1A con barras intercelda Multicircuitales diseño Optibar 1.0 en operación en Refinería Nº 2, Codelco Norte	.71
Figura 4-5:	Fluke i1010 y Medición indirecta de corriente	.74
Figura 4-6:	Medición de Voltajes de Contacto	.78
Figura 4-7:	Medición de Voltajes de Segmentos	. 79
Figura 4-8:	Medición de Voltajes de Segmento	. 80

Figura 4-9:	Problemas de grietas por expansión/contracción sufridos por capping board de compuesto polimérico instalados en semisección 14-1A debido a cambios constantes de temperatura
Figura 4-10:	Despiece de la barra intercelda Multicircuital diseño Optibar 2.0 con base FRP para implementar la Tecnología Multicircuital en la Refinería Nº 2, Codelco Norte
Figura 4-11:	Barras intercelda de Conexión Multicircuital diseño Optibar 2.0 instaladas en 20 celdas de semisección 14-1B en Refinería Nº 2, Codelco Norte104
Figura 4-12:	Vista de barra Multicircuital diseño Optibar 2.0 con capping board de polímero vinil éster moldeado utilizado normalmente en Refinería Nº 2 104
Figura 4-13:	Vista de Semisección 14-1B con barras intercelda Multicircuitales diseño Optibar 2.0 en operación en Refinería Nº 2, Codelco Norte
Figura 4-14:	Capping board de goma en operación en celdas con barras Multicircuitales diseño Optibar 2.0 en semisección 14-1B durante la prueba
Figura 4-15:	Pérdida de características de diseño capping board de goma: Descomposición de goma-efecto sobre contactos de cátodos y barra conductora107
Figura 4-16:	Pérdida de características de diseño capping board de goma.: Deformación por efecto del peso de los ánodos y la temperatura107
Figura 4-17:	Pérdida de características de diseño capping board de goma: Rasgadura del capping board108
Figura 4-18:	Operación de celdas de refinación con ánodos aislados por grandes trozos de capping board de goma entre ánodo y barra conductora
Figura 4-19:	Ejemplo de voltajes de contacto de cátodos en operación en celdas de refinación con capping board de goma en semisección 14-1B113

INDICE DE GRAFICOS

Gráfico 4- 1:	Distribución de densidades de corriente catódica de cada tecnología durante el primer ciclo catódico de un ciclo anódico completo de producción
Gráfico 4- 2:	Distribución de densidades de corriente catódica de cada tecnología durante el segundo ciclo catódico de un ciclo anódico completo de producción77
Gráfico 4- 3:	Comparación de consumos de energía producidos por cada tecnología durante la prueba
Gráfico 4- 4:	Evolución de voltajes de semisecciones Convencional y Multicircuital durante un ciclo catódico completo
Gráfico 4-5:0	Comparación de pesos totales producidos por cada tecnología durante la prueba.86
Gráfico 4- 6:	Comparación de eficiencia de corriente resultante de cada tecnología durante la prueba industrial
Gráfico 4- 7:	Comparación de consumo específico de energía por cada tecnología durante la prueba industrial
Gráfico 4- 8:	Comparación de temperaturas promedio de operación barras intercelda durante un ciclo anódico completo
Gráfico 4- 9:	Perfil de temperaturas de contactos en barras intercelda en operación95
Gráfico 4-10	Comparación porcentaje de rechazo de producción durante la Prueba Industrial de Conexión Multicircuital
Gráfico 4-11	Ejemplo de voltajes de contacto de ánodos en operación en celdas de refinación con capping board de goma en semisección 14-1B
Gráfico 4-12	2:Ejemplo de voltajes de contacto de cátodos en operación en celdas de refinación con capping board de goma en semisección 14-1B
Gráfico 5-1:	Flujo de Caja después del impuesto121
Gráfico 5-2:	Flujo de Caja Acumulado después del impuesto
Gráfico 5-3:	Análisis de Sensibilidad de VAN v/s % Variación producción de cobre 126
Gráfico 5-4:	Análisis de Sensibilidad VAN v/s precio consumo específico de Energía 128

NOMENCLATURA

AGC: Carro Doble Gancho Autónomo ALN: Ánodos externos Fundición Alto Norte A/I: antes impuesto BC: Grúa Porta Carro cCc: Cátodos Chuquicamata CB: Capping board **CD:** Corriente Directa COCI: Cortocircuito CP: Cátodo permanente CODELCO: Corporación Nacional del Cobre de Chile DCN: División Codelco Norte D/I: después impuesto EE: Energía Eléctrica **EW:** Electrowinning FPO: Fundición planta de Óxidos, Fundición de Scraps ubicada al norte-poniente de la Refinería N°2 FPS: Fundición planta de Sulfuros, Fundición Concentrado de Mina Chuquicamata FURE: Subgerencia de Fundición y Subgerencia de Refinería GCO: Coordinador G2. HDPE: Polietileno de Alta Densidad IM2: Instituto de Innovación en Minería y Metales LME: Bolsa de Metales de Londres m.s.n.m.: metros sobre el nivel de mar MDC: Máquina Despegadora de Cátodos MLS: Máquina Lavadora de Scraps MPA: Máquina Preparadora de Ánodos 2 PCO: PLC Coordinador. PCS7: Sistema dedicado al Control de Procesos

PDA: Planta de Automatización

PLC: Controlador Lógico Programable

PTBA: Planta de Tratamiento de Barros Anódicos

RP: Renovación Parcial

RT: Renovación Total

SAL: Ánodos Externos del Salvador

SBL: Sulfuros de baja Ley

SX: Extracción por Solvente

TC: Portador de Transferencia.

TIR: Tasa Interna de Retorno

TMF: Toneladas Métricas Finas

TPA: Toneladas por Año

TTE: Ánodos externos de El Teniente

V/celda: Voltaje por celda

VAN: Valor Actual Neto

VDC: Control Dinámico del Vehículo

<u>CAPÍTULO 1</u>

INTRODUCCIÓN

1. INTRODUCCION

El cambio Tecnológico producido en el año 2006 en la Refinería Electrolítica de Cobre de la División Codelco Norte trajo consigo importantes cambios y la imperiosa necesidad de seguir innovando para mejorar el Proceso de Electrorefinación.

Uno de las principales necesidades fue optimizar y mejorar los parámetros que inciden directa e indirectamente en dicho Proceso de Electrorefinación.

Por lo cual, se puso en marcha un proyecto de innovación Industrial, el cuál consistía en el mejoramiento de barras segmentadas, también llamadas "barras multicircuitales", las que fueron implementadas en primeria instancia en una planta piloto con la supervisión de ingenieros de Chuquicamata y de la empresa Optibar/Universidad de Concepción.

Al implementar este proyecto tecnológico en la Refinería Electrolítica específicamente en la semisección 14-1 en prueba, se perseguía con esta nueva conexión aumentar el nivel de producción y mejorar la calidad del producto al incrementar la uniformidad en peso y forma de los cátodos de cobre. Adicionalmente, conseguir que la nueva estructura de rectificación siguiera la tendencia global de optimizar la calidad de la energía eléctrica de los sistemas de potencia industrial.

Debido a las pruebas industriales realizadas en la semisección 14-1 con un trabajo en terreno se evaluó y comprobó que las barras multicircuitales presentan variadas ventajas respecto a las barras convencionales instaladas actualmente en Refinería. De los parámetros más importantes de los cuales se realizaron mediciones como: corrientes catódicas, voltajes de contacto, de segmentos, de semisección, temperatura de contactos y barras y el registro riguroso de pesos catódicos en cada renovación catódica, destacan como principales parámetros la disminución del consumo de energía específica para la producción de cobre refinado y el aumento de peso catódico conseguido con la nueva conexión de las barras multicircuitales.

1.1 Objetivo General

Realizar una evaluación técnico-económica de una nueva distribución de corriente, la tecnología de conexión Multicircuital, evaluando parámetros que inciden de manera directa al proceso de Electrorefinación, esto en sus dos etapas de evaluación: Optibar 1.0 y Optibar 2.0.

CAPÍTULO 2

ANTECEDENTES GENERALES REFINERÍA, CODELCO NORTE

2. ANTECEDENTES GENERALES

2.1 Proceso del Cobre

El Cobre aparece vinculado en su mayor parte a minerales sulfurados, aunque también se lo encuentra asociado a minerales oxidados. Estos dos tipos de minerales requieren de procesos productivos diferentes, pero en ambos casos el punto de partida es el mismo: extracción del material de minas ya sean a rajo abierto o subterráneo.³

El proceso de obtención y refinación del cobre depende de que el mineral sea sulfuros.

La línea de los minerales sulfurados (Pirometalurgía) contempla las etapas de:

- 1. Exploración y trabajo geológico.
- 2. Extracción a rajo abierto y/o Extracción subterránea.
- 3. Molienda y concentración.
- 4. Fundición.
- 5. Electrorefinación.

En el caso de que el mineral sea óxidos se utiliza la vía hidrometalúrgica en la que se producen directamente cátodos.⁴

La línea de los minerales oxidados (Hidrometalurgia) contempla las etapas de:

- 1. Exploración y trabajo geológico.
- 2. Extracción a rajo abierto.
- 3. Chancado y aglomeración.
- 4. Lixiviación
- 5. Extracción por solventes.
- 6. Electroobtención

2.1.1Producción de Sulfuros

Los cátodos marcas cCc, se obtienen de minerales sulfurados con una ley de 0,5 a 1,2% de cobre.

Mediante el proceso de flotación se convierte el mineral triturado en un concentrado de 30% de cobre, el cual es fundido para llegar a un eje de 70% de cobre. Luego se somete a fusión en hornos convertidores para llegar a una pureza de 99%, eliminando impurezas adicionales a través de un proceso de refinación del blíster a fuego, para llegar finalmente a ánodos de cobre con una pureza de 99,5%.

2.1.2Producción de Sulfuros

Para producir los cátodos marca cCc SX-EW, CHUQUI – P se usan técnicas hidrometalurgicas para minerales oxidados de 0,6 a 0,9% de cobre. Para fabricar cátodos cCc SBL se utilizan minerales sulfurados de 0,35% de cobre. En ambos casos, el mineral triturado es tratado con una solución de agua con ácido sulfúrico para luego llegar a una solución de lixiviación de 6 [g/l] de cobre. Luego está solución es enviada a una etapa de extracción por solventes, donde el metal (cobre) es extraído de la solución mediante reactivos orgánicos, reduciendo el contenido de la solución a unos 0,6 [g/l] de cobre, la cual es reciclada para seguir en la etapa de lixiviación. Mientras tanto, el orgánico cargado pasa a un circuito que contiene electrolito pobre, el cual extrae el metal desde el reactivo orgánico, aumentando la concentración de cobre en dicho electrolito de 30 a 45 [g/l], aproximadamente.

Dicho electrolito cargado es enviado a la planta de Electroobtención, donde finalmente se obtienen los cátodos de cobre de una pureza de 99,99%.

2.2 Productos

2.2.1Cátodos cCc.

Registrado en la Bolsa de Metales de Londres (LME) como Grado A y en el COMEX como Grado 1, Los cátodos cCc provienen de procesos convencionales de Electrorefinación de la Refinería de División Codelco Norte – Chuquicamata, este poseía una capacidad nominal de 670.000, esta capacidad de tratamiento antes del Cambio Tecnológico de Refinería, con el Cambio Tecnológico se estima aumentar la capacidad a 840.000 TPA. Esta marca recibió certificación ISO 9002 en Enero del año 1998.

2.2.2Cátodos cCc SX-EW.

Registrado en la Bolsa de Metales de Londres (LME) como Grado A, los cátodos marca cCc SX-EW son producidos con tecnología convencional de Electroobtención en los circuitos de la Planta de Óxidos de División Codelco Norte – Chuquicamata. Dicha planta tiene una capacidad nominal de 115.000 TPA.

2.2.3Cátodos Chuqui-p.

Esta es una marca no registrada, que es producida mediante una tecnología de Electroobtención con cátodos permanentes en los circuitos "E" y "F" de la Planta de Óxidos de la División Codelco Norte – Chuquicamata. Estos circuitos tienen una capacidad nominal de producción de 64.000 TPA.

2.2.4Cátodos cCc SBL.

Esta es una marca que se encuentran registrada en la Bolsa de Metales de Londres (LME) como Grado A y en COMEX como Grado 1, los cátodos cCc SBL son producidos en la Planta de Sulfuros de Baja Ley de Chuquicamata. Dicha planta tiene una capacidad nominal de producción de 18.000 TPA.

2.3 Proyecto Cambio Tecnológico en Refinería

La Refinería Electrolítica de cobre estaba diseñada para producir 855000 tm Cu/año, en forma de cátodos grado "A" de LME, a partir de ánodos provenientes de las fundiciones: Chuquicamata (FPS y FPO), El Teniente, Salvador y terceros como AltoNorte.

Al introducir la nueva tecnología de cátodos permanentes se estará introduciendo un nuevo producto en el mercado, los cátodos cCc-p, el que debe mantener el posicionamiento de punta de la actual marca cCc. El nuevo cátodo cCc-p fue registrado de igual manera en la Bolsa de Metales de Londres.

La Refinería N°1 la cuál presenta una capacidad de 192000 tm Cu/año, fue cerrada siendo convertida en un 100 % en la Refinería N° 2. Los cátodos serán producidos en la Refinería N° 2, la cual será expandida en 200 celdas en la misma planta.

El proyecto de cambio tecnológico desarrolla principalmente:

- La conversión desde la tecnología tradicional de láminas iniciales a la tecnología de cátodos permanentes de acero inoxidable del proceso KIDD y la incorporación de los Sistema de Manejo Externo de Electrodos y el Sistema Automático de Manejo Interno de Electrodos.
- Mejoras en el proceso (cambio calidad de agua, mediciones y controles, filtración de electrolito etc.)

La incorporación de la tecnología de cátodos permanentes requiere un alto grado de automatización de todas las máquinas, equipos y sistemas involucrados en el manejo de materiales y en el tratamiento de los electrodos.

Desde el punto de vista de procesos, las principales contaminaciones del cobre electrolítico son la precipitación, arrastre u oclusión de compuestos de impurezas en la superficie catódica. Para minimizar estos tipos de contaminación, en la Refinería se controlarán lo siguientes parámetros:

- 1. Control del nivel de impurezas de los ánodos alimentados al proceso.
- 2. Control de la dosificación de aditivos.
- 3. Filtrado de un porcentaje del volumen de electrolito de circulación.
- 4. Control de las impurezas en el electrolito de circulación

El alto grado de automatización requerido y el control de proceso están integrados en una Plataforma de Automatización (PDA), la que se caracteriza básicamente por integrar dos subsistemas principales:

- Un subsistema dedicado al manejo y movimiento de electrodos en el interior de la refinería denominado ISCP.
- Un subsistema dedicado al control de las variables relacionadas con la circulación y filtración del electrolito por los diferentes circuitos y celdas, y los circuitos eléctricos asociados PCS7.

Este sistema global automatizado de manejo y tratamiento de electrodos, y control del proceso permitirá una mejora continua de la operación, de su productividad y de la calidad de los cátodos. Además, permite introducir y asegurar la trazabilidad de la producción de cobre, lo que permite a su vez lograr el objetivo esencial del proyecto: aumentar la productividad asegurando la calidad de los cátodos.

2.4 FICHA TÉCNICA DE CODELCO NORTE.

2.4.1 Historia:

Codelco Norte comenzó a operar el año 2002 como resultado de la fusión entre las Divisiones Chuquicamata y Radomiro Tomic, decretada en la sesión ordinaria del Directorio el 27 de Marzo de ese año, donde se aprobó una nueva organización para Codelco.

La unión busca un manejo integrado de los recursos e instalaciones que posee la compañía en la II Región, para así desarrollar el inmenso potencial de valor que existe en la zona.

La mina de Chuquicamata entró en operaciones en 1910 a cargo de la compañía Chile Exploration Company, propiedad de la familia Guggenheim de Nueva York, aunque sus propiedades mineras también eran conocidas desde hace siglos por culturas prehispánicas: Diaguitas y Atacameños que trabajaron el metal.

Radomiro Tomic fue inicialmente descubierto en la década de 1950, pero sus operaciones comenzaron en 1995, después que Codelco actualizó los estudios sobre la factibilidad de su explotación y contó con la tecnología necesaria para explotarlo de manera económicamente rentable.⁵

2.4.2 Ubicación:

Codelco Norte está ubicado en el corazón del desierto más árido del mundo. El complejo minero de Chuquicamata, que está ubicado a 1.650 km al norte de la capital de Chile y a 2.870 m. s. n. m., cuenta con dos minas de explotación a rajo abierto: Chuquicamata y Mina Sur.

Por su parte, el centro de trabajo Radomiro Tomic, que está ubicado a 1.670 km de Santiago y a 3.000 m. s. n. m. en la cordillera de Los Andes, es un yacimiento también de explotación a rajo abierto.⁵

2.4.3Dotación:

Codelco Norte mantiene en promedio una dotación de 20.000 trabajadores, de los cuales 8.000 corresponden a la dotación propia de Codelco y 12.000 trabajadores de empresas colaboradoras.

2.4.4Características:

Codelco es el principal productor de cobre del mundo. Además es una de las empresas más grandes de Chile.

La Corporación cuenta con las mayores reservas y recursos mineros de su propiedad. La razón fundamental detrás de su conformación como división es, reflejar la estrategia basada en una visión de futuro, que implica desplegar todo su potencial de negocios tanto en Chile como en el extranjero para mantenerse como líder en la industria del cobre.

La política de Codelco ha estado orientada a darle prioridad a las ventas de cobre refinado a fabricantes o productores de semielaborados. La Corporación considera a sus clientes como socios estratégicos.

2.4.5 Recurso Geológico:

Tiene unas 77 millones de TMF en reservas de cobre en el caso de Codelco Norte: Chuquicamata, Radomiro Tomic, Mansa Mina y Mina Sur.⁶

2.4.6Organización.

Codelco se organiza a través de las siguientes gerencias:

- Gerencia de Riesgo, Ambiente y Calidad
- Gerencia de Desarrollo Humano
- Gerencia de Proyectos
- Gerencia de Servicios
- Gerencia de Suministros
- Gerencia de Mantenimiento
- Gerencia de Minas
- Gerencia de Plantas
- Gerencia de Recursos Mineros y Desarrollo

2.4.7Gerencias de Plantas.

Es la Unidad de Negocios responsable de operar las Plantas de la división, incluyendo la Fundición de Concentrados y la Refinería Electrolítica, cumpliendo el contrato de procesamiento de mineral establecido con la Gerencia de Recursos Mineros y Desarrollo, de manera de maximizar el valor de su negocio.

Esta Gerencia Plantas está conformada por las siguientes Áreas:

- Gerencia de Hidrometalurgia Norte.
- Gerencia de Hidrometalurgia Sur.
- Gerencia de Concentración.
- Gerencia FURE (Subgerencia Fundición y Subgerencia Refinería)

2.4.8Subgerencia Refinería.

El objetivo básico de ésta Subgerencia es cumplir con la etapa final del proceso metalúrgico de la producción de cobre correspondiente a la línea de minerales sulfurados, para agregar valor y lograr con ello productos y subproductos finales de alta calidad, fácilmente transables en el mercado tradicional.

Mediante el empleo de técnicas electrometalúrgicas, el cobre anódico (99,70%), se transforma en cátodos Electrorefinados con un contenido de 99,99% de pureza, los cuales son exportados. Este producto posteriormente es fundido en hornos (como por ejemplo de colada continua) y se obtiene un alambrón de cobre, el cual en su posterioridad recibirá un tratamiento específico con el fin de obtener alambre de diversos diámetros.

Debido al excedente existente en la capacidad instalada de la Refinería, con respecto al cobre producido sólo en Chuquicamata, es posible refinar ánodos de cobre externos a Chuquicamata entre otros, los provenientes de la División Teniente de Codelco y de la Fundición Alto Norte Noranda. En el futuro está considerada la posibilidad de ampliar esta vía de procesamiento a otros proveedores.

La Subgerencia de Refinerías se divide en cuatro Superintendencias como lo muestra la Figura 2-1. Esta Subgerencia consta específicamente de tres áreas operativas:

Refinerías Electrolíticas y Planta de Tratamiento de Barro Anódico: Que corresponde al lugar en donde los barros anódicos son lixiviados para recuperar metales nobles como cobre, oro, plata, etc. que quedan depositados en el fondo de la celda en el proceso de electrorefinación.

Fundición de Cobre: El objetivo fundamental de la Fundición de Cobre es fundir todo el cobre secundario proveniente del proceso de Electrorefinación (restos anódicos, cátodos rechazados, recortes de láminas rechazadas, etc.) y moldear ánodos de cobre. También en esta área, se fabrican moldes que son requeridos para hacer ánodos.

Unidad de Embarque: Esta área tiene el propósito de efectuar las labores de inspección y embarque de los productos de cobre aptos para la comercialización, los cuales son: cátodos ER Grado A (cumplen especificaciones físicas y químicas), cátodos ERR (no cumplen especificaciones físicas) y cátodos STD (no cumplen especificaciones químicas).

Figura 2-1: Organigrama perteneciente a Subgerencia Refinería.

2.4.9Superintendencia de Ingeniería de Proceso.

La Superintendencia de Ingeniería de Procesos se divide en dos unidades: Unidad de Proceso y Unidad de Investigación y Desarrollo como lo muestra la Figura 2-2.

Los objetivos de esta Superintendencia de Ingeniería de Procesos son los siguientes:

- Organiza, planifica, coordina, controla y evalúa las actividades y trabajos relacionados con la investigación y desarrollo de los procesos.
- Propone y gestiona las estrategias de innovación tecnológica.
- Elabora, diseña y controla las pruebas asociadas al proyecto de modernización.
- Lidera la operación de la planta de producción de cátodos permanentes, definiendo los recursos requeridos, proponiendo mejoras y optimizaciones acorde con los planes de desarrollo de la Subgerencia.
- Lidera las relaciones con organismos externos tales como: Copper Refining Group, Dirección de Innovación Tecnológica, IM2 y otros afines.

Figura 2- 2: Organigrama Superintendencia de Ingeniería de Procesos.

2.5 ANTECEDENTES GENERALES DEL PROCESO

2.5.1 Composición Química del Ánodo

La composición química luego del proyecto de cambio tecnológico corresponde a los siguientes promedios entregados por la División Codelco Norte se adjuntan el Tabla 2-1.

Elemento	Unidad	CCC	FPO	TTE	ALN	Salvador	Promedio
Cobre	%	99,6	99,62	99,67	99,7	99,64	99,6
Plata	ppm	443	369	158	282	328	316
Oro	ppm	2,03	2,94	1,4	9,6	15,74	6,3
Selenio	ppm	135	123	257	109	180	160,8
Telurio	ppm	37,6	30,1	11,4	26,2	-	26,3
Níquel	ppm	21	37	48	87	89	56,4
Hierro	ppm	11	6	29	10,3	11	13,5
Arsénico	ppm	1401	1077	1264	910	903	1111
Antimonio	ppm	188	129	168	180	245	182
Bismuto	ppm	34,5	26,4	8,1	12,5	-	20,4
Plomo	ppm	65	55	39	70	21	50
Titanio	ppm	1,2	1,73	-	-	-	-
Azufre	ppm	11,8	12,7	-	-	16,5	-
Oxigeno	ppm	1381	1698	1360	1299	1982	1544
Zinc	ppm	34	21,7	-	-	-	-
Cadmio	ppm	<0,2	<0,4	-	-	-	-
Proyectado	t/año	551	125	185	100	63	204,8

Tabla 2-1: Composición Química Promedio de Ánodos por Proveedores

2.5.2Características de los Ánodos

Peso Nominal: 392 ± 5 [kg] a 320 [A/m²] Peso Máximo Operación: 414 ± 5 [kg] a 350 [A/m²] Peso Ánodos para Diseño, Grúas y Máquinas: 500 [kg] Porcentaje de Scrap: 14,6% con peso de ánodo de 392 [kg] Peso Promedio de Scrap: 57 ± 5 [kg] para ánodo de 392 [kg] **Dimensiones del ánodo Nominal:** Ancho entre Orejas: 1194 [mm] Alto del Cuerpo: 1218 [mm] Alto Total: 1333 [mm] Espesor: 46 [mm] Espesor Orejas: 35 [mm] Nota (1): En la puesta en marcha del Proyecto del Cambio Tecnológico, la División Codelco Norte no modificó su peso inicial de 400[kg] de los ánodos, considerando que en el corto plazo se produciría una mejora de la eficiencia de corriente.

2.5.3Parámetros de Diseño de Producción

Ciclo de Operación:

Ciclo anódico: 18 días Ciclo catódico: 9 días Ciclo catódico por anódico: 2 x 1 Total de días de trabajo por año: 362 días Factor tiempo utilización: 95% Tiempo cosecha en Renovación Total: 4,7 [h] Término llenado de celdas: 0,2 [h] Tiempo calentamiento electrolito en Renovación Total hasta 54 [°C]: 6,0 [hrs] Tiempo cosecha en Renovación Parcial: 2,3 [h] Tiempo calentamiento electrolito en Renovación Parcial hasta 54 [°C]: 2,0 [h]

2.5.4Tipos de Celdas

Dimensiones interiores de las celdas

Volumen celda vacía: 9,67 [m³] Volumen celda con electrodos: 6,86 [m³] Número de ánodos por celda: 56 unidades Número de cátodos: 55 unidades Espaciamiento de barra equipotenciales: 102 [mm] Sistema de barra equipotencial: Walker Aislador sobre barra intercelda: Polipropileno Aislador de barra intercelda: Goma

2.5.5Características Cátodos

Cálculo peso (nominal) cátodo: 165,5 [kg] 9 días, 320 [A/m²] y 95% EC Peso diseño cátodos: 189 [kg] 9 días, 350 [A/m²]

Área de depósito:

Ancho de depósito: 9,14 [mm] Largo de depósito: 1223 [mm] Área efectiva de depósito: 2,2356 [mm]

2.5.6Análisis Químico del Cátodo

La composición química corresponde a los siguientes promedios entregados por la División Codelco Norte se adjuntan el Tabla 2-2.

Elemento	Unidad	Conv. cCc	Planta Piloto	Norma Interna	BS-6017 Grade A
Cobre	%	99,98	99,98		
Azufre	ppm	2,50	2,8	<9	<15
Arsénico	ppm	0,15	<0,1	<2	<5
Antimonio	ppm	0,04	<0,1	<1	<4
Hierro	ppm	1,06	2,1	<5	<10
Níquel	ppm	<0,2	ND	-	<10
Plomo	ppm	0,42	0,2	<3	<5
Bismuto	ppm	<0,2	<0,1	<1	<1
Telurio	ppm	<0,7	<0,1	<1	<2
Zinc	ppm	<0,3	<0,1	-	-
Estaño	ppm	<0,2	<0,1	-	<5
Cadmio	ppm	<0,6	<0,1	-	-
Plata	ppm	7,02	9,1	<12	<25
Oxigeno	ppm	PEND	74		

Tabla 2- 2: Composición Química Promedio de Cátodos

Nota (2): El parámetro critico de diseño fue el de mantener o mejorar la calidad física y química de los actuales cátodos que se producían en Chuquicamata.

2.5.7Placa Catódica Permanente

Material de la hoja: 316L Acero Inoxidable Barra conductora: Cobre con cubierta de acero inoxidable Largo de la hoja: 1353 [mm] Ancho de la hoja: 932 [mm] Espesor de la hoja: 3,25 [mm] Peso integral de la placa: 45,6 [kg] Área de depósito: 2,2356 [m²] Voltaje de diseño celda: 0,40 [V] (utilizado para cálculo)

2.5.8Electrólito

Circulación por celda

Nominal: 20 [l/min] Máximo: 23 [l/min] Gravedad Específica: 1,25 [g/cm³]

Temperatura

Entrada de celda: 62 [°C] Salida de celda: 60 [°C]

Composición Química

Cu: 40 – 43 [g/l] H2SO4: 180 – 190 [g/l] As: 5 – 10 [g/l] Sb: 0,4 – 0,5 [g/l] Bi: 0,06 [g/l] Ni: 0,1 – 0,5 [g/l] Ca: 0,3 – 0,4 [g/l] Cl- : 0,04 [g/l] máximo

2.5.9Reactivos

Cola: 30 – 40 [g/ton] Cu depositado Thiourea: 50 – 60 [g/ton] Cu depositado Avitone: 10 – 20 [g/ton] Cu depositado Cloruro: El necesario para mantener un nivel adecuado de Cl⁻ en solución.

2.5.10 Energía Eléctrica

Corriente nominal/celda: 39347 [A] Densidad nominal: 320 [A/m²] Corriente máxima: 43000 [A] Densidad máxima: 350 [A/m²] Corriente de diseño rectificador: 39500 [A] Voltaje diseño rectificador: 0,4 [V/celda] Corriente diseño bus bar: 43000 [A] Diseño barra intercelda: 1 [A/mm²] Circuitos eléctricos de CC: 4 unidades Traforectificador Consumo energía CC: 309 [kWh/ton] Cu depositado Consumo energía CA: 328 [kWh/ton] Cu depositado

2.6 MANEJO DE MATERIALES

2.6.1Ánodos

Los ánodos a electro refinar de origen interno provienen de la Fundición de Concentrado Sulfuros (FPS) y de la Fundición de Concentrado de Cobre (FPO).
Los ánodos de origen externo provienen desde Alto Norte (ALT), El Teniente (TTE) y El Salvador (SLV).

Los ánodos llegan al patio de Embarque donde son descargados mediante grúa portal y posteriormente transportados mediante grúa horquilla al patio de Ánodos. En este patio los ánodos son inspeccionados visualmente. Los ánodos rechazados se transportan a la zona de almacenamiento de Scrap y juntos con esto son transportados mediante la grúa de horcajadadas hacia la FPO. Los ánodos producidos en la FPO se transportan mediante grúas horquillas al patio de Ánodos. Los ánodos recibidos en el andén son enviados al patio de maquinas con grúas horquillas. Los ánodos rechazados por la MPA se transportan en grúa horquillas al patio de almacenamiento y luego con las grúas horcajas hacia la FPO

2.6.2Cátodos

Una vez que el análisis químico de los lotes a embarcar está de acuerdo a las normas internas se realiza el despacho de los cátodos a través de los mismos carros de ferrocarril actuales. Los cátodos son manejados en el patio de almacenamiento, en conjunto de dos y tres paquetes en altura, pero deben ser cargados sobre los carros de cátodos solamente de 2 paquetes.

Dado que los carros que transportan los cátodos hacia el puerto y traen los ánodos desde AltoNorte son desde distinta trocha que los carros planos que manejan los ánodos al interior de la Planta, en el área de embarque existen ambas trochas.

Los cátodos comerciales son transportados desde el patio de almacenamiento de cátodos a la zona de embarque por medio de grúas horquilla. Desde el área de embarque, las grúas portal toman los cátodos y cargan los vagones correspondientes.

2.6.3Scrap

El despacho de Scrap hacia la FPS es mediante botes los cuales son cargados a los carros con las grúas-portal.

El Scrap a la venta es a través de los carros góndolas actuales. Estos últimos manejos son realizados en la FPO.

2.7 Proceso de Electrorefinación

En la zona de Refinería ubicada en el edificio de la nave electrolítica, se ubican las siguientes instalaciones y sistemas:

- Celdas electrolíticas comerciales distribuidas en 59 secciones.
- Sistemas de circulación de electrolito (agrupadas en 7 circuitos hidráulicos).
- Sistema eléctrico (agrupado en 4 circuitos).
- Sistemas de preparación y dosificación de aditivos.
- Sistemas de dosificación de acido sulfúrico.
- Sistema de dosificación de agua de proceso.
- Sistema de agua industrial para el lavado de celdas en renovación

La planta está dividida en tres naves donde se ubican las 2336 celdas de concreto polimérico comerciales más una nave donde se ubican los sistemas de circulación de electrolito, recepción de barro anódico con las bombas de impulso hasta a planta de barro anódico, y sistemas de adicción de agua, aditivos y ácido sulfúrico).

En la nave Norte se encuentran instaladas 25 secciones (1000 celdas distribuidas en 40 celdas por sección), el ancho de la nave es de 31 [m] por 391 [m] de largo. En la nave Central también se encuentran instaladas 25 secciones (1000 celdas distribuidas en 40 celdas por sección), el ancho de la nave es de 31 [m] por 391 [m] de largo. En la nave Sur se encuentran instaladas 336 celdas, donde 108 celdas pertenecen al circuito N° 10, (36 celdas por sección) y 228 celdas pertenecen al circuito 9 distribuidas de la siguiente manera: 6 secciones de 18 celdas y 3 secciones de 40 celdas. Los circuitos N° 9 y N° 10 hidráulicamente son uno sólo pero eléctricamente están separados, el circuito N° 10 eléctricamente está asociado al circuito N° 13, opera con el traforectificador 2 y el circuito N°10 eléctricamente está asociado al circuito N° 14, operando con el traforectificador 3.

Cada sección está formada por dos filas de 20 celdas paralelas, excepto en las secciones antiguas de láminas, convertidas actualmente a circuitos comerciales, que se mantendrán con 18 celdas por sección (dos hileras de 9 celdas) y 20 celdas nuevas en el circuito Nº9 distribuidas en 3 secciones de 40 celdas. Los electrodos se encuentran 102 mm espaciados entre sí, cada celda contiene 55 cátodos y 56 ánodos.

Entre la Nave Norte y nave Central de circuitos comerciales se ubica la Nave en donde se encuentran las instalaciones de los sistemas de circulación de electrolito, recepción de barro anódico con las bombas de impulso, hasta la planta de barro anódico, y sistemas de adición de agua, aditivos y acido sulfúrico. En la Tabla 2-3 se indica el número de celdas y secciones por circuito y el traforectificador asociado a cada uno de éstos.

		Números de Secciones		Celdas por Sección		
Circuito Nº	Números de celdas	Actuales Nuevas		Actuales	Nuevas	Traforectificador
9	228	3	3	18	40	RE-227-TR002
10	108	3		18		RE-227-TR003
11	240	4	2	40	40	RE-227-TR001
12	400	10		40		RE-227-TR001
13	400	10		40		RE-227-TR002
14	400	10		40		RE-227-TR003
15	400	10		40		RE-227-TR004
16	160	4		40		RE-227-TR004

Tabla 2- 3: Distribución de Celdas y Traforectificadores

La operación en las celdas comerciales consiste principalmente en mantener las condiciones de operación adecuadas en el electrolito, trabajar bajo los parámetros de diseño, de manera de obtener un cátodo de alta pureza y contaste en el tiempo.

La operación y control se lleva a cabo desde la Sala de Control Centralizada.

Las operaciones se realizan fundamentalmente a través del control de temperatura del electrolito de alimentación a las celdas, regulación de presión de electrolito de alimentación a las celdas, la regulación de presión del vapor de alimentación a los intercambiadores de calor de placas, regulación del flujo de filtrado y regulación de corriente en el circuito eléctrico.

Medidores de flujo, presión, temperatura y nivel permiten monitorear las diferentes etapas más relevantes del proceso, así como también informar si se sobrepasan límites considerados como altos o bajos para la operación. Además se monitorearán y/o controla los siguientes equipos: bombas, motores, seccionadores cortocircuitadores de secciones, válvulas de corte. Incluyendo las operaciones siguientes: reposición de agua y acido sulfúrico, la dosificación de aditivos, el nivel de estanques, y la transferencia y descarte de electrolito.

Un conjunto de bombas verticales recolecta los drenajes de piso y agua de lavado del filtro hacia un estanque de barro, para su impulsión a la Planta de Tratamiento de Barros.

Adicionalmente se contempla la opción de transferencia y/o descarte de electrolito a los estanques de la Refinería Nº1.

El descarte, el que se realiza en forma normal, de cada uno de los circuitos se transfiere a un pozo existente que centraliza todo el descarte proveniente de cada uno de los circuitos, este electrolito descartado se filtra para posteriormente descartarlo hacia la Planta de Oxido.

La transferencia de electrolito es eventual y se realiza en función del contenido de impurezas, cobre y ácido en electrolito.

2.8 SISTEMA DE PREPARACIÓN DE ADITIVOS

Los aditivos orgánicos son adicionados continuamente durante el proceso de electrorefinación con el objetivo de obtener un cátodo de una excelente calidad física y

química: cristales de cobre homogéneos, depósito liso, metálico, brillante y libre de imperfecciones. Sin estas adiciones los depósitos permanecerían blandos y de cristalización inadecuada lo que puede causar arrastre mecánico de electrolito y barro anódico resultando en una calidad deficiente e inaceptable de los cátodos.

Los aditivos que se utilizan en la Refinería Electrolítica con cátodos permanentes son los mismos que se utilizaban en el proceso de láminas iniciales: Cola, Thiourea, Avitone y NaCl eventualmente.

La Thiourea es una molécula orgánica que contiene en su estructura química radicales como S^{2-} y grupos NH₂ que facilitan la adsorción específica sobre sitios metálicos de cobre. En el proceso de electrorefinación de cobre la thiourea se le conoce por su rol afinador de grano.

Cola Animal es una proteína de elevado peso molecular que contiene una secuencia de aminoácidos con uniones peptídicas. En la electrorefinación de cobre, la cola animal actúa adsorbiéndose sobre sitios metálicos de cobre, bloqueando puntos de crecimientos preferencial y zonas adyacentes. La adsorción de cola genera en consecuencia un efecto sobretensor de la reacción catódica, que se incrementa en la medida que la concentración de aditivo aumenta.

Avitone es una poliacrilamida de formula $C_6H_{10}N_2$ cuya interacción con el proceso de electrorefinación de cobre es a nivel de la capa de difusión de iones, pudiendo actuar también como agente nivelador de los depósitos regulando el crecimiento de los granos de cobre, en particular cuando el campo eléctrico es intenso.

En la Tabla 2-4 se entrega información sobre la distribución de los sistemas tanto de preparación como de dosificación de aditivos por los diferentes circuitos hidráulicos.

CIRCUITO Nº	TOTAL DE CELDAS	N° DE SISTEMAS
9	228	1
10	108	1
11	240	1
12	400	2
13	400	2
14	400	2
15	400	2
16	160	1

Tabla 2-4: Distribución de sistemas de preparación y dosificación de aditivos en circuitos hidráulicos.

Los circuitos con dos sistemas de preparación y dosificación de aditivos están distribuidos de tal manera que uno dosifica el lado sur y el otro el lado norte, dosificando cada uno el 50% de las secciones por circuito. En las Tablas 2-5 y 2-6 se resume la concentración y flujo de aditivos por circuito.

ITEM	UNIDAD	СТО 9	CTO 10	CTO 11	CTO 12
Celdas	U	228	108	240	400
Thiourea	kg/d	11,51	5,45	12,12	20,19
Cola	kg/d	8,06	3,82	8,48	14,13
Avitone	kg/d	2,3	1,09	2,42	4,04
Volumen de Preparación y					
Dosificación	L	2.680	2.680	2.680	2.680
Thiourea	g/l	4,29	2,03	4,52	3,77
Cola	g/l	3	1,42	3,16	2,64
Avitone	g/l	0,85	0,41	0,9	0,75
Flujo Sistema 1	l/min	1,86	1,86	1,86	1,86
Flujo Sistema 2	l/min	1,86	1,86	-	1,86
Temperatura (1)	°C	50	50	50	50
Periodo dosificación (2)	h/d	24		24	24

Tabla 2- 5: Concentración y Flujo de Aditivos por Circuitos del Nº 9 al Nº 12.

ITEM	UNIDAD	CTO 13	CTO 14	CTO 15	CTO 16
Celdas	U	400	400	400	160
Thiourea	kg/d	20,19	20,19	20,19	8,08
Cola	kg/d	14,13	14,13	14,13	5,65
Avitone	kg/d	4,04	4,04	4,04	1,62
Volumen de Preparación y					
Dosificación	L	2.680	2.680	2.680	2.680
Thiourea	g/l	3,77	3,77	3,77	3,01
Cola	g/l	2,64	2,64	2,64	2,11
Avitone	g/l	0,75	0,75	0,75	0,6
Flujo Sistema 1	l/min	1,86	1,86	1,86	1,86
Flujo Sistema 2	l/min	1,86	1,86	1,86	-
Temperatura (1)	°C	50	50	50	50
Periodo dosificación (2)	h/d	24	24	24	24

Tabla 2- 6: Concentración y Flujo de Aditivos por Circuitos del Nº 13 al Nº 16.

2.8.1 Consumo Específico de Aditivos

En la Tabla 2-7 se entregan los consumos específicos de aditivos.

ADITIVO	CONSUMO ESPECÍFICO	UNIDAD
Cola	30-40	g/t Cu Catódico
Thiourea	50-60	g/t Cu Catódico
Avitone	10-20	g/t Cu Catódico

Tabla 2-7: Consumos específicos de aditivos.

2.9 Operaciones

2.9.1Cosecha

Uno de los propósitos del Cambio Tecnológico del Proceso de Electrorefinación fue estandarizar las operaciones de renovación para la tecnología de cátodos permanentes con sistema automatizado de tratamiento y manejo de electrodos, controlar los riesgos potenciales existentes en la realización de las diferentes actividades involucradas, evitando pérdidas y detenciones de proceso.

Para la renovación de las dos medias secciones, se utiliza el esquema de renovación en "U".

La renovación comienza en la celda nor-poniente de cada sección. De esta forma la orientación en "U" es idéntica a los lados oriente y poniente de la zona de transferencia.

2.10 Servicios

2.10.1 Energía Eléctrica

La caída de tensión por celda se estima en 0.30 [V], voltaje en las barras se considera como máximo un 10%. El total de la caída de tensión por circuito eléctrico es según lo indicado en Tabla 2-8:

	Nº DE	VOLTAJE TOTAL	
CIRCUITO Nº	CELDAS	POR CIRCUITO [V]	TRANSFORECTIFICADOR
9	228	68,4	RE-227-TR002
10	108	32,4	RE-227-TR003
11	240	72,0	RE-227-TR001
12	400	120,0	RE-227-TR001
13	400	120,0	RE-227-TR002
14	400	120,0	RE-227-TR003
15	400	120,0	RE-227-TR004
16	160	48,0	RE-227-TR04
Sub-Total		700,8	
Barras		70,8	
Total		771,6	

Tabla 2-8: Voltaje por Circuitos.

La densidad de corriente de diseño es: 350 $[\text{A}/\text{m}^2]$, con lo cual la corriente de diseño

será:

134,4 $[m^2] \times 350 [A/m^2] = 47040 [A].$

La potencia nominal requerida será:

47040 * 772 * 0,16 = 5807,4 [kW]

Nota (3): 0,16 = Factor utilizado el potencia nominal de CC.

2.11 SISTEMA DE CORRIENTE ALTERNA Y CONTINUA

La energía eléctrica en 13,8 [kV] para el suministro de la Refinería, Plamen y Fundición de Cobre es proporcionada a través de la "Subestación A" donde existen cuatro transformadores de las siguientes potencias:

- Dos unidades de 20 [MW] nominales y 25 [MW] de diseño (N°13 y N°14)
- Dos unidades de 40 [MW] nominales y 45 [MW] de diseño (N°16 y N°18)

2.11.1 Corriente Continua

Cuatro unidades trafo/rectificador con una capacidad de 45000 [A] a 260 [V] como máximo entregan la energía eléctrica requerida para que la Refinería Electrolítica pueda operar a una capacidad nominal de 855000 [tCu/año], con una densidad de corriente catódica de 320 [A/m²], una corriente nominal de 39347 [A] y una eficiencia de corriente de 95%.

Sesenta y cinco seccionadores cortocircuitadores de corriente continua, permitirán por cada sección, el manejo de la corriente continua dentro del Proceso de Electrorefinación.

Los seccionadores cortocircuitadores están dispuestos por cada circuito eléctrico de la siguiente forma:

- Circuito eléctrico Nº 1: 6 unidades en C-11 y 10 unidades en C-12.
- Circuito eléctrico Nº 2: 9 unidades en C-9 y 10 unidades en C-13.

- Circuito eléctrico Nº 3: 6 unidades en C-10 y 10 unidades en C-14.
- Circuito eléctrico Nº 4: 10 unidades en C-15 y 4 unidades en C-16.

Cada rectificador lo enfría un sistema cerrado de aire liquido, cada unidad transformador rectificador está provisto de un tablero de control local para controlar el equipo auxiliar, tales como bombas y sistema de enfriamiento, además, también están provistos de un tablero local y otro remoto para la unidad trasformador rectificador como un sistema. Los equipos son operados normalmente desde el tablero de control remoto que se localiza en la sala de control.

El proceso de electrorefinación se lleva a cabo en lo que se conoce como el sistema múltiple (paralelo) en el cual los ánodos y los cátodos en cada celda electrolítica están en un arreglo eléctrico en paralelo con la corriente fluyendo desde el ánodo hacia el cátodo. La corriente eléctrica fluye hacia una media sección a través de conductores verticales que están conectados a las barras conductoras de la celda. La barra conductora descansa sobre una placa aislante en la pared superior de la pared de la celda, una oreja de cada ánodo en la primera celda está conectada a la barra conductora, la otra oreja está aislada de la barra conductora de la siguiente por una placa aislante, el arreglo de las de las barras conductoras de los cátodos es exactamente opuesta al arreglo de los ánodos.

Los ánodos en una celda están a un potencial eléctrico mayor en comparación a los cátodos, cada ánodo se posiciona entre dos cátodos, con excepción del ánodo en el extremo de la celda, así que todos los ánodos se disuelven electroquímicamente aproximadamente a la misma razón. Las celdas están conectadas en series entre sí, cada sección es una parte independiente de la Refinería y puede ser aislada eléctricamente e hidráulicamente para el propósito de la renovación total, retirar scrap, retirar y limpiar residuos del fondo de celdas y para mantención y/o cambio de celda.

La caída de voltaje de diseño en cada celda es de 0,4 [VDC]. Como las secciones están conectadas eléctricamente en serie, la caída de voltaje total a través de una sección será

aproximadamente 16 [VDC] y la caída de voltaje total para un circuito de 400 celdas será de 160 [VDC].

Características de un Circuito Eléctrico

El número de circuitos eléctricos en la planta son cuatro de las características y distribuidos como se indica en la Tabla 2-9 siguiente:

Circuitos Eléctricos	Números de Circuitos Hidráulicos	Número celdas	Amperaje Nominal [A]	Voltaje [V]	Potencia Nominal [kW]
RE227-TR-001	11 y 12	640	43.000	260	11.180
RE227-TR-002	9 y 13	628	43.000	260	11.180
RE227-TR-003	10 y 14	508	43.000	260	8815
RE227-TR-004	15 y 16	560	43.000	260	9890
Total		2336			

Tabla 2-9: Listado de Circuito Eléctrico y sus Caracterizas.

Cada circuito eléctrico está formado por dos circuitos hidráulicos de acuerdo a la Tabla 2-9 anterior, cada sección tiene un cortocircuitador de corriente. Luego cada sección es aislada o puesta en operación por un cortocircuitador de corriente.

Se monitorea el voltaje correspondiente a una sección, equivalente a 40 celdas o 36 celdas (circuito Nº 10 y secciones del circuito Nº 9). El voltaje promedio por sección será monitoreado y leído cada 15 minutos y almacenará en un registro de memoria del PCS7, lo que permite calcular valores promedios de voltaje y definir niveles de alarma de cada sección.

Con la incorporación de la tecnología de cátodos permanentes, específicamente lo que se refiere a: Contactos de cobre de los blanks con las nuevas barras interceldas, y contactos de los ánodos previamente fresados, permiten una distribución de corriente prácticamente uniforme, lo que implica tener barras equipotenciales. Esto considera que los puntos anteriores permiten un valor mínimo de resistencia de contacto y una distribución e corriente uniforme de cátodo. Un aspecto operacional de importancia, se relaciona con el lavado de los contactos de manera de mantenerlos siempre limpios. Esta operación es una operación de rutina, normalmente trabajar con contactos sucios con relación a los contactos limpios, equivale a una variación de 7% del potencial en una celda.

El factor más importante que hace oscilar el voltaje son los cortocircuitos generados al interior de las celdas, entre un ánodo y un cátodo. Lo anterior era monitoreado inicialmente a través de inspecciones continuas utilizando gaussmeter además de la cámara termográfica, lo cual a principios del año 2007 se determinó no viable la utilización de gaussmeter, prosiguiendo sólo con las inspecciones utilizando la cámara termográfica para la localización de cortocircuitos para su posterior eliminación o aislamiento de cátodos.

Operacionalmente se optimizan las variaciones de los voltajes por sección, los cuales indicaran la eficiencia de lavado, otras variables operacionales que son importantes de controlar son: concentración de cobre y ácido en el electrolito, la temperatura del electrolito, y el flujo por celda. Estas variables también afectan el voltaje por sección y son de control permanente en cada circuito.

En el caso de los traforectificadores, en operación normal, los ajustes de la referencia de corriente a celdas se realizan desde la Sala de Control Centralizada. En caso de emergencia o control de demanda máxima, su operación y control se realizara desde la Sala de Control Scada en la S/E A.

2.11.2 Rol de la Corriente Eléctrica

La corriente eléctrica entra al sistema por el borne positivo de las celdas ingresando la corriente por los ánodos, esta corriente pasa a través de la solución saliendo por los cátodos para así pasar a la celda contigua y así sucesivamente por todas ellas hasta cerrar el circuito con la última celda en su borne negativo.

CAPÍTULO 3

FUNDAMENTOS TEÓRICOS DE TECNOLOGÍAS

3. FUNDAMENTOS TEORICOS

3.1 **REFINERÍA ELECTROLÍTICA DEL COBRE**

3.1.1Descripción de Refinación Electrolítica de Cobre

La refinación electrolítica de Cobre es un proceso de disolución electroquímica de cobre desde el ánodo, depositando cobre como un metal casi puro en el cátodo por medio de electrolisis directa. La tecnología básica de refinación de cobre tiene muchos años pero, en estos últimos se han desarrollado importantes cambios, gran parte de estos se han incorporado en el rediseño de la actual planta.

El proceso de Electrorefinación tiene como objetivo principal la producción de cátodos de cobre con una pureza de 99,99% de Cobre a partir de ánodos con un contenido de Cobre entre 99,6% y 99,7% los cuáles son producidos en:

- Fundición de Cobre de Chuquicamata.
- Fundición de Óxidos (FPO).
- El Teniente.
- Alto Norte.

El proceso de Electrorefinación es realizado en celdas electrolíticas en donde se encuentran:

- Ánodos impuros de cobre.
- Solución electrolítica con contenido de cobre, ácido sulfúrico a temperatura especifica en un rango de 60-62 °C.
- 55 cátodos permanentes.

Una fracción de cobre contenido en el ánodo se disuelve en el electrolito por acción de la corriente eléctrica entregada por un traforectificador. Para facilitar el transporte de los iones

cúpricos desde el ánodo hacia los cátodos la temperatura del electrolito se debe mantener entre 60 y 62 [*C]. El proceso consiste principalmente en mantenerte tanto las condiciones de operaciones adecuadas para el electrolito contenido en la celda como también el correcto trabajo bajo parámetros de diseño, todo esto con el fin de obtener un cátodo de alta pureza y constante a través del tiempo.

La aplicación de un potencial eléctrico entre un ánodo de cobre (electrodo positivo) y un cátodo de cobre (electrodo negativo), sumergidos en una celda que contenga una solución electrolítica, trae como implicancia la generación de las siguientes reacciones y procesos:

 a) El cobre contenido en el ánodo se disuelve electroquímicamente dentro de la solución con lo que se producen cationes de cobre, más electrones

$$Cu^{0}(\delta nodo) \rightarrow Cu^{2+} + 2\bar{e}$$
 $E^{0} = +0.34 [V]$ 3.1

- b) Los electrones que se producen en la ecuación 3.1 son conducidos hacia el cátodo, esto a través del circuito y suministro de energía externo.
- c) Los cationes Cu²⁺ que se encuentran en la solución emigran iónicamente tanto por difusión como por convección hacia el electrodo negativo (cátodo).
- d) Los electrones y los iones de Cu²⁺ se recombinan en la superficie del cátodo para producir Cu⁰, el que se deposita en el cátodo

$$Cu^{2+} + 2\bar{e} \rightarrow Cu^0$$
 $E^0 = -0.34 [V]$ 3.2

La suma de las ecuaciones 3.1 y 3.2 da como resultado la reacción electroquímica total:

$$Cu^{0}(impuro) \rightarrow Cu^{0}$$
 3.3

Al hacer pasar corriente eléctrica por una solución electrolítica. El ion sulfato de la solución comienza a atacar al ánodo de cobre formando una solución de sulfato de cobre

(CuSO4) denominada electrólito. Al aplicar una corriente eléctrica, los componentes de la solución se cargan eléctricamente produciéndose una disociación iónica en la que el anión sulfato (SO4⁻²) es atraído por el ánodo (+) y el catión (Cu⁺²) es atraído por el cátodo (-). El anión SO4⁻² ataca al ánodo formando sulfato de cobre, el que se ioniza en la solución por efecto de la corriente eléctrica, liberando cobre como catión que migra al cátodo, y se deposita en él. El ion sulfato liberado migra al ánodo y vuelve a formar sulfato de cobre que va a la solución, recomenzando la reacción.

Este proceso es continuo durante aproximadamente 20 días. Alrededor del día 10, se extraen los cátodos y se reemplazan por otros y los ánodos se dejan aproximadamente 10 días más y se reemplazan por otros. De esta forma, al final del día 20, nuevamente se extraen los cátodos y se renuevan los ánodos.

Los otros componentes del ánodo que no se disuelven, se depositan en el fondo de las celdas electrolíticas, formando lo que se conoce como barro anódico el cual es bombeado y almacenado para extraerle su contenido metálico (oro, plata, selenio, platino, paladio, etc.).

3.2 Teoría de Circuitos Eléctricos

3.2.1 Circuito Eléctrico

Un circuito eléctrico es una interconexión de elementos eléctricos unidos entre sí de forma que pueda fluir una corriente eléctrica. La Figura 3-1 muestra un ejemplo de circuito eléctrico se visualiza los diferentes elementos que están conectados entre sí mediante conductores o cables.

Figura 3-1: Ejemplo de circuito eléctrico

3.2.2Teoría de Circuitos

Comprende los fundamentos para el análisis de los circuitos eléctricos y permite determinar los niveles de tensión y corriente en cada punto del circuito en respuesta a una determinada excitación.

La teoría de circuitos es una simplificación de la Teoría Electromagnética de Maxwell, estas simplificaciones se basan en la consideración de corrientes cuasiestacionarias, lo que implica que sólo puede aplicarse cuando la longitud de onda de las señales (ondas electromagnéticas) presentes en el circuito es mucho mayor (x100 o más) que las dimensiones físicas de éste. Esto quiere decir que la propagación de las ondas en el circuito es instantánea.

La teoría de los circuitos eléctricos recibió el nombre de Electrocinética y se desarrolló de una forma independiente de la Teoría Electromagnética. Las bases de esta rama de la Ingeniería Eléctrica están en la Ley de Ohm y las Leyes de Kirchoff, y fueron aplicados inicialmente a corrientes que no variaban con el tiempo dada la utilización de generadores de corriente continua, como las pilas eléctricas. Sin embargo, cuando apareció la corriente alterna, la teoría debió adecuarse al tratamiento de cantidades que variaban sinusoidalmente en el tiempo, lo cual introdujo el uso de vectores estacionarios o fasores.¹³

3.2.3Ley de Ohm

La corriente fluye por un circuito eléctrico siguiendo varias leyes definidas. La ley básica del flujo de la corriente es la Ley de Ohm.

Según la Ley de Ohm, la cantidad de corriente que fluye por un circuito formado por resistencias es directamente proporcional a la fuerza electromotriz aplicada al circuito, e inversamente proporcional a la resistencia total del circuito.

Esta ley suele expresarse mediante la fórmula I = V/R, siendo:

I = Intensidad de corriente en amperios [A]
V = Diferencia de potencial en voltios [V]
R = Resistencia en ohmios [Ω]

La ley de Ohm se aplica a todos los circuitos eléctricos, tanto a los de corriente continua (CC) como a los de corriente alterna (CA), aunque para el análisis de circuitos complejos y circuitos de CA deben emplearse principios adicionales que incluyen inductancias y capacitancias.¹⁴

3.2.4Ley de Kirchhoff

Las leyes de Kirchhoff fueron formuladas en 1845 por el físico alemán Gustav Robert Kirchhoff (1824-1887). Estas leyes son conocidas formalmente como:

1. Ley de los nodos o Ley de Corrientes de Kirchhoff:

KCL (Kirchhoff's Current Law, siglas en inglés) o **LCK** (Ley de Corriente de Kirchhoff, siglas en español).¹⁵

En todo nodo, donde la densidad de la carga no varié en un instante de tiempo, la suma de corrientes entrantes es igual a la suma de corrientes salientes (Figura 3-2).

La suma algebraica de todas las intensidades que entran y salen por un nodo es nula.

$$\sum_{k=1}^{n} I_k = I_1 + I_2 + I_3 \dots + I_n = 0$$

Figura 3-2: Primera Ley de Circuitos de Kirchhoff

2. Ley de las mallas o Ley de tensiones de Kirchhoff.

KVL (Kirchhoff's Voltage Law, siglas en inglés) o LVK (Ley de Voltaje de Kirchhoff, siglas en español). 15

En toda malla la suma de todas las caídas de tensión es igual a la suma de todas las subidas de tensión, es decir, la suma de las diferencias de potencial eléctrico debe ser cero (Figura 3-3)

$$\sum_{k=1}^{n} V_k = V_1 + V_2 + V_3 \dots + V_n = 0$$

Figura 3- 3: Segunda Ley de Circuitos de Kirchhoff

3.2.5Circuito en Serie

Un circuito en serie es aquél en que los dispositivos o elementos del circuito están dispuestos de tal manera que la totalidad de la corriente pasa a través de cada elemento sin división ni derivación. Cuando en un circuito hay dos o más resistencias en serie, la resistencia total se calcula sumando los valores de dichas resistencias (Figura 3-4). Si las resistencias están en serie, el valor total de la resistencia del circuito se obtiene mediante la fórmula: ¹⁶

$$R_e = \sum_{i=1}^n R_i$$

Donde:

Re = Resistencia equivalente de la disposición [ohmios]

Ri = Resistencia individual i [ohmios]

Figura 3-4: Circuito en serie.

3.2.6Circuito en Paralelo

En un circuito en paralelo los dispositivos eléctricos, están dispuestos de manera que todos los polos, electrodos y terminales positivos (+) se unen en un único conductor, y todos

los negativos (-) en otro, de forma que cada unidad se encuentra, en realidad, en una derivación paralela.

El valor de dos resistencias iguales en paralelo es igual a la mitad del valor de las resistencias componentes y, en cada caso, el valor de las resistencias en paralelo es menor que el valor de la más pequeña de cada una de las resistencias implicadas (Figura 3-5). Si las resistencias están en paralelo, el valor total de la resistencia del circuito se obtiene mediante la fórmula: ¹⁶

$$R_e = \frac{1}{\sum_{i=1}^n \frac{1}{R_i}}$$

Donde:

Re = Resistencia equivalente de la disposición [ohmios]

R = Resistencia individual i [ohmios]

Figura 3- 5: Circuito en paralelo.

3.3 Configuración Walker

La configuración de Walker fue patentada por Arthur L. Walker en 1901, U. S. de Patentes 687 800.⁸

La configuración Walker ha sido ampliamente utilizada y es hasta hoy en día el método más común puesto en práctica en plantas industriales. Esta configuración se basa en una distribución de barras interceldas de superficie menor en relación al área de la sección transversal ubicada entre las celdas adyacentes. Los cátodos de una celda y los ánodos de la celda contigua hacen contacto eléctrico con la barra de distribución de corriente y se distribuyen por igual en toda su longitud.

La barra de distribución intercelda no requiere más que una fracción de la corriente total del proceso, debido a que la corriente que pasa por cada cátodo hacia la barra de distribución encontrará su camino de resistencia mínima a través de uno o más ánodos adyacentes a la siguiente celda.

Debido a esto, Arthur L. Walker afirma que: "la barra intercelda de distribución de corriente tendrá una capacidad total igual a la de una barra conductora teniendo una sección transversal igual a la suma de las secciones transversales de la barra de distribución entre cátodos y ánodos adyacentes".

La observación hecha por Arthur L. Walker también muestra la principal desventaja de esta configuración. En concreto, debido a que la corriente encuentra su camino a través de la menor resistencia, la distribución de corriente en cada celda es sumamente dependiente de esta ruta. Eléctricamente, cada celda con la configuración Walker puede ser vista como resistencias enésimas conectadas en paralelo, cada uno representa un par de ánodo-cátodo, y todos son alimentados por un voltaje único.⁹

Obviamente, la corriente fluye a través de las rutas de menor resistencia, afectando a la corriente directa de cada una de las parejas ánodo-cátodo. Entre los factores más importantes que afectan a estas resistencias son: el posicionamiento y la separación de los electrodos, la conductividad del electrolito, y la resistencia de contacto entre los electrodos y la barra de distribución.⁹

Los factores críticos para esta configuración son los siguientes:

- Electrodo de Contacto: Cada electrodo se conecta al circuito eléctrico por un solo contacto. Si la calidad de contacto varía significativamente, la distribución de corriente entre los electrodos también se ve comprometida.
- 2. Separación de los electrodos: Los electrodos deben colocarse con cuidado para asegurar espacios adecuados y así evitar cortocircuitos.

La Figura 3-6 muestra la nave con las celdas y los electrodos.

Figura 3- 6: Nave con celdas electrolíticas y electrodos.

3.3.1 Distribución de Corriente Actualmente Utilizada: Conexión Walker

La actual distribución de corriente a la cual está sujeto el proceso de Electrorefinación en Refinería es la Conexión Walker, con esta disposición, las celdas reciben corriente de un rectificador de alta corriente a través de una sola barra que conecta los extremos positivos y negativos, en la cual los ánodos de la primera celda están conectados al extremo positivo, aquí la corriente proveniente del rectificador fluye hacia el electrolito como también hacia los cátodos dispuestos en la celda. Luego, la barra compensadora recibe corriente de los cátodos y entrega esta corriente a los ánodos de la celda contigua. La corriente fluye a través de las celdas siguiendo el camino de barra-ánodos-electrolito-cátodo-barra. La última celda de cátodos entrega la corriente a la barra de extremo negativo.

La Figura 3-7 muestra la actual configuración de celdas de electrodos utilizada en el Proceso de Electrorefinación, los ánodos de la primera celda reciben corriente desde el rectificador a través del circuito C. La barra B distribuye la corriente entrante a los ánodos. El cátodo K recibe la corriente desde el ánodo a través del electrolito y la entrega a la barra de B. En esta configuración eléctrica, la barra que sostiene los ánodos está conectada eléctricamente a ella, como también la barra que contiene a los cátodos.⁹

Figura 3-7: Actual Configuración Walker

Tanto el uso de la barra que conecta todos los ánodos como el de la barra ubicada enfrente de los cátodos imponen un voltaje único de celda. Sin embargo, la resistencia entre cada par de electrodos no es única y varía con la distribución de los electrodos, la composición del electrolito, la temperatura y por último con las resistencias de contacto. Por lo tanto, la aplicación de un único voltaje de ilimitada resistencia en paralelo tiene como resultado un desequilibrio entre las corrientes que fluyen a través de los electrodos.⁹

Con la Configuración Walker, la distribución actual es muy sensible a los parámetros químicos y eléctricos. La dispersión de la corriente real en las plantas de Electrorefinación conduce a una variabilidad en el peso catódico y a la vez se ven perjudicados los parámetros de calidad. Un cátodo con un depósito mayor (debido a una mayor densidad de corriente) reduce la distancia con el ánodo, aumentando de esta manera la corriente de circulación como también el espesor del depósito de cobre. La reducción de la distancia entre el cátodo y el ánodo disminuye la circulación de electrolito, por lo que en una zona con un elevado consumo de electrolito reduce la concentración de Cu^{+2} . Esto reduce la calidad tanto física como química del depósito.

Finalmente, el depósito tipo dendríticas en el cátodo produce cortocircuitos. Los cortocircuitos reducen la calidad del cátodo, posibilitando la formación de depósitos irregulares como también de la contaminación de los cátodos principalmente con arsénico y antimonio. Por último, la corriente y la eficiencia energética se ven comprometidas.⁹

3.3.2Situación Actual en Refinería de Conexión Walker

De estudios preliminares realizados por la empresa "Optibar", se obtuvo información sobre la situación actual en Refinería de la Conexión Walker, estos puntos son:

- Múltiples pares cátodos-ánodos en paralelo entre barras equipotenciales.
- La variación de las resistencias eléctricas entre electrodos resulta en una alta dispersión de las densidades de corriente por cátodo.
- Alta frecuencia de ocurrencia de cortocircuitos.
- Reducción de distancias entre electrodos lo que se ve traducido a un aumento de densidad de corriente de operación, esto debido a que se favorece la formación de cortocircuitos
- Existe una permanente tasa de rechazo de cátodo por la baja calidad tanto física como química.
- Daño de cátodos permanentes debido a los cortocircuitos.
- Control de proceso basado en pruebas de laboratorio.

3.4 CONEXIÓN MULTICIRCUITAL

La nueva forma de distribución de corriente llamada: Conexión Multicircuital, fue desarrollada y diseñada por la compañía "Optibar", una empresa de investigación en Chile, perteneciente al Departamento de Electrónica de la Universidad de Concepción, la cual se

centró en el diseño y la comercialización de una tecnología innovadora para Plantas de Electrometalurgia.

Se trata de un procedimiento para realizar la conexión de los electrodos en celdas tanto de Electroobtención como de Electrorefinación. Esta conexión consiste en utilizar circuitos diferentes para la alimentación de electrodos vecinos, los que están aislados en ausencia de electrolito. Eventualmente, estos circuitos pueden ser alimentados por barras separadas y por rectificadores independientes, de esta forma la única conexión o acoplamiento eléctrico entre estos circuitos es la producida por el electrolito. Uno de los objetivos principales de esta invención fue disminuir la formación de cortocircuitos y de esta forma igualar la distribución de corriente entre los electrodos.^{10, 11}

Los cortocircuitos se forman en la superficie del cátodo cuando se observa una mayor CD. En este caso, el depósito en la placa crece hasta alcanzar el ánodo, se crea un camino eléctrico (no electroquímico) entre ánodos y cátodos, lo que reduce la eficiencia del proceso.

La barra intercelda segmentada se asemeja a un conector eléctrico multipolar. Esta barra utiliza muchos segmentos de doble contacto, es decir, parejas de ánodo-cátodo que van conectadas.

El principal problema que existe de un punto de vista técnico se debe a que el depósito de cobre depende de la corriente, por lo cual, un esquema de arreglo en la fuente de corriente, se recomienda como una posible solución.¹²

3.4.1Distribución de Corriente en Prueba: Conexión Multicircuital

En el arreglo de la configuración Walker, una reducción de la resistencia entre un ánodo y un cátodo provoca un mayor flujo de corriente que pasa a través de estos electrodos. Una idéntica variación de resistencia basada en la configuración Whitehead (primera configuración a prueba creada por la empresa Optibar), posee una menor desviación de distribución de corriente referente a la conexión Walker. La Figura Nº 3-8 muestra una equivalencia de modelos de circuitos. Un análisis a través de una simple inspección puede ayudar a explicar la capacidad intrínseca de la configuración Multicircuital la cual `posee como principal ventaja resistir parámetros de desviación. Además, el arreglo genera rutas preferidas para la corriente eléctrica o canales de corriente. Estos canales comparten similares circuitos de resistencias produciendo un equilibrio de corriente en toda la celda. Cada resistencia del circuito equivalente se compone de un número de contacto y de resistencias de electrodos en serie. Esto también significa que las resistencias resultantes serán más equilibradas, aumentando el número de celdas en serie. Este efecto reduce la sensibilidad del sistema respecto a las variaciones de los parámetros.⁹

Figura 3-8: Whitehead basada en la Configuración Multicircuital

Sin embargo, en la configuración Multicircuital el uso de "cercos" de cortocircuitos para el mantenimiento de las celdas reduce el número efectivo de éstas celdas en serie. La diferencia distintiva de este arreglo es la barra intercelda segmentada, ya que en este arreglo

cada segmento se conecta ánodo con cátodo formando canales de corriente. La Figura 3-9 muestra el arreglo propuesto.

Figura 3- 9: Modelo de circuito eléctrico de Configuración Walker (izquierda) y Multicircuital (derecha). Las resistencias grandes representan al electrólito y las resistencias más pequeñas representan los contactos de la barra.

Esto es posible porque corrientes por el cátodo fluyen de forma individual por cada segmento de barra. Así, un dispositivo de sensor de corriente instalado en el interior de la barra para cada uno de los ánodos y cátodos que conducen la conexión puede proporcionar información actual y exacta de forma continua.⁹

Estos datos pueden ser procesados para determinar varios parámetros de proceso incluyendo el actual depositación de cobre en el cátodo, bajo y sobre las anomalías de corriente y las reales condiciones de cosecha.

La Configuración Walker requiere de mediciones realizadas por los operadores como también de la supervisión directa de los 6000 cátodos existentes en planta. Por lo que, con el uso de barras de Interceldas segmentadas, el proceso de automatización completo será posible.⁹

3.4.2Beneficios de la Conexión Multicircuital

Algunos de los beneficios de la Tecnología de Conexión Multicircuital son:

- Mejora la distribución de densidades de corriente (reduce la dispersión de corriente aproximadamente a la mitad).
- Reduce la ocurrencia de cortocircuitos a 1/3 de los existentes actualmente en planta.
- Cortocircuitos remanentes presentan niveles de sobrecorrientes substancialmente menores.
- Reduce la dispersión de pesos de cátodos cosechados.
- Incrementa de la eficiencia de corriente del proceso.
- Disminuye el porcentaje de rechazo de cátodos.
- Permite incrementar el nivel del producción entre 5% y 10% (aumento de corriente).
- Permite el monitoreo en línea de las corrientes catódicas y de los cortocircuitos.
- Disminución de Consumo Específico de Energía.

CAPITULO 4

DESARROLLO DEL ESTUDIO

4.1 ETAPA DE EVALUACIÓN CON OPTIBAR 1.0

La primera etapa Industrial comprende desde el 26 de marzo de 2009 hasta el día 12 de agosto del 2009. Para la evaluación del impacto de la tecnología fueron instaladas barras interceldas Optibar 1.0 con capping board de compuesto polimérico en 20 celdas de semisección 14-1A, esta fue realizada el día 25 de marzo y la energización de las celdas fue el día 26 de marzo de 2009.

Para esta etapa se diseñó una barra intercelda que permitiera reutilizar las barras en operación en la semisección 14-1A de la Refinería, modificándolas de esta forma para implementar la Tecnología de Conexión Multicircuital. Las medidas externas de las barras originales se mantuvieron intactas, también así las distancias entre electrodos, longitud de penetración y alturas, como se muestra en la tabla 4-1:

Distancia entre electrodos (cátodo-cátodo)	102 mm
Espacio para ánodos	68mm
Espacio para cátodos	34 mm
Longitud de penetración ánodo y cátodo	32,5 mm (máx.)
Altura de barra desde base a contactos	60 mm
Largo total de la barra	5715 mm (menor a)

Tabla 4-1: Dimensiones Capping Board para Correcto Funcionamiento Refinería

Para la realizar modificaciones en la barra actual sin afectar el funcionamiento normal de la Refinería, sólo se intervino la barra de contactos de cobre y se realizaron 56 perforaciones en el aislador superior de compuesto polimérico en funcionamiento en la semisección 14-1A para fijaciones.

En las Figuras 4-1, 4-2, 4-3 y 4-4 se muestra el diseño, instalación y diferentes vistas de las barras intercelda Multicircuitales diseño Optibar 1.0 con capping board de compuesto polimérico instaladas en la semisección 14-1A de la Refinería.

Figura 4- 1: Despiece de la barra intercelda Multicircuital diseño Optibar 1.0 para implementar la tecnología Multicircuital en Refinería Nº 2, Codelco Norte.

Figura 4- 2: Barras intercelda de conexión Multicircuital diseño Optibar 1.0 instaladas en 20 celdas de la semisección 14-1A en Refinería Nº 2, Codelco Norte.

Figura 4- 3: Vista superior de barra Multicircuital diseño Optibar 1.0 con capping board de compuesto polimérico cargada con ánodos y cátodos durante la etapa de prueba.

Figura 4- 4: Vista de semisección 14-1A con barras intercelda Multicircuitales diseño Optibar 1.0 en operación en Refinería Nº 2, Codelco Norte.

4.1.1Procedimiento de Medición de Prueba Industrial con Optibar 1.0

Para determinar el desempeño de la tecnología Multicircuital Optibar 1.0, se hace necesario realizar mediciones y registrar las siguientes variables de proceso, se requiere que estos datos sean determinados en lo posible una vez por día, estos son:

- 1. Corrientes catódicas por celda.
- 2. Voltajes de contacto entre barras y cátodos.
- 3. Voltajes de Segmentos barras inter-celda.
- 4. Voltajes de Celdas Tecnología Convencional
- 5. Temperatura de contactos barras-electrodos por celda
- 6. Voltaje total de cada semi-sección.
- 7. Pesos Catódicos Renovación Parcial y Renovación Total.

Para contrastar resultados, estas mediciones se realizarán en las semisecciones 14-1A (Tecnología Multicircuital) y 14-1B (Tecnología Convencional), aunque cabe señalar que la realización de las mediciones queda sujeta a problemas operacionales o contratiempo que pudieron surgir en planta.

A continuación se resumen cada uno de los parámetros de importancia medidos y/o calculados a partir de las mediciones realizadas durante la prueba industrial de Conexión Multicircuital en Refinería Codelco Norte.

Las evaluaciones presentadas corresponden a los resultados de la primera etapa de prueba de la conexión Multicircuital, diseño Optibar 1.0. Las distintas evaluaciones informadas utilizan mediciones de variables de proceso realizadas en condiciones normales de operación de las celdas de la sección 14-1 entre fines de Marzo de 2009 y principios de Agosto de 2009, es decir desde el 1º al 14º ciclo.
Los ciclos catódicos se realizaron en las siguientes fechas:

1° ciclo: 25 mayo – 04 abril.
 2° ciclo: 05 abril – 14 abril.
 3° ciclo: 14 abril – 23 abril.
 4° ciclo: 25 abril – 04 mayo
 5° ciclo: 06 mayo – 15 mayo.
 6° ciclo: 15 mayo – 24 mayo.
 8° ciclo: 5 junio – 14 junio.
 9° ciclo: 15 junio – 24 junio.
 10° ciclo: 25 junio – 07 julio.
 11°ciclo: 08 julio – 14 junio.
 12° ciclo: 15 junio – 24 junio.
 13° ciclo: 25 junio – 04 agosto.
 14° ciclo: 04 agosto – 12 agosto.

4.1.2 Mediciones de Variables del Proceso

Distribución de Densidades de Corriente Catódica: Las mediciones de densidades de corriente catódica realizadas durante la prueba industrial de la tecnología Multicircuital en la sección 14-1, permiten apreciar el efecto ecualizador de las corrientes catódicas producido por las barras intercelda Optibar 1.0 durante los ciclos de producción.

Para la medición de las corrientes catódicas se utilizó una tenaza de corriente FLUKE i1010.y un Multitester FLUKE 189, figura 4-5, este dispositivo permite determinar el flujo de corriente continua por el cátodo sin perturbar (necesidad de abrir) el circuito.

Figura 4- 5: Fluke i1010 y Medición indirecta de corriente

Por esto, se debe tener especial cuidado en no mover los electrodos ni modificar los contactos durante las mediciones.

Debido a la reducida distancia entre cátodo y ánodo en ER, no se dispone del espacio necesario para realizar la medición directa de la corriente circulante por cada cátodo. La medición de corriente debe realizarse en la ventana de cada cátodo (por ahí circula cerca del 60% de la corriente catódica)

El impacto de la tecnología de barras Multicircuitales Optibar se aprecia en las tablas 4-2 y 4-3, donde se muestran las corrientes mínimas y máximas promedio medidas durante los 2 ciclos catódicos de un ciclo anódico completo. (Anexo A, páginas 139-140)

Tabla 4- 2: Valores de Densidad de Corriente Promedio Calculados para cada tecnología de barra intercelda durante un primer ciclo catódico de un ciclo anódico de producción.

Tecnología Barra Intercelda	Densidad Corriente Mínima [A/m ²]	Densidad Corriente Promedio [A/m ²]	Densidad Corriente Máxima [A/m ²]	Desviación Estándar (%)
Barra Convencional	400,0	485,5	1278,9	105,1
Barra Multicircuital	400,0	471,5	913,2	15,0

 Tabla 4- 3: Valores de Densidad de Corriente Promedio Calculados para cada tecnología de barra intercelda durante un segundo ciclo catódico de un ciclo anódico de producción.

Tecnología Barra Intercelda	Densidad Corriente Mínima [A/m ²]	Densidad Corriente Promedio [A/m ²]	Densidad Corriente Máxima [A/m ²]	Desviación Estándar (%)
Barra Convencional	400,7	474,5	1231,5	71,1
Barra Multicircuital	400,2	469,5	753,2	23,3

En las tablas 4-2 y 4-3, es posible ver que al modificar la barra intercelda convencional por una barra interceda segmentada, los valores mínimos se aproximan al valor medio, reduciendo la dispersión de las densidades de corriente, además se aprecia una menor densidad de corriente máxima en la barra multicircuital tanto en el primer como segundo ciclo catódico. En las celdas de Refinería con barras interceldas convencionales, la densidad de corriente en promedio se distribuye en un rango de ± 105 [A/m²] y ± 75 [A/m²] durante un primer y segundo ciclo catódico respectivamente, rangos que son reducidos a ± 65 [A/m²] y ± 40 [A/m²] durante los mismos ciclos al modificar las barras en condiciones normales de operación. La comparación anterior de las tablas 4-2 y 4-3 se realiza sin la anormalidad de circuitos abiertos (circuitos aislados) pero incluyendo cortocircuitos ocurridos entre electrodos, debido a que este es el mayor problema que afecta el funcionamiento de las celdas.

En la tabla 4-4 se muestran las densidades de corriente mínimas y máximas promedio medidas durante un ciclo anódico completo para cada tecnología. (Anexo A, páginas 141-142).

Tecnología Barra Intercelda	Mínima Densidad Corriente [A/m ²]	Densidad Corriente Promedio [A/m ²]	Máxima Densidad Corriente [A/m ²]	Desviación Estándar (%)
Barra				
Convencional	400,0	481,3	1278,9	91,0
Barra				
Multicircuital	400,0	470,8	913,2	18,0

 Tabla 4- 4: Valores de Densidad de Corriente Promedio Calculados para cada tecnología de barra intercelda durante un ciclo anódico de producción.

Se puede apreciar que en las celdas de Refinería con barras intercelda convencionales, la densidad de corriente en promedio se distribuye en un rango de $\pm 80 \text{ [A/m^2]}$ durante un ciclo anódico completo, lo cual al utilizar las barras Multicircuitales en las mismas condiciones de operación este rango es reducido a $\pm 70 \text{ [A/m^2]}$, pero la diferencia de rangos de densidades de corriente se hace notoria al considerar los cortocircuitos producidos en la sección 14-1 de Refinería distribuyéndose en un rango de $\pm 700 \text{ [A/m^2]}$ en las barras convencionales y $\pm 300 \text{ [A/m^2]}$ en las barras intercelda modificadas (multicircuitales). Al

Los gráficos 4-1 y 4-2 muestran los valores de densidad de corriente promedio medidos y su ocurrencia en función de la tecnología de barra intercelda utilizada durante el primer y segundo ciclo catódico. Aquí se puede apreciar nuevamente el impacto de modificar la tecnología de barra intercelda. Las corrientes catódicas se distribuyen en las cercanías del valor medio. En el caso Multicircuital, las densidades de corriente se concentran en promedio en el rango 400 – 700 $[A/m^2]$ comparada con la variación de las barras convencionales que varían en un rango de 400 – 900 $[A/m^2]$.

Por lo cual las densidades de corrientes al ser menores en las barras multicircuitales es más controlada la aparición de cortocircuitos y de ser así el cortocircuitos no es tan agresivo como en el caso de las barras convencionales con 900 [A/m²] lo que posiblemente provocara además de un corte de magnitudes también el aislamiento de cátodos adyacentes.

Gráfico 4- 1: Distribución de densidades de corriente catódica de cada tecnología durante el primer ciclo catódico de un ciclo anódico completo de producción.

Gráfico 4- 2: Distribución de densidades de corriente catódica de cada tecnología durante el segundo ciclo catódico de un ciclo anódico completo de producción.

4.1.3 Consumo de Energía

Las mediciones de los voltajes de las semisecciones 14-1A y 14-1B realizadas durante la prueba industrial de la tecnología de Conexión Multicircuital, permiten estimar la reducción del consumo de energía producido por las barras interceldas Multicircuitales durante los ciclos de producción.

Para la medición de los voltajes de contacto barra-cátodo y de los segmentos se utiliza un Voltímetro Digital Fluke 89. Para realizar adecuadamente las mediciones, se debe escoger la escala de medición de voltaje continuo en [mV] ya que los voltajes de proceso a medir son muy pequeños y además asegurar que las puntas de voltaje del instrumento realicen un buen contacto con la zona a medir ya que esto asegura una medición confiable.

Para determinar un valor de voltaje de contacto barra-cátodo de operación representativo de la nave de ER, deben realizarse mediciones de los voltajes entre cada segmento de barra intercelda y el cátodo respectivo, como se muestra en Figura 4-6.

Figura 4- 6: Medición de Voltajes de Contacto

Figura 4-7: Medición de Voltajes de Segmentos

Para medir los voltajes de operación de las celdas convencionales en la nave de ER, deben realizarse mediciones de los voltajes entre las barras inter-celda en un punto de cada barra, como se muestra en la Figuras 4-7 y 4-8.

Figura 4-8: Medición de Voltajes de Segmento

El impacto de la tecnología de barras Multicircuitales Optibar en el consumo de energía de las celdas puede verse en las Tablas 4-5 y 4-6 donde se muestran y comparan los voltajes de semisección promedio por ciclo, el amperaje acumulado durante cada ciclo y el consumo promedio de energía producido por cada tecnología. Los valores correspondientes al ciclo 7 no fueron incluidos, ya que no fue posible recopilar información completa para su evaluación.

En el Gráfico 4-3 se observa una comparación de consumos de energía producidos por cada tecnología durante la prueba.

La tabla 4-5 muestra la reducción de la dispersión de corriente catódica producido por las barras Multicircuitales permite el funcionamiento de las celdas de Electrorefinación con un menor voltaje de operación. El voltaje de la semisección 14-1A (20 celdas Optibar 1.0) siempre fue menor que el voltaje de operación de la semisección 14-1B (20 celdas convencionales) a lo largo de la prueba (Gráfico 4-4). Esto se refleja en un menor consumo de energía en las celdas con barras intercelda Multicircuitales en cada uno de los ciclos de producción. (Anexo A, páginas 143-144)

Como muestra la Tabla 4-6, la reducción del consumo de energía promedio por ciclo anódico fue de 5.6% para una corriente DC de 38.900 [A]. Esta reducción se incrementó a un promedio de 7.5% al incrementar la corriente DC de operación de las celdas a 40.100 [A]. (Anexo A, página 145)

•

			Voltaje Sem	uisección [V]		Consumo Energía Cic	lo Catódico [KWh]
Ciclo	Voltaje	Corriente DC	14-1A	14-1B	Ampere	14-1A	14-1B
Catódico	Sección [V]	[A]	Multicircuital	Convencional	Acumulado [A-día]	Multicircuital	Convencional
1	11.8	38900	5.7		330040	45183.0	48118.0
2	14.3	38900	6.9	7.3	330000	54891.6	58008.0
3	12.1	38900	5.9	6.3	330110	46577.6	49603.2
4	14.7	38900	7.1	7.5	330030	56503.3	59711.3
5	12.1	38900	5.9	6.2	330010	46350.5	49361.1
6	15.1	38900	7.4	7.8	330008	58292.3	61601.8
7							
8	14.6	39500	7.1	7.5	335890	57246.3	60530.1
9	12.0	39500	5.8	6.3	335010	46505.4	50272.3
10	14.7	39500	7.1	7.6	335000	58446.4	60741.6
11	12.2	39500	5.9	6.3	334920	47123.8	50940.7
12	13.9	39500	6.7	7.1	335000	53942.4	57429.5
13	11.3	40100	5.3	5.9	316620	40484.3	45022.1
14	14.4	40100	7.0	7.4	335030	56221.7	59856.1
	Con	sumo Energía C	iclo Catódico Pr	omedio [kWh]		51109.1	54501.2
	Porcer	ntaje Reducción	Consumo Promo	edio Prueba (%)		6.29	/0

 Tabla 4- 5: Voltajes de Semisección y Consumos de Energía Promedio Calculados en cada ciclo catódico de producción durante la prueba industrial de conexión Multicircuital.

Gráfico 4- 3: Comparación de consumos de energía producidos por cada tecnología durante la prueba.

Tabla 4- 6: Porcentajes de Reducción de Voltajes de Semisección Promedio Calculados por ciclo anódico
de producción durante la prueba industrial de conexión Multicircuital.

Porcentaje Reducción Voltaje Semisección Promedio					
Corriente DC [A] 38900 39500 40100					
Primer Ciclo Catódico (%)	6.1	8.1	10.1		
Segundo Ciclo Catódico (%)	5.4	5.7	6.1		
Ciclo Anódico (%) 5.8 6.9 8.1					

Gráfico 4- 4: Evolución de voltajes de semisecciones Convencional y Multicircuital durante un ciclo catódico completo

4.1.4 Pesos Cosechados y eficiencia de Corriente

En la Tabla 4-7 se resumen los pesos totales de los cátodos cosechados por ciclo y tecnología. Los valores correspondientes a los ciclos 7 y 11 no fueron incluidos, ya que no fue posible recopilar información completa para su evaluación. (Anexo A, páginas 146-154)

	Peso Cosechado S		
Ciclo Catódico	14-1 ^a Multicircuital	14-1B Convencional	Porcentaje Incremento (%)
1	159927,4	169047,8	-5,7
2	176879,1	184489,0	-4,3
3	164300,0	159400,0	+3,0
4	185217,0	184723,0	+0,3
5	181457,0	180176,0	+0,7
6	186458,0	186314,0	+0,1
7			
8	165075,0	154225,0	+6,6
9	175503,0	168438,0	+4,0
10	158098,0	159862,0	-1,1
11			
12	185393,0	186100,0	-0,4
13	166611,0	162097,0	+2,7
14	183315,0	174173,0	+5,0
Promedio Prueba	174019,5	172420,4	+0,9

 Tabla 4- 7: Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción por cada tecnología durante la prueba.

En promedio, las celdas con barras Multicircuitales produjeron en promedio +0,9% más de cobre que las celdas con barras Convencionales trabajando en las mismas condiciones de operación durante la prueba (Gráfico 4-5). La reducción de la dispersión de densidad de corriente catódica y la ocurrencia de cortocircuitos con sobrecorrientes limitadas en las celdas con barras Multicircuitales, asegura una mayor eficiencia de corriente y un mayor peso de cátodos cosechados en las celdas de electrorefinación.

Como se muestra en la tabla 4-6 en relación al uso de las barras multicircuitales en algunos ciclos aumentó el peso catódico y en otros no, esto se debió principalmente a problemas de operación en estos ciclos atribuibles a problemas con la temperatura del electrolito, problemas de limpieza de los contactos, mal alineación de electrodos esto afectaba considerablemente en las barras multicircuitales y no tanto así en las barras convencionales.

Gráfico 4- 5: Comparación de pesos totales producidos por cada tecnología durante la prueba.

La Tabla 4-8 resume la eficiencia de corriente obtenida en cada ciclo catódico en función del tipo de barra intercelda empleado. Los valores correspondientes a los ciclos 7 y 11 no fueron incluidos, ya que no fue posible recopilar información completa para su evaluación. (Anexo A, páginas 155-156)

La mejor distribución de densidad de corriente catódica obtenido con las barras Multicircuitales permite minimizar las pérdidas de corriente por cortocircuitos en las celdas. Esto se traduce directamente en una mayor eficiencia de corriente. En promedio, la eficiencia de corriente en las celdas con barras intercelda Multicircuitales fue +1,2% mayor a la eficiencia de corriente de las celdas trabajando con barras intercelda convencionales bajo las mismas condiciones de operación (Gráfico 4-6).

	Eficiencia d Semisec		
Ciclo Catódico	14-1A Multicircuital	14-1B Convencional	Porcentaje Incremento (%)
1	85,2	90,1	-4,9
2	94,2	98,3	-4,1
3	87,5	84,9	+2,6
4	98,7	98,4	+0,3
5	96.7	96,0	+0,7
6	99,3	99,2	+0,1
7			,
8	81,8	73,2	+8,6
9	92,1	88,4	+3,7
10	83,0	82,4	+0,6
11			
12	97,3	97,7	-0,4
13	92,5	90,0	+2,5
14	96,2	91,4	+4,8
Promedio Prueba	92,0	90,8	+1,2

 Tabla 4- 8: Resumen eficiencia de corriente obtenida en cada ciclo durante la prueba industrial de conexión Multicircuital.

Gráfico 4- 6: Comparación de eficiencia de corriente resultante de cada tecnología durante la prueba industrial.

4.1.5 Consumo Específico de Energía

La Tabla 4-9 resume el consumo específico de energía de las celdas en función del tipo de barra intercelda empleado. Los valores correspondientes a los ciclos 7 y 11 no fueron incluidos, ya que no fue posible recopilar información completa para su evaluación. (Anexo A, páginas 157-158)

	Consumo esp Semisección		
	14-1A	14-1B	Porcentaje
Ciclo Catódico	Multicircuital	Convencional	Reducción (%)
1	282.5	284.7	-0.7
2	310.4	314.5	-1.3
3	283.5	311.2	-9.8
4	305.0	323.2	-6.0
5	255.3	273.9	-7.3
6	312.7	330.7	-5.8
7			
8	366.4	433.0	-18.2
9	265.1	298.5	-12.6
10	363.4	387.2	-6.6
11			
12	291.9	307.5	-5.3
13	242.9	277.7	-14.3
14	306.8	343.7	-12.1
Promedio Prueba	298.8	323.8	-8.1

 Tabla 4- 9: Resumen consumo específico de energía obtenido en cada ciclo durante la prueba industrial de conexión Multicircuital.

Las barras Multicircuitales permiten mejorar la eficiencia de corriente y el peso cosechado, al mismo tiempo que reducen el voltaje de operación de las celdas de Electrorefinación. Esto se traduce directamente en un menor consumo específico de energía promedio en las celdas.

Como muestra el Gráfico 4-7, el consumo específico de energía de la semisección 14-1A (20 Celdas Optibar 1.0) siempre fue menor al consumo específico de energía de las celdas convencionales de la semisección 14-1B a lo largo de la prueba. La modificación de las barras intercelda permite reducir el consumo específico de energía de las celdas en 8,12% en promedio gracias a la reducción de la dispersión de las densidades de corriente catódica en las celdas.

Gráfico 4- 7: Comparación de consumo específico de energía por cada tecnología durante la prueba industrial.

4.1.6 Ocurrencia de Cortocircuitos

La ocurrencia de cortocircuitos entre electrodos es la principal condición anormal de funcionamiento que afecta al proceso de electrorefinación de cobre. Las Tablas 4-10 y 4-11 resumen la ocurrencia de cortocircuitos ánodo-cátodo durante un ciclo anódico completo de operación.

El número total de cortocircuitos detectados en la semisección 14-1A (20 celdas Optibar 1.0) es mayor que los detectados en las celdas con barras convencionales de la semisección 14-1B durante el ciclo anódico completo (8.0 cocis/celda contra 6.2 cocis/celda en un ciclo catódico completo en promedio). Sin embargo, este resultado está influenciado por la mala alineación producida por el capping board de compuesto polimérico utilizado en el diseño Optibar 1.0 (que favoreció la formación de cortocircuitos entre electrodos) y el no despeje diario de todos los cortocircuitos presentes en la semisección 14-1A.

Cabe señalar que tanto en el primer como en el segundo ciclo catódico pese a que la ocurrencia de cortocircuitos es mayor en la tecnología multicircuital que en la convencional, la densidad de corriente del cortocircuito es mucho menor en la sección 14-1A (multicircuital) lo que se traduce a cocis menos agresivos, es decir, al detectarlos en la inspección se pueden controlar a través del ciclo, limpiando el cátodo para lograr que este pase por la inspección física al término de la cosecha catódica.

La corriente DC que se pierde en cortocircuitos entre electrodos es menor al utilizar barras intercelda Multicircuitales segmentadas. En estas celdas los cortocircuitos producen un aumento en la densidad de corriente desde 450 $[A/m^2]$ (considerado óptimo) a ±600 $[A/m^2]$, equivalente a un incremento de 30%. Por su parte, un cortocircuito en las celdas con barras convencionales produce una densidad de corriente superior a ±1135 $[A/m^2]$, es decir, un incremento superior a 150%. Esto se traduce directamente en una mayor eficiencia de corriente en las celdas con barras multicircuitales y en una menor temperatura de operación promedio de las barras intercelda.

	Nº Ocurrencias Cortocircuitos por Semisección				
	14-1A	14-1B			
Primer Ciclo Catódico	Multicircuital	Convencional			
06-mayo-09 (día 1)	30	18			
07-mayo-09 (día 2)	23	15			
08-mayo-09 (día 3)	32	19			
09-mayo-09 (día 4)	23	20			
10-mayo-09 (día 5)	25	20			
11-mayo-09 (día 6)	22	21			
12-mayo-09 (día 7)	33	30			
13-mayo-09 (día 8)	37	24			
14-mayo-09 (día 9)	46	38			
Total COCI ciclo catódico	271	205			
Densidad de Corriente COCI					
Promedio ciclo [A/m ²]	588.6	1104.7			
Nivel Sobrecorriente COCI (%)	30.8	145.5			

 Tabla 4- 10: Resumen de ocurrencia de cortocircuitos en primer ciclo catódico de un ciclo anódico de producción durante la prueba industrial de conexión Multicircuital.

	Nº Ocurrencias Cortocircuitos por Semisección				
	14-1A	14-1B			
Segundo Ciclo Catódico	Multicircuital	Convencional			
16-mayo-09 (día 1)	1	1			
17-mayo-09 (día 2)	3	2			
18-mayo-09 (día 3)	1	2			
29-mayo-09 (día 4)	4	2			
20-mayo-09 (día 5)	4	3			
21-mayo-09 (día 6)	5	9			
22-mayo-09 (día 7)	7	2			
23-mayo-09 (día 8)	12	10			
24-mayo-09 (día 9)	10	10			
Total COCI ciclo catódico	47	41			
Densidad de Corriente COCI					
Promedio ciclo [A/m ²]	610.9	1164.0			
Nivel Sobrecorriente COCI (%)	35.7	158.7			

 Tabla 4- 11: Resumen de ocurrencia de cortocircuitos en segundo ciclo catódico de un ciclo anódico de producción durante la prueba industrial de conexión Multicircuital.

4.1.7 Temperatura de Operación Barras Intercelda

La Tabla 4-12 resume la temperatura de operación promedio de los contactos cátodobarra de las celdas en función del tipo de barra intercelda empleado. Los valores promedio mostrados corresponden mediciones realizadas en las barras 1, 5, 10, 15 y 20 de las semisecciones 14-1A y 14-1B durante el ciclo anódico comprendido entre el 06 de Mayo de 2009 y el 24 de mayo de 2009 (Gráfico 4-8). La modificación de las barras intercelda permite reducir la dispersión de las densidades de corriente catódica, reduciendo el consumo de energía de las celdas y la temperatura promedio de operación de las barras intercelda en 11.1 [°C] en las actuales condiciones de operación. Esto permite reducir la sobrecarga térmica de trabajo de los capping boards de las barras interceldas, asegurando una mayor vida útil de los aisladores (Gráfico 4-10). (Anexo A, página 159)

 Tabla 4- 12: Resumen temperatura de operación promedio barras intercelda durante un ciclo anódico completo de producción.

	Temperatura Operación Promedio [°C]		
	14-1A	14-1B	
Celda	Multicircuital	Convencional	
1	54.9	73.4	
5	56.9	68.4	
10	59.4	70.4	
15	61.3	66.7	
20	62.6	71.6	
Temperatura Operación			
Promedio Barra [°C]	59.0	70.1	
Reducción Temperatura		,	
Operación [°C]	11.1		

Gráfico 4- 8: Comparación de temperaturas promedio de operación barras intercelda durante un ciclo anódico completo.

Gráfico 4- 9: Perfil de temperaturas de contactos en barras intercelda en operación.

4.1.8 Rechazo Catódico

En la Tabla 4-13 se resumen los porcentajes de rechazo de producción de cátodos por ciclo y tecnología. Los valores correspondientes a los ciclos 10 y 11 no fueron incluidos, ya que no fue posible recopilar información completa para su evaluación.

Al comparar el rechazo de la producción de cátodos en ambas tecnologías, se aprecia que las barras intercelda Multicircuitales presentan un porcentaje de rechazo promedio 1.2% mayor que las celdas convencionales, siendo 7 ciclos de 11 (en 3 ciclos no existe información) los que presentan una mayor tasa de rechazo durante la prueba, este resultado está fuertemente influenciado por la mala alineación producida por el capping board de compuesto polimérico (que favoreció la formación de cortocircuitos entre electrodos) y el no despeje diario de todos los cortocircuitos presentes en la semisección 14-1A, (Anexo A, página 160).

Esta situación no permitió determinar adecuadamente el porcentaje de rechazo real asociado a la Tecnología Multicircuital durante la prueba Industrial. Durante la primera mitad de la prueba el porcentaje de rechazo de producción de cátodos fue mayor en las celdas con barras multicircuitales. Sin embargo, esta situación se revirtió hacia la segunda mitad de la prueba, como se muestra en el Gráfico 4-10.

	Porcentaje de Rechazo de Producción de Cátodos (%)		
Ciclo Catódico	14-1A Multicircuital	14-1B Convencional	Diferencia Rechazo (%)
1	7.8	6.6	-1.2
2	3.3	1.1	-2.2
3	3.6	1.3	-2.3
4	8.8	2.2	-6.6
5	5.8	3.6	-2.2
6	5.8	3.6	-2.2
8	4.4	1.2	-3.2
9	5.5	6.9	+1.4
10		7,1	
11			
12	4.0	6.9	+2.9
13	4.0	5.5	+1.5
14	8.4	9.8	+1.4
Diferencia Rechazo de Producción Promedio (%)			-1.2

Tabla 4- 13: Resumen porcentaje de rechazo de producción de cátodos durante Prueba Industrial de Conexión Multicircuital.

Gráfico 4- 10: Comparación porcentaje de rechazo de producción durante la Prueba Industrial de Conexión Multicircuital.

4.1.9Cuadro Resumen Prueba

La siguiente Tabla 4-14 resume los resultados obtenidos con las barras Multicircuitales segmentadas.

	Barras	Barras
Parámetros	Convencionales	Multicircuitales
Dispersión de Densidad de Corriente 1º y 2º ciclo (%)	92,0	18,0
Mínima Densidad de Corriente 1º y 2º ciclo (%)	400,4	400,1
Máxima de Densidad de Corriente 1º y 2º ciclo (%)	1255,2	833,2
Voltaje Semisección promedio ciclo anódico [V]	6,9	6,4
Consumo Energía promedio ciclo anódico [V]	54501,2	51109,1
Reducción Consumo Energía promedio prueba	0%	8,1%
Reducción Consumo Energía promedio prueba a 38900	0%	5,8%
[A]		
Reducción Consumo Energía promedio prueba a 39500	0%	6,9%
[A]		
Reducción Consumo Energía promedio prueba a 40100	0%	8.1%
[A]		
Peso Promedio Semisección [Kg]	172170,0	174019,4
Porcentaje Incremento Peso Promedio Cosechado	0%	+0,9%
Eficiencia Corriente Promedio (%)	90,8	92,0
Incremento Eficiencia Corriente Promedio (%)	0%	+1,2%
Consumo Específico Energía Promedio [KWh/Ton]	323,8	298,8
Reducción Consumo Específico Energía Promedio	0%	8,3%
[KWh/Ton]		
Cantidad Promedio COCI detectados por Semisección en	123	159
un Ciclo Catódico		
Densidad de Corriente COCI Promedio Ciclo Catódico	1134,4	599,8
[A/m ²]		
Temperatura Operación Promedio Barras Intercelda [°C]	70,1	59,0
Porcentaje Rechazo Catódico promedio por ciclo (%)	5,6	4,4

Tabla 4- 14: Comparación de resultados obtenidos con barras convencionales y Multicircuitales Optibar 1.0 durante Prueba Industrial.

4.2 ETAPA DE EVALUACIÓN CON OPTIBAR 2.0

Debido a problemas que se presentaron en el funcionamiento de los capping board de compuesto polimérico originales de la semisección 14-1A, y que fueron integrados a la barra Optibar 1.0 (primera etapa), se decide realizar un rediseño de la barra para asegurar que los problemas producto del capping board no afecten los índices de funcionamiento de la Tecnología Multicircuital.

a) Alineación deficiente: La mala alineación de los electrodos producida por los capping board se debió principalmente a la falta de topes o guías que permitieran posicionar los electrodos en forma centrada y correcta. En este tipo de capping board, el electrodo ya sea ánodo o cátodo puede moverse libremente desde un extremo al otro del área de posicionamiento, llegando en algunos casos a hacer contacto con electrodos vecinos (Figura 4-9).

Esto hace que la distribución de corrientes en los cátodos se vea afectada, ya que la resistencia de electrolito es directamente proporcional a la distancia entre electrodos y al ser ésta variable, también lo serán las corrientes que circulan por ahí.

Figura 4- 9: Dos casos de problemas de alineación de electrodos en celdas de semisección 14-1A debido al uso de capping board de compuesto polimérico.

b) Grietas por expansión/contracción: La utilización de capping board de compuesto polimérico de una pieza a lo largo de la barra produjo que el compuesto polimérico se agriete en algunos sectores cuando se originan cambios de temperatura, ver Figura 4-10. Esto sucede en los inicios y términos de cada cosecha, ya que la temperatura de trabajo de las barras sufren modificaciones de manera considerable. Las barras intercelda Optibar que están integradas con el capping board, pero que se encuentran segmentadas en 3 piezas no sufrieron este tipo de problemas.

Figura 4- 9: Problemas de grietas por expansión/contracción sufridos por capping board de compuesto polimérico instalados en semisección 14-1A debido a cambios constantes de temperatura.

c) Problemas de expansión de las barras: Se produjo un importante problema de expansión en las barras multicircuitales de la semisección 14-1A, acentuándose más aún al desenergizar la semisección, su principal complicación es con seguridad del operador que transita por sobre las celdas. Como la barra siempre estará expuesta a cambios de temperatura se tomó como solución realizar una perforación llamada "ojo chino" para lograr que la barra tuviera mayor movilidad y no sufriera una expansión tan notoria, esto se realizará cada vez que expansión sea considerada peligrosa por los asesores de prevención de riesgos de Refinería (Figura 4-11).

Figura 4- 11: Problemas de expansión de las barra multicircuitales instalados en la semisección 14-1A debido a los constantes cambios en la temperatura.

d) Limpieza de contactos: La estructura actual de posicionamiento del capping board en la barra de cobre segmentada ha afectado el normal procedimiento de limpieza de los contactos de la barra. Aunque existen formas simples de implementar una limpieza eficiente de los contactos, se observa que este es un punto crítico a considerar en el rediseño de la barra intercelda con conexión Multicircuital: Optibar 2.0.

El nuevo diseño de barra Multicircuital, Optibar 2.0 permite la utilización de los capping boards plásticos de polímero vinil éster moldeado utilizados normalmente en la Refinería y que presentan un mejor posicionamiento y alineamiento de los electrodos. La nueva barra considera la inserción inferior de una pieza de "fibra de vidrio reforzado" (FRP) que contiene la barra compensadora y sirve de sistema de posicionamiento de los segmentos. El rediseño consideró las distancias establecidas por Codelco Norte para el funcionamiento correcto de la Refinería mostradas en Tabla 4-4.

Las modificaciones implementadas en la barra permiten continuar con el funcionamiento normal de la refinería, asegurando el posicionamiento de las grúas y la ubicación de los capping board que se utilizan actualmente en la Refinería. El nuevo diseño permite ubicar la barra compensadora en la parte inferior de la barra, inserta en la pieza de FRP que permite la fijación de los segmentos de cobre. La pieza de FRP está diseñada para soportar la temperatura de operación, es resistente a la acción del ácido, y soporta las fuerzas de compresión producidas por los electrodos al posicionarse sobre los segmentos de cobre y es aislador eléctrico.

Esta etapa de prueba está comprendida desde el 13 de Agosto de 2009 a la fecha. La instalación de las barras intercelda Optibar 2.0 en 20 celdas de la semisección 14-1B fue realizada el día 12 de Agosto y la energización de las celdas fue el día 13 de Agosto de 2009.

En las Figuras 4-12, 4-13, 4-14 y 4-15 se muestra el diseño, instalación y diferentes vistas de las barras intercelda Multicircuitales diseño Optibar 2.0 con base FRP instaladas en la semisección 14-1B de la Refinería.

Figura 4- 10: Despiece de la barra intercelda Multicircuital diseño Optibar 2.0 con base FRP para implementar la Tecnología Multicircuital en la Refinería Nº 2, Codelco Norte.

Figura 4- 11: Barras intercelda de Conexión Multicircuital diseño Optibar 2.0 instaladas en 20 celdas de semisección 14-1B en Refinería Nº 2, Codelco Norte.

Figura 4- 12: Vista de barra Multicircuital diseño Optibar 2.0 con capping board de polímero vinil éster moldeado utilizado normalmente en Refinería Nº 2.

Figura 4- 13: Vista de Semisección 14-1B con barras intercelda Multicircuitales diseño Optibar 2.0 en operación en Refinería Nº 2, Codelco Norte.

4.2.1 Medición de Prueba Industrial con Optibar 2.0

Durante la prueba del diseño Optibar 2.0 no fue posible realizar mediciones de variables de proceso en condiciones normales de operación de las celdas de la semisección 14-1B. Esto debido a la presencia de múltiples electrodos aislados y contactos sucios entre barra conductora y electrodos. Este fuerte ruido durante la prueba fue generado por el cambio imprevisto del capping board plástico utilizado en la semisección 14-1B por un capping board de goma de dimensiones y características químicas y físicas inadecuadas para las condiciones normales de operación de la refinería (en terreno se contabilizaron capping board de goma en un 75% del total de barras intercelda de la semisección 14-1B). Esto produjo una serie de problemas operacionales que invalidaron la información obtenida de las mediciones de la prueba industrial del diseño Optibar 2.0, por lo que no fue incluida en la evaluación final de la prueba industrial de la conexión Multicircuital Optibar.

4.2.2Problemas operacionales detectados asociados al uso de capping board de goma en Refinería N°2

En la Figura 4-16 es posible ver dos ejemplos de capping board de goma en operación en celdas con barras Multicircuitales diseño Optibar 2.0 en la semisección 14-1B durante la Prueba Industrial.

Figura 4- 14: Capping board de goma en operación en celdas con barras Multicircuitales diseño Optibar 2.0 en semisección 14-1B durante la prueba.

Los problemas operacionales detectados asociados al uso de capping board de goma en Refinería se resumen a continuación:

 Rápida pérdida de las características de diseño en condiciones normales de operación de temperatura y ácido sulfúrico: descomposición de la goma, deformación y rasgadura de capping board. Ver Figuras 4-17, 4-18 y 4-19.

Figura 4- 15: Pérdida de características de diseño capping board de goma: Descomposición de gomaefecto sobre contactos de cátodos y barra conductora.

Figura 4- 16: Pérdida de características de diseño capping board de goma.: Deformación por efecto del peso de los ánodos y la temperatura.

Figura 4-17: Pérdida de características de diseño capping board de goma: Rasgadura del capping board.

2. Operación de celdas de refinación con múltiples ánodos aislados por la presencia de grandes trozos de capping board de goma entre ánodo y barra conductora. Durante los primeros 3 días del ciclo catódico iniciado el día 02 de noviembre de 2009 se detectaron 40 ánodos aislados. Por cada ánodo aislado en una celda, dos cátodos adyacentes no presentan depósito por una cara y un tercer cátodo se ve afectado por cortocircuito (Figura 4-20).

Figura 4- 18: Operación de celdas de refinación con ánodos aislados por grandes trozos de capping board de goma entre ánodo y barra conductora.

 Producción de cátodos de bajo peso debido a elevadas resistencias de contacto ánodobarra conductora (contactos sucios con goma de los capping board). Pesos cosechados en Tablas 4-15 y 4-16, además de mediciones de voltajes de contacto en Gráfico 4-11.

Celda 3	14-1B	
Nº Cátodo	Peso	
1	148.0	
2	207.0	
3	208.5	
4	199.0	
5	195.0	
6	198.0	
7	162.0	CB COMA
8	140.0	
9	205.5	
10	177.0	
11	157.5	
12	121.5	
13	165.5	
14	164.5	
15	222.5	
16	244.5	-
17	194.0	
18	200.5	
19	228.0	
20	187.5	
21	115.5	- CB PLASTICO
22	218.0	
23	216.0	
24	230.0	_
25	205.0	
26	217.0	
27	200.0	
28	166.0	
29	218.0	
30	206.0	

Tabla 4- 15: Comparación de pesos de cátodos cosechados en semisección 14-1B al utilizar Capping boardde Goma y Capping board de polímero vinil éster moldeado.

 Tabla 4- 16: Comparación de pesos promedio de cátodos cosechados en semisección 14-1B al utilizar

 Capping board de Goma y Capping board de polímero vinil éster moldeado.

	Barras Multicircuitales con Capping Board de Goma	Barras Multicircuitales con Capping Board de Plástico	Reducción Peso Cosechado
Peso Promedio Cátodos Cosechados [Kg]	174,9	204,3	29,4 (-14,4%)

Gráfico 4- 11: Ejemplo de voltajes de contacto de ánodos en operación en celdas de refinación con capping board de goma en semisección 14-1B.

 Incremento de resistencias de contacto de cátodos por descomposición de CB de goma (Gráfico 4-12).

Gráfico 4- 12: Ejemplo de voltajes de contacto de cátodos en operación en celdas de refinación con capping board de goma en semisección 14-1B.

- 5. Presencia de cátodos aislados montados sobre capping board (altura de diseño de capping board levemente alta).
- 6. Problemas de alineación de electrodos: mayores tolerancias en dimensiones de capping board de goma respecto a capping board de polímero vinil éster moldeado (Figura 4-17).

Figura 4- 19: Ejemplo de voltajes de contacto de cátodos en operación en celdas de refinación con capping board de goma en semisección 14-1B.

 Presencia de cortocircuitos en celdas con mayor nivel de sobrecorriente (>1500 [A] en la ventana cátodo) debido a la presencia de electrodos aislados. Esto destruye los capping board por excesiva sobretemperatura.

CAPÍTULO 5

EVALUACIÓN ECONÓMICA

5 EVALUACIÓN ECONÓMICA

5.1 Costo Total Del Proyecto

El costo total del proyecto asciende a la suma de US\$150.880, costos resumidos en Tabla 5-1

	Tabla 5-1: Datos Referente al Est	udio Económico de la Prueba	Industrial de Conexión	Multicircuital
--	-----------------------------------	-----------------------------	------------------------	----------------

RESUMEN		Costo US\$		
Ingeniería		53880		
Gastos Generales		38500		
Gastos Desplazamiento		18500		
Universidad de Concepción		40000		
	Subtotal	150880		
	Total US\$	150880		
	Horas Pr	ofesional		
Ingeniería	IE	IA	Total HH	Costo US\$
Coordinación Proyecto	180		180	10800
Actividades Barras				
Ingeniería detalles y Ensavo prototipo	48	160	208	8480
Evaluación Refinería	32	240	272	10320
Montaje e Instalación	20	80	100	4000
Pruebas Industriales y Puesta en marcha	20	6	(meses)	18000
Evaluación Provecto	24	24	48	2280
Subtotal HH Ingeniería	304	510	808	53880
Costo HH Ing. Especialista US\$50 Ing. Ayudante		•		•
US\$30				
		1		
Gastos Generales	Costo US\$	-		
Imprevistos	10000			
Equipo de recolección de datos	9000			
Seguro Equipos y Personal	1500			
Equipamiento personas	4000			
Ensayos	4000			
Utilidades	10000			
Total US\$	38500			

5.2 Requerimientos a División Codelco Norte

Los requerimientos a Codelco Norte son:

- Recepción de las barras en planta y apoyo en su instalación.
- Alojamiento y transporte de personal técnico de Universidad de Concepción durante pruebas industriales post instalación de barras.

Declaración Ambiental

No existe Impacto por la naturaleza del proyecto

5.3 COSTOS DE INVERSIÓN

Según el estudio de proyecto de "Tecnología de Conexión Multicircuital", la División Codelco Norte aprobó la suma de US\$ 150.880 para su realización en la Refinería N° 2, Chuquicamata., con una inversión inicial de US\$ 3,225 en el año 2007.

Inversión Inicial (Moneda 2007) 1US\$ = \$ 522,5 (promedio 2007)

Inversión:

Ingeniería: US\$ 150.880

Inversión		F	Resumen Anual				
Ítem	Costo US\$	A	Año Estudio US\$		Inversión US\$	Total	
						US\$	
Ingeniería	150880	2	2007	3225		3225	
Total	150880	2	2008		50293	50293	
		2	2009		100587	100587	154105

5.4 COSTOS DE PRODUCCIÓN

Dentro los principales costos asociados al proyecto se encuentran la Ingeniería de la Barra Multicircuital, el cuál es un costo estimado por la empresa Optibar en la propuesta del Proyecto presentada a Codelco Norte. La materia prima, cobre, la proporciona Refinería, DCN de acuerdo a los requerimientos realizados por Optibar. Los costos de mano de obra directa son proporcionados por empresa Optibar, Refinería, servicios, suministros y distribución

La estimación de producción de cátodos de cobre referente al proyecto al evaluar en los 14 ciclos de duración es de 172170 [Kg] para la Tecnología Convencional en comparación a la producción de cátodos de cobre para la Tecnología Multicircuital la cuál alcanza a 174019 [Kg], generándose de esta manera una diferencia en producción de 1849 [Kg].

5.5 FLUJO DE CAJA

Se desarrolló el método de depreciación en línea recta para los costos depreciables de la inversión de los años 2007, 2008 y 2009, esto a 13 años. Se asume que no existe valor de salvamento.

Por lo tanto, el valor de la depreciación será:

$$D = \frac{(3,225 + 50,293 + 100,587)}{13} = 11,85 \ [USS]$$

La tasa de descuento es considerada como un 8% y la tasa de impuestos como un 17%. Para el flujo de caja se utilizó un escenario medio de 3,2% de aumento de Producción (Anexo B, página 162)

Se realizó una proyección económica de la producción de cátodos comerciales tanto por mayor capital como también por calidad del cátodo (Anexo B, página 163)

La Tabla 5-2 muestra el flujo de caja del proyecto con valores antes y después de la aplicación del impuesto específico.

Escena	Escenario Medio de Evaluación Económica													
Tasa d	e descue	nto		:8%										
Tasa d	e impue	stos		:17%										
Vida Ú	til del P	royecto		: 15										
Año	Año	Inver	Ingre	Costos	Depre	Utili	Im	Utili	Flujo	Flujo	Flujo	Flujo	Flujo	Flujo
	corre	sión	sos y/o	operac.	cia	dad	pues	dad	Caja	Actual	Caja	Caja	Actual	Caja
	lativo	kUS\$	ahorro	mante	ción	A/I	to a la	D/I	A/I	A/I	Acum	D/I	A/I	Acum
			kUS\$	n.	kUS\$		renta				A/I			D/I.
2007	0	3,225	0	0		0	0	0	-3	-3	-3	-3	-3	-3
2008	1	50,293	0	0		0	0	0	-50	-47	-50	-50	-47	-50
2009	2	100,587	0	0		0	0	0	-101	-86	-136	-101	-86	-136
2010	3	0	3218	0	11,85	3032	513	2519	3032	2407	2271	2519	2000	1864
2011	4	0	3218	0	11,85	3032	513	2519	3032	2229	4500	2519	1851	3715
2012	5	0	3218	0	11,85	3032	513	2519	3032	2064	6564	2519	1714	5429
2013	6	0	3218	0	11,85	3032	513	2519	3032	1911	8475	2519	1587	7017
2014	7	0	3218	0	11,85	3032	513	2519	3032	1769	10244	2519	1470	8486
2015	8	0	3218	0	11,85	3032	513	2519	3032	1638	11882	2519	1361	9847
2016	9	0	3218	0	11,85	3032	513	2519	3032	1517	13399	2519	1260	11107
2017	10	0	3218	0	11,85	3032	513	2519	3032	1405	14804	2519	1167	12274
2018	11	0	3218	0	11,85	3032	513	2519	3032	1301	16104	2519	1080	13354
2019	12	0	3218	0	11,85	3032	513	2519	3032	1204	17308	2519	1000	14354
2020	13	0	3012	0	11,85	3032	513	2519	3032	1115	18423	2519	926	15281
2021	14	0	3012	0	11,85	3032	513	2519	3032	1032	19456	2519	858	16138
2022	15	0	3012	0	11,85	3032	513	2519	3032	956	20412	2519	794	16932

Tabla 5-2: Flujo Caja de Evaluación Económica "Prueba Industrial de Tecnología de Conexión Multicircuital

5.6 VAN y TIR del Proyecto

Este proyecto considera la evaluación económica respecto a ganancias y pérdidas de cobre y electricidad.

Del flujo de caja se desprenden los indicadores económicos como el VAN y TIR antes y después del impuesto (Tabla 5-3).

INDICADORES ECONÓMICO							
ANTES DEL	IMPUESTO	DESPUES DEL IMPUESTOS					
VAN (kUS\$)	20412	VAN (kUS\$)	16932				
TIR	544%	TIR	492%				

Tabla 5- 3: Indicadores Económicos de Flujo Caja

Del Flujo de caja de la evaluación económica para la prueba industrial proyectado a 15 años se muestra gráficamente el flujo de caja después del impuesto (Gráfico 5-1) y el flujo de caja acumulado después del impuesto (Gráfico 5-2) esto en un escenario del proyecto considerado medio.

Gráfico 5-1: Flujo de Caja después del impuesto

Gráfico 5-2: Flujo de Caja Acumulado después del impuesto

De aquí se pude estimar que la inversión es rentable y aconsejable para la planta de acuerdo a los indicadores económicos de VAN y TIR.

5.7 ANALISIS DE SENSIBILIDAD

Para estimar la seguridad de la inversión se tomaron en cuenta dos parámetros los cuales inciden de forma directa en la prueba industrial, ellos son producción de cobre y costo de energía.

5.7.1VAN v/s Producción Cu

El flujo de caja del proyecto de las barras multicircuitales fue realizado en un escenario medio, es decir, estimar que la producción de cobre ascendería a un 3,2%, por lo cual este sería nuestro valor de referencia 0, de esta forma se estimarán valores en un escenario menor (0,5%, 1,4%, 2,3%) y mayor (4,2%, 5,1%, 6,0%) referente al 3,2% del escenario medio como muestra la tabla 5-4.

Tabla 5- 4: Escenari	ios respecto a la	a producción o	le cobre
----------------------	-------------------	----------------	----------

	Aumento de Producción											
	Escenario			Escenario				Escenario		Escenario		
		0,5%			1,4%			2,3%			3,2%	
	Producc kton	Delta kton	Delta Ingresos	Producc kton	Delta ton	Delta Ingresos	Produce kton	Delta kton	Delta Ingresos	Produce kton	Delta kton	Delta Ingresos
Año	Fino	Fino	kUS\$	Fino	Fino	kUS\$	Fino	Fino	kUS\$	Fino	Fino	kUS\$
2007												
2008												
2009												
2010	859	4,3	471	867	12,0	1318	875	19,7	2165	882	27,4	3012
2011	859	4,3	471	867	12,0	1318	875	19,7	2165	882	27,4	3012
2012	859	4,3	471	867	12,0	1318	875	19,7	2165	882	27,4	3012
2013	859	4,3	471	867	12,0	1318	875	19,7	2165	882	27,4	3012
2014	859	4,3	471	867	12,0	1318	875	19,7	2165	882	27,4	3012
2015	859	4,3	471	867	12,0	1318	875	19,7	2165	882	27,4	3012
2016	859	4,3	471	867	12,0	1318	875	19,7	2165	882	27,4	3012
2017	859	4,3	471	867	12,0	1318	875	19,7	2165	882	27,4	3012
2018	859	4,3	471	867	12,0	1318	875	19,7	2165	882	27,4	3012
2019	859	4,3	471	867	12,0	1318	875	19,7	2165	882	27,4	3012
2020	859	4,3	471	867	12,0	1318	875	19,7	2165	882	27,4	3012
2021	859	4,3	471	867	12,0	1318	875	19,7	2165	882	27,4	3012
2022	859	4,3	471	867	12,0	1318	875	19,7	2165	882	27,4	3012

	Escenario 4,2%				Escenario 5,1%	1	Escenario 6,0%		
	Producc	Delta	Delta Ingresos	Producc	Delta	Delta Ingresos	Producc	Delta	Delta Ingresos
Año	kton Fino	kton Fino	kUS\$	kton Fino	kton Fino	kUS\$	kton Fino	kton Fino	kUS\$
2007									
2008									
2009									
2010	891	35,9	3954	899	43,6	4801	906	51,3	5648
2011	891	35,9	3954	899	43,6	4801	906	51,3	5648
2012	891	35,9	3954	899	43,6	4801	906	51,3	5648
2013	891	35,9	3954	899	43,6	4801	906	51,3	5648
2014	891	35,9	3954	899	43,6	4801	906	51,3	5648
2015	891	35,9	3954	899	43,6	4801	906	51,3	5648
2016	891	35,9	3954	899	43,6	4801	906	51,3	5648
2017	891	35,9	3954	899	43,6	4801	906	51,3	5648
2018	891	35,9	3954	899	43,6	4801	906	51,3	5648
2019	891	35,9	3954	899	43,6	4801	906	51,3	5648
2020	891	35,9	3954	899	43,6	4801	906	51,3	5648
2021	891	35,9	3954	899	43,6	4801	906	51,3	5648
2022	891	35,9	3954	899	43,6	4801	906	51,3	5648

Con la producción de [kton] fino de cobre estimamos la variación del porcentaje de producción (Tabla 5-5).

Cobre fino [kton]	% Variación Producción de Cu
859	2,61%
867	1,70%
875	0,79%
882	0%
891	1,02%
899	1.93%
906	2,72%

Tabla 5-5: % Variación de Producción de cobre

Por lo tanto realizando un análisis de sensibilidad respecto a VAN v/s % Variación de producción de cobre para analizar la rentabilidad del proyecto obtenemos (Tabla 5-6):

VAN [kUS\$]	% Variación Producción de Cu
2637	2,61%
7402	1,70%
12167	0,79%
16932	0%
22227	1.02%
26992	1.93%
31757	2.72%

Tabla 5- 6: VAN v/s Producción Cu

Gráfico 5-3: Análisis de Sensibilidad de VAN v/s Variación producción de cobre.

Como se apreciar en el gráfico 5-3, a medida que aumenta el porcentaje de variación de la producción de cobre proporcionalmente aumenta el VAN por lo que más rentable se hace el proyecto de esta planta.

5.7.2VAN v/s Precio de Energía Eléctrica

Otro de los parámetros de gran importancia es el costo de energía eléctrica.

La evaluación del proyecto realizado en Refinería demostró un ahorro en el consumo específico de energía durante toda la prueba industrial.

Se realizó una proyección del costo de energía eléctrica al realizar el estudio del proyecto de "Tecnología de Conexión Multicircuital" en la División Codelco Norte en el año 2007 (Anexo B, página 164).

Durante la prueba industrial se determinó un consumo específico de energía en las barras multicircuitales de 298,8 [kWh/Ton] y para las barras convencionales el uso fue de 323,8 [kWh/Ton] lo que equivale a una reducción del consumo de energía de 8,1%, tomando este porcentaje como el valor referente 0

Para obtener los [kWh/Ton] para el análisis de sensibilidad se toma los 298,8 [kWh/Ton] como valor referente 0, de esta forma se realiza una variación de porcentaje de energía consumida (esta variación es de aproximadamente un 50% en escenario positivo y negativo en base al 8% de reducción de consumo de energía), con los valores de la energía eléctrica proyectada (Anexo B, página 164) obtenemos los [US\$/Ton] (Tabla 5-7)

Consumo de Energía [kWh/Ton]	Valor de Energía [US\$/Ton]
262,9	6549,9
274,9	6847,9
286,8	7145,7
298,8	7443,4
310,8	7741,1
322,7	8038,9
334,7	8336,6

Tabla 5-7: Consumo v/s Valor energía

Con estos datos referentes al precio de energía eléctrica consumida expresada en porcentaje v/s VAN se analizó la rentabilidad del proyecto (Tabla 5-8).

VAN [kUS\$]	% Precio Energía eléctrica
14885	-12,0
15566	-8,0
16252	-4,0
16932	0
17613	4,0
18299	8,0
18979	12,0

Tabla 5-8: VAN v/s Precio Energía Eléctrica

Gráfico 5-4: Análisis de Sensibilidad VAN v/s precio consumo específico de Energía.

Como se muestra en el Gráfico 5-4 al aumentar el precio del consumo específico de la energía eléctrica se aprecia que los valores del VAN proporcionalmente también aumentan, por lo que se demuestra lo rentable del proyecto.

CAPITULO 6

CONCLUSIONES

6. CONCLUSIONES

Este trabajo se inició con el estudio, la programación y puesta en marcha de la prueba industrial, la cual permitiría evaluar la instalación de la nueva tecnología de conexión de barras interceldas llamada Multicircuital, la cual se llevaría a cabo en el sector 14, específicamente en la semisección 14-1 en Refinería N°2, División Codelco Norte,

Esta prueba industrial consistió en realizar mediciones en terreno controlando ciclos de la cosecha catódica con renovación parcial y total, por lo que se midieron parámetros como: corrientes catódicas por celda, voltajes de contacto entre barra y cátodo, voltaje de segmento de barras interceldas, temperaturas de contacto barras-electrodos por celda, voltaje total de cada semisección, es decir, tecnología convencional y multicircuital y el registro en el patio de embarque de los pesos catódicos cosechados después de las renovaciones tanto parciales como totales.

Durante la realización de la prueba industrial se presentaron diversos problemas de tipo operacional como: problemas de alineación deficiente entre cátodo y ánodo lo cual se traducía a una mayor probabilidad de cortocircuito en las celdas además de la depositación deficiente del cobre en el cátodo, otro problema fue la expansión producida en las barras por lo se propuso como solución realizar una perforación al extremo de las estás barras para darle más movilidad e evitar su expansión, aunque esto no afectaba con los resultados esperados en la prueba si tenía relevancia con el tema de la seguridad del operador y con los que realizábamos pruebas en terreno, también problemas con la limpieza de contactos, esto debido a que la estructura de la barra multicircuital no permite la limpieza con lija la cual se realiza en las barras convencionales, esta se realiza manualmente con un cepillo para pulir metal y esta limpieza durante la cosecha tanto parcial como total queda a juicio del operador y por último se originaron problemas asociados al uso de capping board de goma, debido a falta de stock se cambió el material de estos capping, los cuales no resistieron temperaturas de operación derivando a ensuciar la superficie de contacto lo que provocó el aislamiento tanto de ánodos como cátodos.

En lo referente a la evaluación de los resultados de la prueba industrial se obtuvieron como principales resultados una dispersión de densidad de corriente menor en las barras multicircuitales en comparación a las barras convencionales 18,0% v/s 92,0%, voltaje de semisección promedio durante ciclo anódico de 6,4% en las barras multicircuitales contra un 6,9% en las barras convencionales, una reducción de consumo de energía promedio durante la prueba de 8,1%, una reducción del consumo de energía promedio de la prueba con 38900 [A] de 5,8%, con 38900 [A] de 5,8% y con 40100 [A] llegando a una reducción de 8,1%, un porcentaje de incremento de peso promedio cosechado de 0,9% durante la prueba, un incremento de eficiencia de corriente promedio de 1,2%, una reducción del consumo especifico de energía promedio de 8,3%, una densidad de corriente de cortocircuitos promedio menor en las barras multicircuitales 599,8 [A/m²] v/s 1134,4 [A/m²] lo que derivaba a que los cortocircuitos producidos en la semisección con barras multicircuitales fueran menos agresivos que los de las barras convencionales y una temperatura de operación promedio de barras interceldas de 59 [°C] v/s 70,1 [°C] de las barras convencionales.

Cabe señalar que los cortocircuitos detectados durante la prueba industrial en las barras multicircuitales fueron mayor que las barras convencionales 159 v/s 123, esto se debió a que las barras multicircuital poseen una diferente distribución de corriente en comparación con las barras convencionales, es por esto que la cámara termográfica no detecta correctamente los cortocircuitos, no obstante tal resultado no influye de manera considerable ya que debido a que las densidades de corriente son menores en las barras multicircuitales, es posible detectar y controlar el cortocircuito de esta manera se contrarresta la agresividad del corte.

El porcentaje de rechazo catódico también fue mayor en la semisección con barras multicircuitales resultando un 4,4% v/s 5,6% de igual forma esto se ve contrarrestado debido al mayor peso promedio por semisección conseguido durante la prueba.

Respecto a la Evaluación Económica se puede concluir que la puesta en marcha y funcionamiento de esta nueva tecnología de conexión multicircuital es muy rentable. Aún cuando disminuyan los beneficios demostrados en desarrollo de la evaluación tal como fue

demostrado en el Análisis de Sensibilidad, se seguirán los beneficios pese a que disminuya la producción de cobre y aumente el precio de la energía, lo cual se ve demostrado en el análisis del VAN y TIR, todo esto en comparación con la Tecnología Convencional que posee actualmente el Proceso de Electrorefinación en Codelco Norte.

CAPITULO 7

BIBLIOGRAFÍA

7. BIBLIOGRAFÍA

- [1]. <u>http://www.procobre.cl/principalchile.htm</u>; Internet; accessed 1° febrero 2010.
- [2]. <u>http://www.codelco.cl/hacia_futuro/nuevos_usos.asp;</u> Internet; accessed 1° febrero 2010.
- [3]. <u>http://www.codelco.cl/cu_zonacobre/procesos.asp;</u> Internet; accessed 1° febrero 2010.

[4]. <u>http://pirometarevista.blogspot.com/2007/11/la-pirometalrgia-en-el-cobre.html;</u> Internet; accessed 1° febrero 2010.

[5]. <u>http://www.codelco.com/la_corporacion/division_norte.asp;</u> Internet; accessed 1° febrero
2010.

[6]. <u>http://www.codelco.cl/la_corporacion/fr_corporacion.html;</u> Internet; accessed 2 febrero 2010.

[7]. Chang, R., Química, 7^a Edición, Editorial McGraw Hill Interamericana, México, 2002, Capitulo 19

- [8]. A.Walker, "Plant for the electrodeposition of metals," U.S. Patent 687 800, Dec. 3, 1901.
- [9]. E.P. Wiechmann, G.A. Vidal, A.J. Pagliero and J.A. Gonzalez, "Copper Electrowinning Using Segmented Intercell Bars for Improved Current Distribution", Canadian Metallurgical Quarterly, 2002, vol. 41(4), pp. 425-432.
- [10]. G. Vidal, E. Wiechmann, and J. Pagliero, "Performance of intercell bars for electrolytic applications," in Proc. 5th Int. Symp. Honoring Professor Ian M. Ritchie, Hydrometallurgy, C. Young, A. Alfantazi, C. Anderson, A. James, D. Dreisinger, and B. Harris, Eds., Vancouver, BC, Canada, Aug. 2003, vol. II, pp. 1381–1394.
- [11]. J. E. Dutrizac and C. G. Clement, "Performance of intercell bars for electrolytic applications," in Proc.Copper - Cobre, , Eds., Santiago, Chile, Dec. 2003, vol. V, pp. 377– 390.
- [12]. E. Wiechmann, G. Vidal, and A. Pagliero, "Current-source connection of electrolytic cell electrodes, an improvement for electrowinning and electrorefinery," IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 851–855, May/Jun. 2006.
- [13]. http://wwwslideshare.net/mponce91; Internet; accessed 30 abril 2010

- [14]. <u>http://www..circuitoselectricossupb.jimbo.com/circuitos-i/;</u> Internet; accessed 30 abril 2010
- [14]. <u>http://www..circuitoselectricossupb.jimbo.com/circuitos-i/;</u> Internet; accessed 30 abril 2010

[15]. <u>http://www.udistrital.edu.co/comunidad/profesores/jruiz/jairocd/texto/circuitos/;</u> Internet; accessed 30 abril 2010

[16]. <u>http://www.dav.sceu.frba.utn.edu.ar/homovidens/;</u> Internet; accessed 30 abril 2010

ANEXO A

DESARROLLO DEL ESTUDIO

ANEXO A: DESARROLLO DEL ESTUDIO

Tabla A- 1: Datos filtrados referentes a los Valores de Densidad de Corriente Promedio Calculados para la Tecnología Convencional durante un primer ciclo catódico de un ciclo anódico de producción.

	Densidad Corriente	Densidad Corriente	Densidad		
Fecha	Mínima	Promedio	Corriente Máxima [A/m ²]	Desviación Estándar (%)	
06-May-09	[/ 1/ 111]	[23/111]			
07-May-09	403,2	490,9	1202,0	115,3	
08-May-09	08-May-09 401,5		1262,6	123,7	
09-May-09	09-May-09 401,3		1069,7	88,4	
10-May-09	10-May-09 401,8		1207,6	139,8	
11-May-09	401,4	490,4	1188,3	112,1	
12-May-09	400,9	494,8	1270,0	89,5	
13-May-09	403,2	490,4	1117,3	57,5	
14-May-09	400,0	474,4	1278,9	114,3	
	Valor mínimo	Valor promedio	Valor máximo	Desv. promedio	
	400,0	485,5	1278,9	105,1	

Tecnología Convencional

Tabla A- 2: Datos filtrados referentes a los Valores de Densidad de Corriente Promedio Calculados para la Tecnología Multicircuital durante un primer ciclo catódico de un ciclo anódico de producción.

Tecnología Multicircuital

	Densidad Corriente Mínima	Densidad Corriente Promedio	Densidad Corriente	Desviación
Fecha	$[A/m^2]$	$[A/m^2]$	Máxima [A/m ²]	Estándar (%)
06-May-09	400,0	471,3	686,0	5,9
07-May-09	408,6	472,2	762,4	12,2
08-May-09	400,4	470,6	847,6	16,4
09-May-09	400,4	471,3	859,5	18,0
10-May-09	400,3	469,4	789,2	16,2
11-May-09	400,1	469,1	907,4	15,7
12-May-09	400,2	470,9	857,8	24,7
13-May-09	400,0	471,6	913,2	16,1
14-May-09	400,2	477,2	795,4	9,8
	Valor mínimo	Valor promedio	Valor máximo	Desv. promedio
	400,0	471,5	913,2	15,0

Tabla A- 3: Datos filtrados referentes a los Valores de Densidad de Corriente Promedio Calculados para la Tecnología Convencional durante un segundo ciclo catódico de un ciclo anódico de producción.

	Densidad Corriente Mínima	Densidad Corriente Promedio	Densidad Corriente	Desviación
Fecha	[A/m2]	[A/m2]	Máxima [A/m2]	Estándar (%)
16-May-09				
17-May-09	403,5	473,5	1113,6	59,1
18-May-09				
19-May-09				
20-May-09	400,7	472,6	987,9	78,2
21-May-09	403,8	478,9	1231,5	77,5
22-May-09	404,6	472,3	1188,0	56,2
23-May-09	401,2	475,2	1157,1	84,5
24-May-09				
	Valor mínimo	Valor promedio	Valor máximo	Desv. promedio
	400,7	474,5	1231,5	71,1

Tecnología Convencional

Tabla A- 4: Datos filtrados referentes a los Valores de Densidad de Corriente Promedio Calculados para la Tecnología Multicircuital durante un segundo ciclo catódico de un ciclo anódico de producción.

Tecnología Multicircuital

Fecha	Densidad Corriente Mínima [A/m2]	Densidad Corriente Promedio	Densidad Corriente Máxima [4/m2]	Desviación Estándar (%)
17-May-09	400.2	468.0	711.4	23.1
18-May-09				,
19-May-09				
20-May-09	400,6	468,0	753,2	22,9
21-May-09	402,1	469,0	607,5	20,4
22-May-09	404,5	470,1	615,4	23,1
23-May-09	402,1	472,5	699,0	26,9
24-May-09				
	Valor mínimo	Valor promedio	Valor máximo	Desv. promedio
	400,2	469,5	753,2	23,3

Tabla A- 5: Datos Filtrados referentes a los Valores de Densidad de Corriente Promedio Calculados para la Tecnología Convencional durante un ciclo anódico de producción.

Tecnología Convencional

	Densidad Corriente	Densidad Corriente	Densidad		
Fecha	Mínima [A/m2]	Promedio [A/m2]	Corriente Máxima [A/m2]	Desviación Estándar (%)	
06-Mav-09					
07-May-09	403,2	490,9	1202	115,3	
08-May-09	401,5	477,5	1262,6	123,7	
09-May-09	401,3	484,4	1069,7	88,4	
10-May-09	401,8	481,4	1207,6	139,8	
11-May-09	401,4	490,4	1188,3	112,1	
12-May-09	400,9	494,8	1270	89,5	
13-May-09	403,2	490,4	1117,3	57,5	
14-May-09	400	474,4	1278,9	114,3	
16-May-09					
17-May-09	403,5	473,5	1113,6	59,1	
18-May-09					
19-May-09					
20-May-09	400,7	472,6	987,9	78,2	
21-May-09	403,8	478,9	1231,5	77,5	
22-May-09	404,6	472,3	1188	56,2	
23-May-09	401,2	475,2	1157,1	84,5	
24-May-09					
	Valor mínimo	Valor promedio	Valor máximo	Desv. promedio	
	400,0	481,1	1278,9	91,0	

Tabla A- 6: Datos Filtrados referentes a la Tecnología Multicircuital durante un ciclo anódico de producción.

	Densidad Corriente Mínima	Densidad Corriente Promedio	Densidad Corriente	Desviación	
Fecha	[A/m2]	[A/m2]	Máxima [A/m2]	Estandar (%)	
06-May-09	400	471,3	686	5,9	
07-May-09	408,6	472,2	762,4	12,2	
08-May-09	400,4	470,6	847,6	16,4	
09-May-09	400,4	471,3	859,5	18	
10-May-09	400,3	469,4	789,2	16,2	
11-May-09	400,1	469,1	907,4	15,7	
12-May-09	400,2	470,9	857,8	24,7	
13-May-09	400	471,6	913,2	16,1	
14-May-09	400,2	477,2	795,4	9,8	
16-May-09					
17-May-09	400,2	468	711,4	23,1	
18-May-09					
19-May-09					
20-May-09	400,6	468	753,2	22,9	
21-May-09	402,1	469	607,5	20,4	
22-May-09	404,5	470,1	615,4	23,1	
23-May-09	402,1	472,5	699	26,9	
24-May-09					
Promedios	400,0	470,8	913,2	18,0	

Tecnología Multicircuital

1° ciclo		2° ciclo		3° ciclo		4º ciclo	
Tiempo [días]	Voltaje Sección [V]						
1	12,24	1	14,24	1	12,15	1	14,65
2	11,95	2	13,65	2	12,68	2	14,88
3	11,88	3	14,58	3	12,13	3	14,67
4	11,51	4	14,51	4	12,51	4	14,51
5	11,43	5	14,43	5	12,43	5	14,93
6	12,21	6	14,21	6	11,15	6	13,98
7	11,75	7	14,55	7	12,05	7	14,65
8	11,57	8	14,57	8	12,37	8	14,77
9	11,34	9	14,24	9	11,34	9	15,02
Promedio	11,8	Promedio	14,3	Promedio	12,1	Promedio	14,7

Tabla A-7: Datos Referentes a los Voltajes de Semisección y Consumos de Energía Promedio Calculados en cada ciclo catódico de producción durante la prueba
industrial de conexión Multicircuital.

5° ciclo		6° ciclo		7º ciclo		8º ciclo	
Tiempo [días]	Voltaje Sección [V]						
1	11,56	1	14,78	1		1	14,74
2	12,88	2	15,17	2		2	14,63
3	11,35	3	15,24	3		3	14,24
4	11,76	4	14,32	4		4	14,57
5	11,56	5	14,81	5		5	14,93
6	12,02	6	15,28	6		6	14,39
7	12,62	7	15,65	7		7	15,02
8	12,48	8	15,69	8		8	14,97
9	12,43	9	15,32	9		9	14,11
Promedio	12,1	Promedio	15,1	Promedio		Promedio	14,6

9º ciclo		10° ciclo		11° ciclo		12° ciclo	
Tiempo [días]	Voltaje Sección [V]						
1	11,44	1	14,85	1	12,11	1	13,86
2	12,18	2	14,98	2	12,12	2	13,78
3	11,75	3	14,78	3	12,25	3	14,35
4	12,17	4	14,59	4	12,11	4	13,86
5	12,03	5	14,54	5	11,98	5	13,76
6	12,25	6	14,67	6	12,17	6	13,59
7	11,98	7	14,69	7	12,22	7	13,87
8	12,15	8	14,84	8	12,57	8	13,76
9	12,47	9	14,01	9	12,52	9	13,83
Promedio	12,0	Promedio	14,7	Promedio	12,2	Promedio	13,9

13° ciclo		14° ciclo	
Tiempo [días]	Voltaje Sección [V]	Tiempo [días]	Voltaje Sección [V]
1	11,29	1	14,38
2	11,47	2	14,47
3	11,24	3	14,14
4	11,32	4	14,32
5	11,31	5	14,21
6	11,39	6	15,02
7	11,18	7	14,25
8	11,29	8	14,49
9	11,24	9	14,62
Promedio	11,3	Promedio	14,4

 Tabla A- 8: Datos Referentes a los Porcentajes de Reducción de Voltajes de Semisección Promedio Calculados por ciclo anódico de producción durante la prueba industrial de conexión Multicircuital.

IDC 38900 [A]					
Primera			Segunda		
14-1A	14-1B	Σ	14-1A	14-1B	Σ
5,85	6,23	12,08	7,292	7,706	15
0,484	0,516		0,486	0,514	
Reducción Consumo			Reducción Consumo		
Energía en Primera	6,1		Energía en Segunda	5,4	

. 6

IDC 39500 [A]					_		
Primera				Segunda			
14-1A	14-1B	Σ		14-1A	14-1B	Σ	
5,77	6,23	12	2,08	7,1	7,5	14,6	2,06
0,481	0,519		5,77	0,486	0,514		7,1
Reducción Consumo				Reducción Consumo			
Energía en Primera	8,1			Energía en Segunda	5,7		

IDC 40100 [A]					
Primera			Segunda		
14-1A	14-1B	Σ	14-1A	14-1B	Σ
11,12	12,37	23,5	14,2	15,11	29,31
0,473	0,527		0,484	0,516	
Reducción Consumo			Reducción Consumo		
Energía en Primera	10,1		Energía en Segunda	6,1	
BUNDLE N°	PESO [Kg]	BUNDLE N°	PESO [Kg]	BUNDLE N°	PESO [Kg]
------------------	-----------	-----------	-----------	------------------	-----------
02-026551	2600	04-020768	2605	02-026526	2554
02-026552	2632	01-024232	2705	02-026527	2539
03-024468	2638	01-024233	2741	02-026524	2244
03-024469	2623	04-020765	2681	03-024466	2445
02-0265549	2650	04-020766	4664	03-024467	2762
02-0265550	2757	02-026539	2658	03-024474	2595
02-026545	2707	02-026540	2484	03-024475	2511
02-026546	2715	01-024228	2600	04-020763	2830
02-026533	2828	01-024229	2624	04-020764	2667
02-026534	2549	01-024220	2547	01-024230	2670
02-026541	2379	01-024221	2547	01-024231	2634
02-026542	2579	02-026505	2401	01-024226	2639
02-024224	2590	02-026506	2357	01-024227	2686
02-024225	2589	01-024175	2718	02-026535	2562
02-026530	2420	01-024176	2636	02-026536	2651
02-026531	2120	01-024190	2301	01-024222	2682
03-024476	2490	01-024191	2257	01-024223	2584
03-024477	2625	01-024182	2593	01-024214	2600
01-024234	2754	01-024183	2354	01-024215	2624
01-024235	2340	02-026516	2619	02-	2576
03-024470	2495	02-026517	2561	02-	2576
03-024471	2568	02-026520	2535	02-	644
04-020767	2677	02-026521	2715		

 Tabla A- 9: Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-1A de tecnología multicircuital del 24 junio 2009, Renovación Parcial.

BUNDLE N°	PESO [Kg]	BUNDLE N°	PESO [Kg]	BUNDLE N°	PESO [Kg]
02-024208	2600	04-020760	2456	01-	2600
02-024209	2802	01-024184	2654	01-	2600
02-024216	2648	01-024185	2481	01-024210	2628
02-024217	2600	01-024192	2554	01-024211	2612
02-026522	2658	01-024193	2643	02-026518	2511
02-026523	2544	01-024177	2578	02-026519	2620
04-020761	2121	01-024178	2298	02-026514	2815
04-020762	2228	02-026507	2189	02-026515	3028
01-024186	2105	02-026508	2458	01-024180	2471
01-024187	2299	02-026525	2277	01-024181	2618
01-0024194	2509	02-	2600	01-024188	2497
01-0024195	2547	02-	2600	01-024189	2389
01-0024171	2358	03-024464	2731	02-026511	2696
01-0024172	2600	03-024465	2544	02-026512	2463
02-026509	2339	01-026537	2678	02-026503	2435
02-065228	2693	01-026538	2674	02-026504	2350
02-065229	2591	02-026547	2752	02-	2576
01-024212	2513	02-026548	2618	02-	2576
01-0024206	2741	02-026541	2636	02-	644
01-024213	2450	02-026544	2675	04-020759	2638
01-024208	2640	04-020769	2630	03-024472	2407
01-024202	2600	02-026513	2362		
01-024203	2583	03-024473	2407		

 Tabla A- 10: Datos Referentes a Resumen Pesos Totales de Cátodos cosechados por ciclo Anódico de producción en semisección 14-1B de tecnología convencional del 24 junio 2009, Renovación Parcial.

BUNDLE Nº	PESO [Kg]	BUNDLE N°	PESO [Kg]	BUNDLE N°	PESO [Kg]
04-022058	2685	04-022048	2700	04-022055	2680
04-022059	2702	04-022049	2741	01-025613	2760
04-022060	2766	04-022050	2942	01-025614	2760
01-025631	2601	04-022051	2680	01-025615	2716
01-025632	2772	04-022056	2710	01-025616	2731
01-025635	2736	04-022057	2660	02-027994	2746
01-025636	2705	02-028004	2700	02-027995	2790
02-027996	2698	02-028005	2676	04-022044	2651
02-027997	2789	01-025609	2804	04-022045	2820
01-025623	2765	01-025610	2751	04-022046	2678
01-025624	2673	01-025617	2815	04-022047	2730
02-027988	2653	01-025618	2580	04-022052	2807
02-027989	2611	01-025627	2677	04-022053	2696
01-025621	2685	01-025628	2763	02-028002	2734
01-025622	2686	02-027992	2710	02-028003	2799
01-025611	2691	02-027993	2704	02-027998	2736
01-025612	2776	01-025629	2766	02-027999	2626
01-025619	2814	01-025630	2798	04-022061	1189
01-025620	2792	01-025633	2617	02-028006	1201
01-025625	2682	01-025634	2662		
01-025626	2763	02-028000	2758		
02-027990	2700	02-028001	2785		
02-027991	2821	04-022054	2700		

Tabla A- 11: Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-18 de tecnología convencional del 07 julio 2009, Renovación Total.

BUNDLE N°	PESO [Kg]	BUNDLE Nº	PESO [Kg]	BUNDLE N°	PESO [Kg]
02-031106	2723	02-031141	2722	03-028307	2679
02-031107	2625	04-023784	2698	03-028308	2603
02-031104	2913	04-023785	2923	02-031122	2661
02-031105	2622	02-031108	2731	02-031123	2725
02-031110	2647	02-031109	2678	02-031132	2635
02-031111	2804	02-031139	2739	02-031133	2719
02-031123	2698	02-031140	2740	03-028335	2640
02-031124	2541	03-028305	2658	03-028336	2709
02-031120	2698	03-028306	2638	04-023791	2629
02-031121	2795	03-028309	2747	04-023792	2660
02-031133	2698	03-028310	2733	03-028346	2523
02-031134	2696	04-023759	2735	03-028347	2741
02-031138	2558	04-023760	2645	02-031144	2663
02-031139	2533	03-028295	2808	02-031145	2744
03-028344	2672	03-028296	2698	02-031148	2455
03-028345	2906	04-023757	2698	02-031149	2617
03-028352	2711	04-023758	2737	02-031150	2744
03-028353	2744	03-028303	2721	02-031151	2875
02-031142	2737	03-028304	2652	02-021152	2849
02-031143	2682	03-028301	2698	02-021153	2691
02-028353	2698	03-028302	2759	03-	2640
02-028354	2701	03-028310	2698	03-	2640
02-031140	2740	03-028311	2573	03-	1980

Tabla A- 12: Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-1A de tecnología multicircuital del 23 julio 2009, Renovación Parcial.

BUNDLE N°	PESO [Kg]	BUNDLE N°	PESO [Kg]	BUNDLE N°	PESO [Kg]
02-031146	2787	01-028515	2698	03-028393	2786
02-031147	2736	01-028516	2748	01-028523	2621
02-031160	2668	01-028519	3005	01-028524	2764
02-031154	2585	01-028520	2712	01-028517	2710
01-028521	2728	01-028527	2753	01-028518	2751
01-028522	2649	01-028528	2831	02-031182	2709
02-031184	2610	02-031186	2677	02-031183	2715
02-031185	2775	02-031187	2735	01-028529	2713
01-028525	2712	02-031191	2688	01-028530	2513
01-028526	2768	02-031192	2604	02-031197	2728
02-031188	2683	02-031199	2497	02-031198	2680
01-028590	2730	02-031200	2712	01-028514	2745
01-028591	2703	01-028594	2723	02-031196	2709
01-028596	2657	01-028595	2675	01-028593	2759
01-028597	2737	01-028604	2838	01-028603	2649
01-028598	2728	01-028605	2751	01-028613	2792
01-028599	2733	01-028606	2722	03-028458	2737
01-028608	2690	01-028607	2741	03-028459	2689
01-028609	2594	01-028620	2677	01-	2640
01-028614	2721	01-028621	2712	01-	2640
01-028615	2716	02-031158	2799	01-	2640
03-028394	2711	02-031159	2770	01-	2640
03-028395	2589	03-028392	2712	01-	1980

Tabla A- 13: Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-1B de tecnología convencional del 23 julio 2009, Renovación Parcial.

BUNDLE Nº	PESO [Kg]	BUNDLE N°	PESO [Kg]	BUNDLE N°	PESO [Kg]
02-032078	2108	02-032096	2514	01-030393	2479
02-032079	2270	02-032097	2539	01-030392	2444
01-030378	2642	01-032100	2496	01-030389	2342
01-030379	2523	01-032101	2362	01-030388	2269
01-030380	2393	02-032108	2475	02-032081	2476
01-030381	2419	02-032109	2546	02-032080	2440
01-030382	2238	02-032110	2415	02-032085	2392
01-030383	2349	02-032111	2199	02-032084	2204
02-032094	2563	01-030396	2264	02-032089	2477
02-032095	2423	01-030397	2289	02-032088	2385
01-030390	2555	01-030370	2444	02-032093	2465
01-030391	2460	01-030371	2443	02-032092	2418
01-030395	2424	01-030377	2449	02-	2518
01-030375	2420	01-030378	2353	02-	2402
01-030376	2266	02-032083	2048	02-032103	2702
01-030373	2320	02-032082	2283	02-032102	2479
01-030374	2535	02-032091	2322	02-	2622
01-030372	2403	02-032090	2345	02-	2636
01-032087	2378	01-030387	2304	01-030398	2516
02-032086	2403	01-030386	2478	01-030399	2553
01-032087	2378	02-032099	2393	02-	2640
02-032086	2403	02-032098	2539	02-	2640
01-030384	2280	02-032105	2527	02-	1980
01-030385	2180	02-032104	2553		

Tabla A- 14: Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-1A de tecnología multicircuital del 04 agosto 2009, Renovación Parcial.

BUNDLE N°	PESO [Kg]	BUNDLE N°	PESO [Kg]	BUNDLE N°	PESO [Kg]
02-03212	2313	01-030407	2751	02-	2382
02-03213	2348	01-030406	2256	02-	2382
01-030414	2432	02-032127	2077	02-	2382
01-030415	2513	02-032126	2044	02-	2382
01-030412	2096	01-030405	2232	02-	2382
01-030413	2624	01-030404	2352	02-	2382
01-030410	2068	02-032123	2367	02-	2382
01-030411	2102	02-032122	2474	02-	2382
02-032141	2359	02-032125	2003	02-	2382
02-032138	2733	02-032124	2011	02-	2382
02-032139	2517	01-030403	2430	02-	2382
02-032136	2505	01-030402	2617	02-	2382
02-032137	2712	02-032121	2464	02-	2382
02-032135	2140	02-032120	2590	02-	2382
02-032134	2126	01-030401	2699	02-	2382
02-032133	2318	01-030400	2555	02-	2382
02-032132	2442	02-032119	2477	02-	2382
02-032131	2575	02-032118	2545	02-	2382
02-032130	2168	02-032117	2286	02-	2382
01-030409	2382	02-032116	2413	02-	2640
01-030408	2508	02-032115	2683	02-	2640
02-032123	2286	02-032114	2177	02-	1980
02-032122	2427	02-	2382		

Tabla A-15: Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados	s por ciclo Anódico de producción en semisección 14-1B de
tecnología convencional del 04 agosto 200	9, Renovación Parcial.

BUNDLE N°	PESO [Kg]	BUNDLE N°	PESO [Kg]	BUNDLE N°	PESO [Kg]
03-030546	2767	03-030519	2839	04-026160	2590
03-030547	2596	03-030510	2470	04-026152	3053
02-033490	2742	03-030511	2726	04-026150	2963
02-033491	2738	04-026153	2784	04-026151	2859
03-030532	2572	04-026154	2457	02-033517	2636
03-030533	2723	04-026147	2735	02-033516	2847
03-030545	2792	04-026148	2650	02-033531	2692
03-030536	2709	04-026167	2873	02-033530	2742
03-030537	2711	04-026161	2732	03-030553	2678
03-030538	2589	04-025157	2584	03-030552	2760
03-030512	2741	04-026149	2654	03-030563	2725
03-030513	2631	03-030575	2597	03-030562	2687
04-026163	2518	04-026188	2777	04-026193	2697
04-026164	2685	03-030534	2739	04-026194	2808
03-030496	2653	03-030535	2760	02-033508	2655
03-030497	2667	03-030539	2677	02-033509	2752
03-030494	2687	03-030517	2623	03-030554	2739
03-030495	2731	04-026169	2669	02-	2640
04-026186	2689	04-026165	2744	02-	2640
04-026187	2845	04-026166	2802	02-	2640
03-030540	2749	04-026162	2690	02-	2640
03-030541	2630	04-026158	2684	02-	1980
03-030518	2739	04-026159	2722		

Tabla A- 16: Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-1A de tecnología multicircuital del 12 agosto 2009, Renovación Total.

BUNDLE N°	PESO [Kg]	BUNDLE N°	PESO [Kg]	BUNDLE Nº	PESO [Kg]
03-030614	2613	03-030581	2554	03-030622	2827
03-030615	2656	02-033559	2575	02-033557	2568
03-030620	2657	04-026231	2584	02-033558	2572
03-030621	2703	04-026232	2684	04-026230	2548
04-036233	2684	04-026228	2650	03-030583	2665
04-036234	2748	04-026227	2669	03-030582	2607
03-030587	2782	03-030564	2652	03-030561	2734
03-030586	2805	04-026226	2550	04-026210	2753
03-030577	2563	02-033515	2746	04-026220	2649
03-030576	2503	03-030559	2711	02-033532	2513
02-033554	2782	02-033514	2703	04-026208	2627
02-033553	2711	03-030558	2792	02-033501	2621
04-026222	2531	02-033504	2572	02-033500	2627
04-026221	2584	02-033505	2587	04-026168	2597
02-033544	2660	02-033503	2576	03-030584	2805
02-033543	2717	02-033502	2693	03-030585	2710
02-033499	2423	04-026275	2613	02-	2640
02-	2650	04-026229	2649	02-	2640
02-033507	2565	02-033545	2741	02-	2640
02-033506	2674	03-030560	2648	02-	2640
04-026241	2600	04-026209	2615	02-	2640
04-026242	2690	04-026275	2709	02-	1980
02-033556	2569	03-030623	2707		

Tabla A- 17: Datos Referentes a Resumen Pesos Totales de Cátodos Cosechados por ciclo Anódico de producción en semisección 14-18 de tecnología convencional del 12 agosto 2009, Renovación Total.

Tabla A- 18: Datos Referente al Resumen eficiencia de corriente obtenida en cada ciclo durante la prueba industrial de conexión Multicircuital.

		Peso Real Semisección [kg]	Peso Ideal Semisección [kg]		
Ciclo	Fecha	14-1A	14-1A	Amperaje Acumulado [A]	Eficiencia 14-1A (%)
1	26 marzo al 04 abril	159927	187727	330040	85,2
2	05 abril al 14 abril	176879	187704	330000	94,2
3	14 abril al 23 abril	164300	187767	330110	87,5
4	25 abril al 04 mayo	185217	187721	330030	98,7
5	06 mayo al 15 mayo	181457	187710	330010	96,7
6	15 mayo al 24 mayo	186458	187709	330008	99,3
7	26 mayo al 04 junio		190565	335030	
8	05 junio al 14 junio	156252	191054	335890	81,8
9	15 junio al 24 junio	175503	190554	335010	92,1
10	25 junio al 07 julio	158098,0	190548	335000	83,0
11	05 julio al 14 julio		190502	334920	
12	15 julio al 24 julio	185393	190548	335000	97,3
13	25 julio al 04 agosto	166611	180093	316620	92,5
14	04 agosto al 12 agosto	183315	190565	335030	96,2

Tabla A-19: Datos Referente al Resumen eficiencia de corriente obtenida en cada ciclo durante la prueba industrial de conexión Convencional.

		Peso Semisección Real [kg]	Peso Ideal Semisección [kg]		
Ciclo	Fecha	14-1B	14-1B	Amperaje Acumulado [A]	Eficiencia 14-1B (%)
1	26 marzo al 04 abril	169048	187727	330040	90,1
2	05 abril al 14 abril	184489	187704	330000	98,3
3	14 abril al 23 abril	159400	187767	330110	84,9
4	25 abril al 04 mayo	184723	187721	330030	98,4
5	06 mayo al 15 mayo	180176	187710	330010	96,0
6	15 mayo al 24 mayo	186314	187709	330008	99,3
7	26 mayo al 04 junio		190565	335030	
8	05 junio al 14 junio	139807	191054	335890	73.2
9	15 junio al 24 junio	168438	190554	335010	88.4
10	25 junio al 07 julio	156862.0	190548	335000	82.3
11	05 julio al 14 julio		190502	334920	,-
12	15 julio al 24 julio	186100	190548	335000	97.7
13	25 julio al 04 agosto	162097	180093	316620	90.0
14	04 agosto al 12 agosto	174173	190565	335030	91,4

Tabla A- 20: Datos Referente al Resumen del Consumo Específico de Energía obtenido en cada ciclo durante la prueba industrial de conexión Multicircuital.

			Voltaje Amp Semisección [V]		Amperaje [/	Amperaje Acumulado [A]		Consumo Energía [KWh]	
Ciclo	Voltaje Sección [V]	IDC [A]	14-1A	14-1B	A-día	A-hora	14-1A	14-1B	Diferencia [%]
1	11,78	38900	5,70	6,08	330040	7920960	45186,8	48122,1	6,1
2	14,26	38900	6,93	7,33	330000	7920000	54910,8	58028,4	5,4
3	12,14	38900	5,88	6,26	330110	7922640	46577,6	49603,2	6,1
4	14,67	38900	7,13	7,54	330030	7920720	56494,7	59702,2	5,4
5	12,08	38900	5,85	6,23	330010	7920240	46333,4	49343,1	6,1
6	15,14	38900	7,36	7,78	330008	7920192	58300,9	61610,9	5,4
7		39500			335030	8040720			
8	14,61	39500	7,10	7,51	335890	8061360	57246,3	60530,1	5,4
9	12,04	39500	5,79	6,25	335010	8040240	46518,3	50286,2	7,5
10	14,70	39500	7,15	7,55	335000	8040000	57446,4	60741,6	5,4
11		39500			334920	8038080			
12	13,85	39500	6,73	7,12	335000	8040000	54124,6	57229,4	5,4
13	11,25	40100	5,33	5,92	316620	7598880	40475,3	45012,1	10,1
14	14,44	40100	6,99	7,45	335030	8040720	56236,3	59871,7	6,1
Ahorro Pr	omedio Prueb	oa (%)	•			·		6,3	

Tabla A- 21: Datos Referente al Resumen del Consumo Específico de Energía y su Reducción obtenido en cada ciclo durante la prueba industrial de conexión Multicircuital.

		Peso Semisección [kg]		Consumo espec				
Ciclo	Fecha	14-1A	14-1B	14-1A	14-1B	Reducción (%)		
1	26 marzo al 04 abril	159927	169048	282,5	284,7	-0,7		
2	05 abril al 14 abril	176879	184489	310,4	314,5	-1,3		
3	14 abril al 23 abril	164300	159400	283,5	311,2	-9,8		
4	25 abril al 04 mayo	185217	184723	305,0	323,2	-6,0		
5	06 mayo al 15 mayo	181457	180176	255,3	273,9	-7,3		
6	15 mayo al 24 mayo	186458	186314	312,7	330,7	-5,8		
7	26 mayo al 04 junio							
8	05 junio al 14 junio	156252	139807	366,4	433,0	-18,2		
9	15 junio al 24 junio	175503	168438	265,1	298,5	-12,6		
10	25 junio al 07 julio	158098,0	156862,0	363,4	387,2	-6,6		
11	05 julio al 14 julio							
12	15 julio al 24 julio	185393	186100	291,9	307,5	-5,3		
13	25 julio al 04 agosto	166611	162097	242,9	277,7	-14,3		
14	04 agosto al 12 agosto	183315	174173	306,8	343,7	-12,1		
Reducción	Reducción Promedio Prueba (%)							

Cátodo	Celda 1	Celda 5	Celda 10	Celda 15	Celda 20		
1	60	60	60	64	56		
5	58	58	56	59	63		
10	63	58	64	67	61		
15	58	54	54	58	65		
20	55	54	59	59	61		
25	55	54	58	60	65		
30	56	54	56	59	61		
35	54	58	58	60	62		
40	54	56	61	68	55		
45	52	55	58	63	57		
50	48	53	58	66	59		
55	49	52	47	55	61		
min	48,0	52,0	47,0	55,0	55,0		
prom	55,7	55,5	57,4	61,6	60,5		
máx	63,0	60,0	64,0	68,0	65,0		
desviación estándar %	4,2	2,5	4,2	4,1	3,2		
Prom semisección 14-1/	Prom semisección 14-1A 58,1 °C						

 Tabla A- 22: Datos Referente al Resumen temperatura de operación promedio barras intercelda durante un ciclo anódico completo de producción, semisección 14-1A.

Tabla A- 23: Datos Referente al Resumen temperatura de operación promedio barras intercelda durante u
ciclo anódico completo de producción, semisección 14-1B.

Cátodo	Celda 1	Celda 5	Celda 10	Celda 15	Celda 20
1	58	68	70	64	68
5	75	74	68	68	73
10	69	65	74	66	70
15	76	70	61	67	63
20	81	63	66	66	71
25	81	66	71	70	68
30	75	66	70	68	71
35	69	65	68	70	70
40	75	71	73	63	71
45	68	74	75	65	78
50	70	76	76	67	73
55	66	74	66	68	76
min	58,0	63,0	61,0	63,0	63,0
prom	71,9	69,3	69,8	66,8	71,0
máx	81,0	76,0	76,0	70,0	78,0
desviación estándar %	6,6	4,4	4,3	2,2	3,9
Prom Semisección 14-1	B	69,8	°C		

			Cátodos				%
Ciala	Fachag	Somigogoión	por	Nº ideal	N° paquetes	Nº real	Rechazo
					por cosecha		
1	25 marzo - 04 abril	14-1A	10	1100	63,4	1014	7,8
1	25 marzo - 04 abril	14-1B	16	1100	64,2	1027	6,6
2	05 abril - 14 abril	14-1A	16	1100	66,5	1064	3,3
2	05 abril - 14 abril	14-1B	16	1100	68,0	1088	1,1
3	14 abril - 23 abril	14-1A	16	1100	66,3	1061	3,6
3	14 abril - 23 abril	14-1B	16	1100	67,9	1086	1,3
4	25 abril - 04 mayo	14-1A	16	1100	62,7	1003	8,8
4	25 abril - 04 mayo	14-1B	16	1100	67,3	1076	2,2
5	06 mayo - 15 mayo	14-1A	16	1100	64,8	1036	5,8
5	06 mayo - 15 mayo	14-1B	16	1100	66,3	1061	3,6
6	15 mayo - 24 mayo	14-1A	16	1100	64,8	1036	5,8
6	15 mayo - 24 mayo	14-1B	16	1100	66,3	1061	3,6
7							
7							
8	05 junio - 14 junio	14-1A	16	1100	65,7	912	4,4
8	05 junio - 14 junio	14-1B	16	1100	67,9	903	1,2
9	15 junio - 24 junio	14-1A	16	1100	65,0	1040	5,5
9	15 junio - 24 junio	14-1B	16	1100	64,0	1024	6,9
10	25 junio - 07 julio	14-1B	16	1100	63,9	1022	7,1
10							
11							
11							
12	15 julio - 24 julio	14-1A	16	1100	66,0	1056	4,0
12	15 julio - 24 julio	14-1B	16	1100	64,0	1024	6,9
13	25 julio - 04 agosto	14-1A	16	1100	66,0	1056	4,0
13	25 julio - 04 agosto	14-1B	16	1100	65,0	1040	5,5
14	04 agosto - 12 agosto	14-1A	16	1100	63,0	1008	8,4
14	04 agosto - 12 agosto	14-1B	16	1100	62,0	992	9,8

Tabla A- 24: Datos Referente al Resumen porcentaje de rechazo de producción de cátodos durante Prueba Industrial de Conexión Multicircuital.

ANEXO B: EVALUACIÓN ECONÓMICA

	Aumento de Producción								
		Pesimis	sta	Medio			Optimista		
		0,5%	•	3,2%			6,0%		
	Producc	Delta	Delta Ingresos	Producc	Delta	Delta Ingresos	Producc	Delta	Delta Ingresos
A ~ -	Kton	Kton	TZTICA	Kton	Kton	TZTICA	Kton	Kton	TZTICA
Ano	r ino	FINO	KUSÞ	FINO	FINO	KUSÞ	FINO	FINO	KUSÞ
2007									
2008									
2009									
2010	859	4,3	471	882	27,4	3012	906	51,3	5648
2011	859	4,3	471	882	27,4	3012	906	51,3	5648
2012	859	4,3	471	882	27,4	3012	906	51,3	5648
2013	859	4,3	471	882	27,4	3012	906	51,3	5648
2014	859	4,3	471	882	27,4	3012	906	51,3	5648
2015	859	4,3	471	882	27,4	3012	906	51,3	5648
2016	859	4,3	471	882	27,4	3012	906	51,3	5648
2017	859	4,3	471	882	27,4	3012	906	51,3	5648
2018	859	4,3	471	882	27,4	3012	906	51,3	5648
2019	859	4,3	471	882	27,4	3012	906	51,3	5648
2020	859	4,3	471	882	27,4	3012	906	51,3	5648
2021	859	4,3	471	882	27,4	3012	906	51,3	5648
2022	859	4,3	471	882	27,4	3012	906	51,3	5648

Tabla B-1: Datos de Escenario Referente al Flujo de Caja del Proyecto de Tecnología de Conexión Multicircuital.

ANEXO B

EVALUACIÓN ECONÓMICA

Tabla B- 2: Datos de Ingresos Referente al Flujo de Caja del Proyecto de Tecnología de Conexión Multicircuital.

Producción de Cátodos Comerciales (cátodo-ánodo) (GradoA-Rechazado) **Kton Fino** US\$/Ton US\$/Ton Año 110,1 110,1 110,1 110,1 110,1 110,1 110,1 110,1 110,1 110,1 110,1 110,1 110,1

Ingreso por Mayor Capital

Ingreso por Calidad Catódica Producción de Cátodos Comerciales

		(GradoA -Rechazado)	
Año	Kton Fino	US\$/Ton	KUS\$
2007			
2008			
2009			
2010	855	20	205,2
2011	855	20	205,2
2012	855	20	205,2
2013	855	20	205,2
2014	855	20	205,2
2015	855	20	205,2
2016	855	20	205,2
2017	855	20	205,2
2018	855	20	205,2
2019	855	20	205,2
2020	855	20	205,2
2021	855	20	205,2
2022	855	20	205,2

Vector Precio EE	US\$/MWh
2007	23,80
2008	23,80
2009	23,80
2010	24,91
2011	24,91
2012	24,91
2013	24,91
2014	24,91
2015	24,91
2016	24,91
2017	24,91
2018	24,91
2019	24,91
2020	24,91
2021	24,91
2022	24,91

Tabla B- 3: Datos de Precios de Energía Eléctrica Proyectada Referente al Flujo de Caja del Proyecto de Tecnología de Conexión Multicircuital.