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Resumen
Se explican las razones de los metamateriales en la industria aeroespacial y el rápido interés

que ha generado en este campo debido a sus propiedades únicas. En la sección 1, se introduce

en el tema de los metamateriales y sus diferentes clasificaciones en función de los parámetros

constitutivos de los materiales, que es la permitividad y la permeabilidad. La definición de

lo que es un metamaterial se explica para luego definir algunos conceptos importantes que

implicarán el desarrollo de este trabajo; Se aborda el tema de las superficies de alta impedancia,

sus modelos analíticos, sus modelos numéricos y cómo son útiles para fabricar guías de ondas

con paredes anisotrópicas. Más adelante, se detallan las Superficies Selectivas de Frecuencia,

se muestran los diferentes patrones utilizados para obtener propiedades electromagnéticas

especiales en función de la superficie diseñada.

La sección 2 se compone de un recordatorio sobre las guías de onda rectangulares, se desar-

rollan las ecuaciones que gobiernan en los medios guiados convencionales y luego se estudia

la definición de la impedancia de superficie junto con las ecuaciones que la involucran.

La sección 3 presenta la caracterización modal de guías de onda rectangulares cargadas con

diferentes impedancias de superficie anisotrópica como condicion de contorno en sus paredes

verticales. Los diagramas de dispersión para estas guías de onda se calculan utilizando difer-

entes condiciones de contorno para las superficies de las paredes de impedancia anisotrópica,

y luego se validan comparando los resultados calculados con los obtenidos con el software

comercial ANSYS HFSS. Los resultados muestran propiedades interesantes de estas guías

de onda cargadas con estas características de impedancia, como el desplazamiento de la

frecuencia de corte en función del valor de una de las impedancias transversales, mientras

que las otras impedancias son fijas, lo que permite, por ejemplo, reducir la sección transversal

de una guía de onda WR770 un 87.16% e incrementar su ancho de banda en un 11.2% cuando

se usa una impedancia Zt1 = 2.5 j Z0 por ejemplo.

La sección 4 muestra los diferentes diseños utilizados para obtener las impedancias que

cumplen con los requisitos de ancho de banda y frecuencia de operación con respecto a las

guías de onda convencionales analizadas en la sección 3

Se adjunta en el apéndice 1 el desarrollo detallado de las ecuaciones presentadas en la sección

3, y en el apéndice 2 se muestran los pasos utilizados en el software Ansys HFSS para simular

una celda unitaria utilizando el puerto Floquet. Finalmente, el apéndice 3 contiene los gráficos

de dispersión para los diferentes casos analizados en la sección 4.



Palabras claves: Teoría Modal Expandida, TEM, Diagrama de dispersion, Superficie de Alta

Impedancia, SAI, Superficie anisotropica.
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Abstract
The reasons for the metamaterials in the aerospace industry and the rapid interest it has

generated in this field due to their unique properties are explained. In section 1, is introduced

in the topic of metamaterials and their different classifications depending on the constitutive

parameters of the materials, which is the permittivity and permeability. The definition of

what it is a metamaterial is explained to then define some important concepts that will

involve the development of this work; It is explained what are the High Impedance Surfaces,

their analytical models, their numerical models and how they are useful to manufacture

waveguides with anisotropic walls. Later, Frequency Selective Surfaces are explained, it is

shown the different patterns used to obtain special electromagnetic properties depending of

the surface designed.

Section 2 is composed of a reminder about rectangular waveguides, the equations that govern

in conventional guided media are developed and then an explanation about the definition of

surface impedance together with the equations that involve it.

Section 3 presents the modal characterization of rectangular waveguides loaded with dif-

ferent anisotropic surface impedance boundaries on their vertical walls. Dispersion dia-

grams for these waveguides are computed using various different boundary conditions for

the anisotropic impedance walls surfaces, and then validated comparing the computed re-

sults with the ones obtained with the commercial software ANSYS HFSS. The results shows

interesting properties of these waveguides loaded with this impedance characteristics, such

as displacement of the cutoff frequency depending on the value of one of the transversal

impedances meanwhile the other impedances are fix, which allows, for example, to reduce

the cross section of a waveguide WR770 by 87.16% and increase its bandwidth by 11.2% when

using an impedance Zt1 = 2.5 j Z0.

Section 4 shows the different designs used to obtain the impedances that meet the require-

ments of bandwidth and frequency of operation with respect to conventional waveguides

analyzed in section 3

Attached in appendix 1 is the development of the equations presented in section 3, and in

appendix 2 the steps taken in the Ansys HFSS software to simulate a unit cell using Floquet

port is shown. Finally, appendix 3 contains the dispersion plots for the different cases tested

in section 4.

Key words: Modal Expansion Theory, MET, Dispersion plot, High Impedance Surfaces, HIS,

Anisotropic surface
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Introduction
Wave propagation in guided topologies has been a subject of several studies over the whole

microwave technologies development era [1], [2]. The results obtained of these studies led

to many applications in terms of new software that can analyse and model a whole family

of microwave topologies including filters, antennas, transducers and other structures [3]–[6]

that before were difficult to achieve, and leading to the analysis of other complex structures,

such as metamaterials [7]. These materials have electromagnetic properties that are not

available in natural materials. For example, with metamaterials it is possible to obtain a relative

permittivity and/or relative permeability with values lower than one, or even negative [8]. It

is possible to obtain these characteristics synthesizing periodic structures or unit cells [9],

where depending on the wavelength and the size of the structure, it can be obtained a single

negative (SNG), where either the permittivity or the permeability have negative values, or

double negative material (DNG), where both permittivity and permeability have negative

values [10], [11].

Since it was theorized the existence of negative permittivity and permeability in [12], many

efforts has been made to understand and apply this physical phenomenon. It was not until the

studies made on [13] that shown the first experimental results by using structures composed

by copper wire strips and split ring resonators (SRR), achieving negative refraction index. This

opened new possibilities in the optical, millimetric, and the microwaves regime, due to the

fact that the interaction of the electromagnetic parameters ε and μ do not necessarily depend

on the response of the atoms or molecules individually, but of the composite structure whose

size is smaller than the wavelength [7]–[11], [13].

Several studies show that many analytical forms have been proposed to date to extract the

constitutive parameters of different types of metamaterials [14]–[18]. For example, in [14], a

process of homogenization is proposed for the case of multilayer periodic structures, achieving

as a result, a space of tensors which describe a specific homogenous medium. In [15], a

procedure which is capable of extracting effective bianisotropic parameters for reciprocal

metamaterials is proposed. Finally, in [18] is exposed an alternative way to characterize

metamaterials through their surface impedance. This method takes advantage of the custom

design of the reflection and phase characteristics within the desired frequency band and

its application (e.g. low profile antennas, waveguides). For this was used "soft" and "hard"

surfaces [19], with their structure design made using computer-aided optimization techniques

such as genetic algorithms [20].
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Introduction

One of the main purposes for the use of antennas and waveguides loaded with metamaterials

is to change the propagation characteristics of the wave [21]–[35]. These changes can be seen

on characteristics such as reduced cross polarization and the reduction of side lobes [36],

reduction of the cutoff frequency and miniaturization [27], [37]–[42], broadband filters [41],

[43], [44], and matching improvement [45]–[47]. It is for these reasons that the aerospace

industry has taken interest, since they imply greater cost reduction. [48]–[50].

One way to compute the dispersion properties of waveguides and antennas with metamaterial

liners is by means of the Modal Expansion Theory (MET) presented in [51], [52]; this technique

is an extension of the modal theory [53] that allows to deal with anisotropic walls.

The way the MET works is by defining the structure as homogeneous anisotropic surfaces

impedance walls, instead of the classic definition of a perfect electric (or magnetic) conductor

structure. Recent works on this topic have dealt with the analysis of corrugated waveguides

by treat them as anisotropic surface impedances [54], a systematic approach to reduce the

cross-section of rectangular waveguides [55], a method to compute the dispersion properties

of rectangular waveguides with 2D metamaterials [56], and recently, a development of a

cylindrical waveguide with 2D metamaterial for different types of surface impedances [57].

In previous research [58], the issue of characterizing rectangular waveguides has been ad-

dressed through the implementation of anisotropic walls with the same surface impedance

value, achieving better results than with classical rectangular guides. This time, we seek to

analyze the electromagnetic properties in waveguides with anisotropic walls of different value,

so that another degree of freedom is added for the calculation and subsequent design of

waveguides with anisotropic walls.

Main objectives

• To characterize rectangular waveguides with different anisotropic surface impedances

through the MET to then generate a final design by means of High Impedance Surfaces.
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1 Metamaterials
In the field of electromagnetics, materials can be described by their constitutive parameters

as is shown in Figure 1.1, these are the permittivity ε (represented in the x-axis) and the

permeability μ (represented in the y-axis).

Figure 1.1: Material classification according to the constitutive parameters μ and ε. [59]

When both ε> 0 and μ> 0, we find materials that allow the propagation of electromagnetic

waves, these materials are generally dielectric and are classified as Double Positive materials

(DPS). But, if any of the constitutive parameters are negative, we are in the case where the

medium does not allow the propagation of electromagnetic waves, thus the wave is called

"evanescent", for example plasmas and metals at optical frequencies, where ε< 0 and μ> 0,

coining the name of Epsilon Negative materials (ENG). On the other hand, we have the

ferromagnetic materials, where ε> 0 and μ< 0, this type of materials are called Mu Negative

materials (MNG).

The materials classified above can be found in nature, on the contrary, materials presenting

the property of ε,μ< 0 must be engineered. These are called Double Negative materials (DNG)

and have unusual characteristics, such as anti-parallel group and phase velocities, negative

refractive index, and backward-wave propagation.
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1 Metamaterials

The concept of metamaterials is not fully established yet, but it is possible to find some

definitions in common:

• They are composite materials, intentionally designed to provide properties that are not

obtainable with ordinary materials.

• Its electromagnetic properties derive from its physical structure rather than its atomic

structure.

• The properties they exhibit are not observable in their constituent materials.

According to the above definitions, a metamaterial must have unusual properties, so it is pos-

sible to include in this group DNG materials, Electromagnetic/Photonic Band Gap structures

(EBG/PBG), Artificial Magnetic Conductors (AMC), Frequency Selective Surfaces (FSS), and

High Impedance Surfaces (HIS), among many others.

When electromagnetic waves interact with such materials, they exhibit some interesting

properties that can be used in order to improve the performance of microwave components

and circuits, antennas, transmission lines, scatterers, and optical devices such as lenses as

shown in Figure 1.2.

Figure 1.2: Modeling and Simulation of Metamaterial-Based Devices for Industrial Applica-
tions, CST webinar. [60]

It should be noted that these metamaterials correspond to those of the "resonant" type, this

means that due to their periodicity (<λ/10), the phenomenon of dispersion of the wave does

not occur. Instead, due to the existence of metallic elements, these will produce induced

currents and consequently will resonate, thus emulating the resonance at an atomic scale,

and thus creating waves that will combine with the main wave generating these unusual

properties.
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1 Metamaterials

Structurally, these metamaterials are composed of periodic metallic arrangements and are

much smaller than the free-space and/or guided wavelength, thus microscopically are intrin-

sically inhomogeneous but macroscopically they can be treated as homogeneous materials

and can be represented using parameters like permittivity a permeability.

Nowadays, new techniques and concepts in synthesis and fabrication have allowed the con-

struction of structures and composite materials that can mimic known material responses

or that can give new physically realizable response functions that do not occur or may not

be available in nature. These metamaterials can be synthetized by embedding various con-

stituents/inclusions with novel geometric shapes and forms in some host media as in Fig-

ure 1.3.

Figure 1.3: Generic sketch of a volumetric metamaterial synthesized by embedding various
inclusions in a host medium. [59]

When electromagnetic waves interact with these inclusions, induction and magnetic moments

appear, which in turn affects the macroscopic effective permittivity and permeability of the en-

tire medium. For this reason, the engineers are able to tailor these inclusions in a host medium

or host surface, providing independents “degrees of freedom” (like size, shape, and compo-

sition of the inclusions) in order to engineer a metamaterial with specific electromagnetic

response functions not found in the individual constituents.
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1 Metamaterials

1.1 High Impedance Surfaces

Generally, when it is desired to reflect or isolate the electromagnetic field emitted by an

antenna, conventional dielectric media (such as those in the 1st quadrant of Figure 1.1) are the

simplest option, as a ground plane. This type of reflector improves the power of the antenna in

approximately 3 dB but are dependent on the proximity in which the antenna and the reflector

are placed. If the distance is very small, reflected waves will be created that will cancel out

with the incident wave, affecting in consequence the transmitted wave.

The solution to this problem is to place the antenna at a distance of λ/4 from the reflector, but

this approach is not convenient if space is a factor in the design.

Another problem occurs due to the appearance of surface waves which are linked to the inter-

face between the free space and the conductor [62], at microwave frequencies are generally

known as surface currents, and if the surface is not perfectly smooth, has discontinuities or

folds, will generate vertical radiation. In the ground plane this radiation appears at the edges

and consequently interferes with the transmitted signal and can be seen as "speckles" in the

radiation pattern. And if the ground plane is shared by other antennas, surface currents will

generate coupling between them.

One way to mitigate or cancel out these unwanted effects is by using "High Impedance

Surfaces", these structures are compounded by a "Frequency Selective Surfaces" (FSS) which

is grounded by a dielectric bar. Their main characteristics are the high impedance they

have within one or more frequency ranges, their reflection coefficient is +1 when they are

illuminated by a plane wave unlike the Perfect Electric Conductors (PEC) that have a reflection

coefficient of -1 on its surface. These structures are also capable of blocking surface waves by

means of metal vias that connect the FSS with the ground plane; in this configuration they are

called "Electromagnetic Band Surfaces" (EBG). A basic configuration of an a HIS is shown in

Figure 1.4

Figure 1.4: Basic structure of a HIS. [60]

The applications of the HIS range from ultra-thin electromagnetic absorbers [63], [64], low

profile antennas [65], [66], Fabry-Perot or Leaky wave antennas [67], [68], reduction of switch-

ing noise in PCB circuits [69], [70], getting to be included in the area of metamaterials, coining

6



1 Metamaterials

the name of metascreens [71].

Figure 1.5 shows the typical response of an HIS, where when approaching from a frequency

lower than resonance, it has an inductive impedance that increases exponentially until the

resonance (which in this case is 15 GHz), and then it passes to a capacitive impedance reducing

in the same way.

Figure 1.5: Typical response of a HIS. [61]

The engineer can handle this response according to his needs, for example, by moving the

resonance frequency by varying the parameters of the structure such as the distance between

the ground plane and the FSS, or even modifying only the FSS.

7



1 Metamaterials

1.2 Frequency Selective Surfaces

Figure 1.6: Hexagonal mushroom-like structure (a) cross view, (b) top view, (c) analytical
model. [72]

There are many geometries which offer different characteristics. The mushroom-like structure

presented in [72] was one of the first to be studied. This structure presented in Figure 1.6 can

be modeled by an LC equivalent network. The resonance of this structure can be controlled

by modifying the effective capacitance and the effective inductance, which depend on the

parameters of the geometry.

The patch type structure shown in Figure 1.6 can achieve lower resonances by designing larger

patches and at the same time, reducing the spacing between the unit cells which increases the

capacitance. However, this type of HIS does not have good immunity to the variations of the

angle of incidence because the FSS covers almost completely preventing the passage of the

wave through the substrate.

Other structures that have a better stable resonance with respect to the angle of incidence

are the "meander-line based HIS" [73] presented in Figure 1.7. This type of structure is more

transparent to the incident waves, in comparison to the mushroom type structure.

Figure 1.7: Several self-resonant grid structures. [61]

Another type of structure is the Hilbert curve, which is also of the self-resonant type [74]. This

type of structure consists of a long wire compacted within a small space. This structure has

the characteristic of resonating depending on the N order of the Hilber curve. It is also known

that its resonance and bandwidth is affected by the height of the surface on the ground rather

8



1 Metamaterials

than by the separation between adjacent elements [75]. Figure 1.8 shows the Hilber structure

for different N commands

Figure 1.8: Several Hilbert curves for various iterations of order N. [61]

The use of numerical algorithms has also allowed finding structures that fit certain param-

eters. Such is the case of the genetic algorithms introduced in [76], which generate optimal

multiband fractal structures, examples of these structures can be seen in Figure 1.9.

Figure 1.9: Several fractal HIS structures. [61]

1.3 Anaytical models

There are three analytical models that try to describe the behavior of the mushroom HIS, these

models are used depending on the type of FSS used.

The first one was presented by Sievenpiper in [72]. This model considers the mushroom type

structure (seen in Figure 1.6 as an equivalent network with parallel capacitance and inductance

elements. The capacitance is due to the narrow space between the two metallic patterns on

the upper surface and the results of the inductance of the metal cylinder (called "via") that

connects the upper surface to the ground plane at the bottom. Its surface impedance is

modeled by the following equation:

Zz (ω) = jωL

1−ω2LC

9



1 Metamaterials

Where ω is the angular frequency of operation, L the inductance and C the capacitance.

The second model presented in [77] sees the HIS as a transmission line which is composed of

several layers. The first layer composed of the substrate with peridic vias can be seen as the

wire grid model, the second layer, composed of the periodic metal elements can be described

as a homogeneous impedance surface that behaves as a capacitive or inductive grid within

certain range of frequencies. Figure 1.10 shows the structure next to the transmission line

model.

Figure 1.10: Transmission line model. [61]

Thus, the surface impedance Zs is obtained as a parallel connection of the grid impedance Zg

and the grounded dielectric slab impedance Zd :

Zs =
Zg Zd

Zg +Zd

The third model presented in [78] is an improvement from the previous one, where more accu-

racy is taken for oblique incidence angles by accounting the periodicity of one of the tangential

directions. This model uses the transmission line approach, averaged boundary conditions,

and the approximate Babinet principle. For a mushroom-like structure the analytical solutions

are as follows:

Zs
T E =

jωμ
tan(βh)

β

1−2ke f f α
tan(βh)

β

(
1− 1

ε+1
sin2θ

)

Zs
T M =

jωμ
tan(βh)

β
cos2θ2

1−2ke f f α
tan(βh)

β

The previous analytical models falls when more complicated structures are designed, however,

10



1 Metamaterials

numerical methods have been introduced, which use periodic boundary conditions (PBC)

allowing for the design analysis quite straightforward. Some of these include finite element

method (FEM), method of moments (MoM), finite difference time domain method (FDTD),

and the integral equation (boundary element) method (IEM/BEM) [76], [79]–[83].

1.4 Asymmetrical High Impedance surfaces

Many applications using artificial magnetic conductors (AMC) use symmetric structures as

selective frequency surfaces (FSS), in [84] the effect of using asymmetric structures is investi-

gated, alluding to the term of polarization-dependent electromagnetic band gap or PDEBG. A

PDEBG structure can provide different types of polarization depending on the asymmetric

FSS used, for example, when a RHCP normally impacts on this structure, depending on the

frequency, the reflected wave will not change its polarization to an LHCP, or for another fre-

quency, the reflected wave will change to a linear polarization (LP) or an elliptical polarization

(EP). Figure 1.11 shows an example of a asymmetrical FSS used to obtain a asymmetrical HIS.

Figure 1.11: Asymmetrical HIS.

According to the above, what is the difference between a metamaterial, a HIS or a FSS?

Following the idea that metamaterials are all those materials that possess their properties by

the way they are manufactured rather than by their atomic composition, HIS are structures

that are composed by FSS (which act as AMC, but are just a specific condition) and another

structure (usually a bias between the FSS and the ground plane) that functions as EBG within

a certain frequency range. These separate structures are not able to achieve what they do as a

whole, so it can be said that the HIS fit within the category of metamaterials.
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2 Rectangular waveguides
Rectangular waveguides represent a significant section of RF systems and are one of the earliest

types of transmission lines that still being used to transport microwave signals. The benefits of

these types of components are their high-power capability, millimeter wave applications, satel-

lite systems and some precision test applications. A cross section of the waveguide is shown

on Figure 2.1, and depending on the dimensions “a” and “b” the waveguide will propagate

different modes for a frequency of operation. The type of modes that can propagate are TM

(Transversal Magnetic), TE (Transversal Electric) but not TEM (Transversal ElectroMagnetic)

because there is only one material present.

In the following sections, the equations that model the electromagnetic fields within a waveg-

uide will be presented and developed following the classical theory. Later we will analyze the

equations that model a waveguide with metamaterials using the Modal Expansion Theory

(MET).

Figure 2.1: Rectangular waveguide with PEC walls. [85]

2.1 Maxwell equations

Maxwell’s equations are a description of the behavior and the relation of magnetic and electric

fields, charges, and currents associated with electromagnetic waves that are governed by

physics laws. These laws were discovered through many years of research by many people to

later be integrated by James Clerk Maxwell, a Scottish physicist and mathematician.

The differential form of Maxwell’s equations is the most widely used representation to solve

boundary-value electromagnetic problems. These equations relate field vectors, currents

12



2 Rectangular waveguides

densities, and charge densities at any point in space at any time.

They are written as follows:

∇×−→
H = ∂

−→
D

∂t
+−→

Je

∇×−→
E =−∂

−→
B

∂t
(2.1)

∇·−→B = 0

∇·−→D = ρc

Where
−→
H is the magnetic field,

−→
E the electric field,

−→
B the magnetic induction vector,

−→
D the

electric induction vector,
−→
Je the electric current density vector and ρc the density charge.

If we assume that the medium is homogeneous, isotropic and invariant in time (with μr = 1)

the vectors
−→
D and

−→
B can be replaced as follow:

−→
B =μ0

−→
H

−→
D = ε0εr

−→
E

With ε0 and μ0 the vacuum permittivity and permeability and εr the relative permittivity of

the medium. Also, if there are no sources:

ρc = 0

−→
Je = 0

Which means that equations in (2.1) can be rewritten as:

∇×−→
H = ε0εr

∂
−→
E

∂t

∇×−→
E =−μ0

∂
−→
H

∂t
(2.2)

∇·−→H = 0

∇·−→E = 0

13



2 Rectangular waveguides

If equations (2.2) are in harmonic regime, the time domain equations can be transformed by

using the Fourier transform:

∇×−→
H = jωε0εr

−→
E

∇×−→
E =− jωμ0

−→
H (2.3)

∇·−→H = 0

∇·−→E = 0

With ω the angular frequency. Also, if there is no variation along the z-axis, the electromagnetic

fields can be described as:

−→
E (x, y, z) =−→

A (x, y)e− jωt e j kz z (2.4)

−→
E (x, y, z) =−→

B (x, y)e− jωt e j kz z (2.5)

Where
−→
A and

−→
B are cartesian vector functions transversals along z-axis, with kz the waveguide

number along z-axis. Thus, the electromagnetic fields have a e j kz z = eγz z dependency, where

γz is the propagation constant along the z-axis.

2.2 Dispertion equation

The dispersion equation is a representation of the propagation constant along the frequency.

Thanks to this, it is possible to obtain information like for example their propagative modes,

their cutoff frequency ( fc ) from which they will propagate, their bandwidth (the distance

between two modes), the velocity group (vg ), the phase velocity (vp ) and if is right-hand or

left-hand polarization. A more graphical explanation of the above is shown in Figure 2.2.

In order to obtain the dispersion equation, it is necessary to solve the partial differential

equations of (2.3) to obtain at the end the “wave equation”:

(∇2 +k2
0εr

)−→
E =−→

0 (2.6)

With, the vacuum waveguide number defined as k0 =ω
�
μ0ε0. Thus, equation (2.6) leads to

the definition of the dispersion equation, where:

γz =
√

k2
c −εr k2

0 =
√(

2π fc

c

)
−εr k2

0 (2.7)
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2 Rectangular waveguides

Figure 2.2: Dispersion diagram for a propagating TE or TM modes.

With kc = 2π fc

c
and c ≈ 3 ·108.

For a rectangular waveguide, equation (2.7) is defined as:

γz =
√[(nπ

a

)2
+

(mπ

b

)2
]
−εr k2

0 (2.8)

Where a and b are the transversal dimensions of the waveguide, n,m ∈ ℵ which define the

mode propagating depending of the combination, and is denoted as γz,mn .

2.3 Redefinition of the electromagnetic fields

It is possible to redefine the electromagnetic fields in transversal and longitudinal components

as follows:

−→
E =−→

ET +Ez
−→z

−→
H =−→

HT +Hz
−→z (2.9)

∇=∇T +∂z
−→z =∇T −γz

−→z

With T denoting the transverse components x and y .

By using (2.3) and the definitions of (2.9), one can define the transversal fields as a function of
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2 Rectangular waveguides

the longitudinal fields as:

−→
ET = 1

k2
c

(−γz∇T Ez − jωμ0∇T Hz ×−→z )
(2.10)

−→
HT = 1

k2
c

(
jωε∇T Ez ×−→z −γz∇T Hz

)
(2.11)

With kc = 2π fc

c
=

√
γ2

z +k2
0εr the cutoff constant.

2.4 Modes of propagation

T Emn Mode

When a TE (Transversal Electric) mode propagates, Ez = 0 and Hz �= 0. For this mode, m,n =
0,1,2. . . . But the T E 00 mode does not exist because this will imply that the transversal fields

are zero. Thus, the first mode that propagates (dominant mode) for this case is the T E 10 (only

if a ≥ b is defined, otherwise it will be the T E 01).

T Mmn Mode

When a TM (Transversal Magnetic) mode propagates, Ez �= 0 and Hz = 0. For this mode,

m,n = 1,2,3. . . . Similarly, the T M00, T M01 or T M10 mode does not exist because this will

imply that the transversal fields are zero. Thus, the first mode that propagates (dominant

mode) for this case is the T M11.

TEM Mode

In this case Ez = Hz = 0 and kc = 0, which means that it can propagate from frequency zero

and with propagation constant γz = j k0
�
εr . In order for this mode to exist, two conductors

should be in the waveguide with a differential potential, thus in a metallic waveguide this

mode is not supported.

Hybrid mode

Lastly, when a hybrid mode exists, their longitudinal fields Ez �= 0 and Hz �= 0. It has been

demonstrated that this propagating mode is exists with anisotropic surfaces in [51].
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2 Rectangular waveguides

2.5 Mode Impedance definition

The admittance (or impedance if we take the inverse) of an electromagnetic wave relates the

transversal components of the electric and magnetic field in the direction of propagation.

For example, if a TEM wave travels through a homogeneous medium, the admittance (or

impedance) will be equal to that of the medium across its entire length. A particular case can

be an electromagnetic wave traveling in the vacuum, where the impedance of the wave will be

the vacuum impedance (Z0 ≈ 377Ω), mathematically the admittance Y M of the mode "M" is

defined as:

Y M−→
ET =−→

HT ×−→z

Where
−→
ET and

−→
HT are the electric and magnetic transversal components to the direction of

propagation −→z . Similarly, it is possible to use the Impedance Z M as:

−→
ET = Z M

(−→
HT ×−→z

)

And is defined as:

Z M = 1

Y M

Depending of the mode propagating, the impedance will be redefined in vacumm as:

Z M ,T E = jωμ0

γz

Z M ,T M = γz

jωε0

Z M ,T E M =
√

μ0

ε0

For a propagating mode where γz = jβz the impedance will be resistive (which means it

carries energy), for an evanescent mode γz =αz (which means the wave is reactive). For a TM

mode, the impedance is capacitive Z = 1/( jωC ) and inductive for a TE mode Z = jωL. The

impedance for a TEM is always resistive.

An in-depth analytical explanation of hybrid modes can be found in [52].

17



2 Rectangular waveguides

2.6 Surface Impedance definition

In order to only introduce about the subject, only the mathematical concept of surface

impedance will be addressed lightly.

The anisotropic surfaces in reality have volume, they are also dependent on the frequency, the

angle of incidence of the wave and have dispersive properties, therefore, to characterize them

it is necessary and simple to use their surface impedance.

2.6.1 Mode TE

Figure 2.3 shows a TE plane wave incident with a θ angle on an impedance surface Zs in the Ω

plane. This wave travels obliquely and is composed of an incident electromagnetic field (
−→
Ei ,−→

Hi and
−→
k0) and reflected (

−→
Er ,

−→
Hr and

−→
k0).

The surface impedance definition Z ′
s is established as the relation between the electric field

−→
E

and the magnetic field
−→
H at the level of the Ω’ plane, and it is formulated as:

−→
E

∣∣∣
Ω′ = Z ′

s

(−→
H

∣∣∣
Ω′ ×

−→n
)

(2.12)

Where −→n is the vector normal to the surface, for the case of Figure 2.3, −→n =−→x .

By developing (2.12) is possible to obtain the definition of the transversal surface impedance

Z ′
t at height "h" as:

Z ′T E = Ey

Hz

∣∣∣∣
x=h

(2.13)

Figure 2.3: Transmission and reflection of a TE plane wave on an impedance surface Zs in the
Ω plane. [52]

2.6.2 Mode TM

Figure 2.4 shows a TM plane wave incident with a θ angle on an impedance surface Zs in the

Ω plane. This wave travels obliquely and is composed of an incident electromagnetic field (
−→
Ei ,
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2 Rectangular waveguides

−→
Hi and

−→
k0) and reflected (

−→
Er ,

−→
Hr and

−→
k0).

Same procedure as before, by using (2.12) and accounting for the incident an reflected elec-

tromagnetic fields, one can derive the definition of a longitudinal surface impedance Z ′
z at

height "h" as:

Z ′T M = − Ex

Hy

∣∣∣∣
x=h

(2.14)

The equations (2.13) and (2.14) will be used for the next chapter.

Figure 2.4: Transmission and reflection of a TM plane wave on an impedance surface Zs in the
Ω plane. [52]

From now on and to facilitate understanding, the definitions of transverse and longitudinal

surface impedances will be redefined as Z ′T E = Z ′
t and Z ′T M = Z ′

z .
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3 Anisotropic waveguides
This theoretical part constitutes an improved study of [58]. In this previous work, the MET

proved to calculate with accuracy and quickly the γ propagation constant for conventional

and anisotropic metamaterial walls waveguides (with same properties on the two parallel

walls).

In Figure 3.1, the boundary conditions are redefined to deal with different parallel anisotropic

walls. The horizontal walls (y = 0 and y = b) are still Perfect Electric Conductors (PEC) and

the vertical walls (x =−a and x = a) present different conditions along the two directions as

expressed in (3.1) and (3.2).

Figure 3.1: Rectangular waveguide with anisotropic walls.

3.1 Boundary conditions

The following equations express the anisotropic conditions at the vertical walls for a rectangu-

lar waveguide:

Zt1 =
Ey

Hz

∣∣∣∣
x=−a

, Zt2 = − Ey

Hz

∣∣∣∣
x=a

(3.1)

Zz1 = − Ez

Hy

∣∣∣∣
x=−a

, Zz2 = Ez

Hy

∣∣∣∣
x=a

(3.2)

Zt1 and Zt2 are the transversal impedances, and Zz1 and Zz2 are the longitudinal impedances.

These impedances might be complex to include losses, although in the following development
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3 Anisotropic waveguides

only purely imaginary surface impedances are considered. The boundary conditions on the

horizontal walls (y = 0 and y = b), are still the following:

Ez |y=0 = Ez |y=b = 0 (3.3)

∂Hz

∂y

∣∣∣∣
y=0

= ∂Hz

∂y

∣∣∣∣
y=b

= 0 (3.4)

The electromagnetic fields in the direction of propagation are decomposed as incidental and

reflected waves such as in [58].

Ez =
(
α−e j kx x +α+e− j kx x

)
sin(ky y) (3.5)

Hz =
(
δ−e j kx x +δ+e− j kx x

)
cos(ky y) (3.6)

where α−, α+, δ− and δ+ are unknown constants. kx and ky are respectively the propagation

constants along x-axis and y-axis with ky = mπ/b and m an integer.

The transversal field components in waveguides are defined by [85].

−→
ET = 1

k2
c

(−γ∇T Ez − jωμ0∇T Hz ×−→z ), (3.7)

−→
HT = 1

k2
c

( jωε∇T Ez ×−→z −γ∇T Hz ), (3.8)

where kc is the cutoff propagation constant, ε the waveguide permittivity and μ0 the vacuum

permeability.

3.2 α−,α+,δ−,δ+ determination.

By replacing the field equations (3.5) to (3.8) on the new boundary conditions (3.1) to (3.2),

we get following matrix form:

[M ]

⎡
⎢⎢⎢⎢⎣
α−
α+
δ−
δ+

⎤
⎥⎥⎥⎥⎦=−→

0 (3.9)
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3 Anisotropic waveguides

Where:

[M ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

uX u
(

f +e1
)
X e1− f

u uX −e2+ f −(
e2+ f

)
X

(
g1+h

)
X −g1+h v1X v1

g2−h −(
g2+h

)
X v2 v2X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.10)

Where u = γky , f = Z0k0kx , e1 = Zt1k2
c , e2 = Zt2k2

c , h = Z0k2
c , g1 = Zz1k0kx , g2 = Zz2k0kx ,

v1 = Zz1Z0γky , v2 = Zz2Z0γky and X = e−2 j kx a . To find the (α−,α+,δ−,δ+)T unknown vector,

the [M] eigenvector corresponding to the λ= 0 eigenvalue is to be solverd.

Furthermore, it is possible to recover the matrix presented in [58] if Zz1 = Zz2 = Zz , and

Zt1 = Zt2 = Zt conditions are settled and by changing reference coordinates of the x-axis.

3.2.1 Specific case, m = 0

When m = 0, ky = mπ/b = 0 and therefore Ez = 0 = Hy , hence the transversal electromagnetic

fields are defined in equations (3.11) to (3.14).

Ex = 0 (3.11)

Ey =−Z0k0kx (δ−e j kx x −δ+e− j kx x )

k2
c

(3.12)

Hx =− jγkx (δ−e j kx x −δ+e− j kx x )

k2
c

(3.13)

Hy = 0 (3.14)

The dispersion equation is consequently independent on Zz1 and Zz2. Hence, (3.1) results in

(3.15).

⎡
⎣

(
f +e1

)
X e1 − f

−e2 + f −(
e2 + f

)
X

⎤
⎦

⎡
⎣δ−
δ+

⎤
⎦=−→

0 (3.15)

which is a reduced form of the matrix equation presented in (3.9). It should be noted that this

last equation is also the one to solve when Zz1 = Zz2 = 0.
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4 Results
4.1 Configuration of HFSS

A series of tests detailed in table 4.1 are performed by varying the surface impedances to firstly

validate the method by comparison with the commercial software ANSYS HFSS [86] results,

and secondly to analyze the structure sentivity to fabrication dispersion.

For this example, a WR284 waveguide (Figure 4.1) of dimension a = 3,607cm, b = 3,404cm

and p = 0,01cm is taken as reference.

The boundary conditions for the left and right side walls are the anisotropic impedances of

table 4.1, the top and bottom walls have PEC conditions and the front and back walls have

master-slave boundaries conditions.

Figure 4.1: Anisotropic rectangular waveguide model tested in Ansys HFSS
[86].

The Eigenmode solver is used to compute the dispersion diagrams, since the β propagation

constant is a function of the phase shift between the two periodic walls. Phase variation from

0◦ to 180◦ leads to the dispersion diagram plots with (4.1).

β= � S21

p
(4.1)

where � S21 is the phase difference between the two periodic walls and p is the distance
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4 Results

between the periodic walls.

Because it is necessary to find the modes propagating within a frequency range, the Eigensolver

must be configured in advance. This is why the phase constant or k0’s is defined for each

mode that is found, mathematically described by equation (4.2) as:

k0(Mode(i )) =
2πRe[Mode(i )]

3 ·108 (4.2)

Where k0(Mode(i )) is the phase constant for the Mode "i ", and Re[Mode(i )] is the real part of

the frequency which is an output quantity defined in the analysis setup. Finally, dispersion

diagrams are plotted through their effective permittivity with (4.3) for each mode [85].

εe f f (Mode(i )) =
(

β

k0(Mode(i ))

)2

(4.3)

Table 4.1 shows the studied cases for different values of anisotropic walls. The equations (3.9)

and (3.15) are applied in the algorithm presented in [51].

Table 4.1: Anisotropic Cases

Case n◦ Zz1 Zz2 Zt1 Zt2

1 PEC

2 j Z0 j Z0 j Z0 j Z0

3 1.1 j Z0 0.9 j Z0 j Z0 j Z0

4 j Z0 j Z0 1.1 j Z0 0.9 j Z0

5 1.1 j Z0 0.9 j Z0 1.1 j Z0 0.9 j Z0

6 1.1 j Z0 0.9 j Z0 0.9 j Z0 0.9 j Z0

7 0.9 j Z0 j Z0 j Z0 j Z0

8 1.1 j Z0 j Z0 j Z0 j Z0

9 j Z0 j Z0 0.9 j Z0 j Z0

10 j Z0 j Z0 1.1 j Z0 j Z0
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4 Results

4.2 Dispersion plot results, cases 1 to 10

These results are compared HFSS results in Figure 4.2, for each case a good agreement between

the MET and HFSS results is observed.
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Figure 4.2: MatLab and HFSS courves of Epsilon effective (εe f f ) as function of frequency for
different anisotropic wall impedances exposed on Table 4.1

.

In Table 4.2, the electromagnetic characteristics of each case is recalled. For the sensitivity

test, case 2 is chosen as reference since it corresponds to a case known and studied in [56] as

well as serving as a starting point by allowing to independently vary Zz1, Zz2, Zt1 and Zt2.

The purpose of these cases is to perform a sensitivity analysis on the walls of the surface

impedance, for this, the values of the anisotropic walls are modified in small increments to

see the effects in the previous dispersion diagram, reflecting the relevant information in the

Table 4.2 consequently.
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According to Table 4.2 results, an increase of one transverse impedance above the case 2

transverse impedance reference (such as in case 10) leads to lower the fundamental mode

cutoff frequency. This result can be exploited since it implies that the waveguide can work

at lower frequencies but maintaining its size, requiring only the variation of the transverse

impedance (Zt ) in one of the walls.

Table 4.2: Summary of the different cases

Case fc (1st mode) fc (2nd mode) BW

n◦ (GHz) (GHz) (GHz)

2 1.04 3.09 2.04

3 1.04 3.09 2.04

4 1.05 2.96 1.91

5 1.05 2.96 1.91

6 1.05 2.96 1.91

7 1.04 3.09 2.05

8 1.04 3.09 2.05

9 1.07 3.11 2.03

10 1.01 2.96 1.95

fc = Cutoff frequency

Bw = fc(2nd mode) - fc(1st mode)

Additionnal tests are therefore proposed around cases 9 and 10 to find a lower cutoff frequency,

as it varies Zt1 between 0.2 j Z0 to 2.5 j Z0.
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4 Results

4.3 Dispersion plot results, cases around Zt1

Table 4.3 shows the new cases around Zt1.

Table 4.3: Anisotropic Cases around Zt1

Case n◦ Zz1 Zz2 Zt1 Zt2

9e j Z0 j Z0 0.2 j Z0 j Z0

9d j Z0 j Z0 0.4 j Z0 j Z0

9c j Z0 j Z0 0.6 j Z0 j Z0

9b j Z0 j Z0 0.7 j Z0 j Z0

9a j Z0 j Z0 0.8 j Z0 j Z0

9 j Z0 j Z0 0.9 j Z0 j Z0

2 j Z0 j Z0 j Z0 j Z0

10 j Z0 j Z0 1.1 j Z0 j Z0

10a j Z0 j Z0 1.5 j Z0 j Z0

10b j Z0 j Z0 2 j Z0 j Z0

10c j Z0 j Z0 2.5 j Z0 j Z0

Taking as reference the characteristics of bandwidth and fundamental cutoff frequency of

case 2 in table 4.4: when Zt1 ranges from j Z0 to 0.2 j Z0, the fundamental cutoff frequency is

shifted to higher frequencies together with a decrease in bandwidth, which can be reduced

up to a 17.6% as is shown in case 9e of �Bw. On the other hand, an increase of Zt1 from j Z0

to 2.5 j Z0, implies a reduction of the cutoff frequencies of the fundamental mode but at the

cost of reducing the bandwidth drastically up to a 57.72% as in the case 10c. Finally, when the

impedance difference is more significant (Zt1 > 2.5 j Z0), hybrid modes starts propagating on

the waveguide.
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Table 4.4: Summary of the different cases around Zt1

Case fc (1st mode) fc (2nd mode) BW �BW � fc

n◦ (GHz) (GHz) (GHz) (%) (%)

9e 1.43 3.11 1.68 -17.56 0.38

9d 1.31 3.11 1.80 -11.66 0.26

9c 1.20 3.11 1.91 -6.50 0.16

9b 1.16 3.11 1.96 -4.25 0.11

9a 1.11 3.11 2.00 -2.23 0.07

9 1.07 3.11 2.03 -0.46 0.03

2 1.04 3.09 2.04 - -

10 1.01 2.96 1.95 -4.60 -0.04

10a 0.91 2.44 1.53 -25.04 -0.13

10b 0.83 1.97 1.14 -44.16 -0.22

10c 0.77 1.63 0.86 -57.72 -0.27

fc = Cutoff frequency

BW = Bandwith, fc (2nd mode) - fc (1st mode)

�BW = (BW (case n◦) - BW (case 3)/BW (case 3))*100

� fc = (( fc (case n◦) - fc (case 3))/Fc (case 3))*100

Figure 4.3 represents the same information as in table 4.4; the left figure shows the bandwidth

as it varies the Zt1 impedance. Clearly, when the transverse impedance is greater than 1

(normalized by j Z0) the bandwidth decrease drastically.

The right figure shows the variation of the cutoff frequency as it varies the transverse impedance

Zt1. In this case, the cutoff frequency is greater at lower values of Zt1 and lower at higher

values.
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Figure 4.3: HFSS vs Matlab results, only variations in Zt1 according to Table 4.3.

It should be noted that these results can be compared with conventional waveguides for

28



4 Results

the same working frequencies. This is the purpose of Table 4.5. A WR770 waveguide, can

be replaced if we use a surface impedance Zt1 = 2.5 j Z0 (case 10c) in a WR284 waveguide

(and assuming that the metamaterial dimensions are not considered), achieving a cross

section reduction of 87,16% and a bandwidth increase of 11.2%. On the other hand, a WR650

waveguide can be replaced if this time we use a surface impedance Zt1 = 1.5 j Z0 (case 10a) in

the same WR284 waveguide, achieving a cross section reduction of 81.98% and a bandwidth

increase of 20.4%. Furthermore, if we consider a WR284 waveguide with any of the following

impedances, Zt1 = 0.9 j Z0 (case 9), Zt1 = j Z0 (case 2) or Zt1 = 1.1 j Z0 (case 10), these will have

a reduction in their cross section of about a 29.27% with respect to the WR510 waveguide and

improved bandwidths of 43.1%, 43.4% and 40.6% respectively. Same applies for these cases if

the comparison is now with respect to a WR430 waveguide, it is possible to get an 41.17 cross

section reduction and improved bandwidths of 32.5% (case 9), 32.8% (case 2) and 29.6% (case

10) respectively.

Finally, due to the large bandwidth of cases 9, 2 and 10, it is possible to use any of these to

work simultaneously within the operating ranges of the WR430 and WR510 waveguides. A

summary of the above is presented in Table 4.5.

Table 4.5: Comparisons of waveguides characteristics with respect to the anisotropic cases

Desig-
nation

fc

(1st
mode)

fc

(2nd
mode)

Surf.
With case #

� Surf. � BW.

(GHz) (GHz) (cm2) (%) (%)

WR284 2,08 4,16 24,56 - - -

WR430 1,37 2,75 59,65 2, 9 or 10 ∼41.17 ∼31,6

WR510 1,16 2,31 83,90 2, 9 or 10 ∼29.27 ∼42,4

WR650 0,91 1,82 136,29 10a ∼81.98 ∼20,4

WR770 0,77 1,53 191,26 10c ∼87,16 ∼11,2

�Surf. = surface reduction (compared to the WR284 waveguide)

�BW. = bandwidth increment (when using the surf. impedance)
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4 Results

Figure 4.4 shows the same information, but less clearly as table 4.5. And as before, good

agreement between FEM code and Simulation can be found.
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Figure 4.4: HFSS vs Matlab results, only variations in Zt1.
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5 Design of an High Impedance Surface
5.1 Simulation of unit cells

When it is necessary to repeat a design of some particular structure, for example an array of

antennas, selective frequency surfaces, etc. These problems can be simulated using periodic

boundary conditions. In HFSS this can be achieved by declaring a face as "Master" and parallel

to this its "Slave" face.

There are two types of boundary conditions available in HFSS:

• Perfectly Matched Layers (PMLs):

This type of edge simulates a fictitious material which absorbs the electromagnetic field

that falls on it.

• Periodic boundary conditions - Master and Slave boundaries:

This type of edges allow modeling planes of periodicity where the electric field of a

surface fits with the electric field of another surface with a certain degree of phase shift.

This type of condition is useful to simulate infinite arrays.

Unlike a contour of symmetry, the electric field does not have to be tangential or normal

to this contour, only the same magnitude and direction must be fulfilled (or the same

magnitude but with opposite direction).

Some considerations should be taken when using this type of boundary condition:

– They can only be assigned to flat faces.

– The geometry of a surface (for example declared as "Master") must correspond to

the geometry of the surface at the other end (declared as "Slave").

Next, the steps taken in the search for high impedance surfaces that satisfy the results obtained

in the previous chapter will be detailed, specifically, the search for the impedance values

between the working frequencies shown in Table 4.5.

5.2 Configuration of the unit cell in HFSS

As a point of reference and to obtain practical knowledge on how to apply Floquet ports, the

unit cell PIC is designed, which corresponds to the design made in [52]. As shown in Figure 5.1,

it is initially designed under the parameters indicated in Table 5.1 and surface impedance
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5 Design of an High Impedance Surface

Figure 5.1: PIC [86].

Table 5.1: PIC unit cell parameters

Iteration x_PIC y_PIC h_PIC
1 2 2 9.6
2 3 2 9.6
3 5 2 9.6
4 7 2 9.6
5 2 3 9.6
6 2 5 9.6
7 2 7 9.6
8 2 2 3
9 2 2 6

10 2 2 9
11 2 2 12
12 2 2 15
13 2 2 18
14 2 2 21
15 2 2 24
16 2 2 27

graphs Zt and Zz are obtained for each iteration, the effects can be seen when varying some

of these parameters.

After analyzing the graphs of Figure C.1 and C.2 for each iteration, we observe a trend in

this design which is the non-linearity of both surface impedances, since the objective is to

find the constant impedance values within the frequency ranges shown in the Table 4.5. In

addition, it should be noted that for reasons of time, only an evaluation of the sensitivity

behavior of the structures with respect to their impedance response is made, so it is decided

to take an impedance range between 0.9 j Z0 and 1.1 j Z0 for Zt y Zz and a frequency range

between 1.37G H z and 2.75G H z which corresponds to the frequency of operation of a WR430

waveguide.

For the case of the PIC structure, it is possible to observe that the iterations 13 to 16 manage to

reach the transverse and longitudinal impedance ranges only when modifying the height. It is

also noted that this design is susceptible to the angle of incidence of the wave for the case Zt

unlike Zz .
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5 Design of an High Impedance Surface

Figure 5.2: T-like unit cell [86].

Table 5.2: T unit cell parameters (x-axis)

Iteration x_FSS y_FSS h_PIC
1 7 2 9.6
2 5.5 2 9.6
3 4 2 9.6
4 2.5 2 9.6
5 7 2.5 9.6
6 7 4 9.6
7 7 5.5 9.6
8 7 2 3
9 7 2 6

10 7 2 9
11 7 2 12
12 7 2 15
13 7 2 18
14 7 2 21
15 7 2 24
16 7 2 27

Constants
x_PIC = y_PIC = 2
z_FSS = 0.25

For the case of the "T" structure on the x-axis presented in Table 5.2, Figure C.3 and Figure C.4

shows a change in the Zz impedance on iterations 1 and 2. This agrees with section 1.2, where

the separation between frequency selective surfaces affects the general capacitance, changing

the surface impedance. Even so, only iterations 11 to 16 (which modify the height of the unit

cell) are able to reach the required impedance range at the established frequency (that is, Zt

and Zz between 0.9 j Z0 and 1.1 j Z0 , and frequency range between 1.37G H z and 2.75G H z).
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5 Design of an High Impedance Surface

Figure 5.3: T-like unit cell [86].

Table 5.3: T unit cell parameters (y-axis)

Iteration x_FSS y_FSS h_PIC
1 2 7 9.6
2 2 5.5 9.6
3 2 4 9.6
4 2 2.5 9.6
5 2.5 7 9.6
6 4 7 9.6
7 5.5 7 9.6
8 2 7 3
9 2 7 6

10 2 7 9
11 2 7 12
12 2 7 15
13 2 7 18
14 2 7 21
15 2 7 24
16 2 7 27

Constants
x_PIC = y_PIC = 2
z_FSS = 0.25

Similar to the previous case, the T shaped unit cell but now parallel to the y-axis (Figure C.5

and Figure C.6) shows variation in the impedance Zt and presents the same behavior as the

previous case reaching the resonance required at iterations 11 to 16.
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5 Design of an High Impedance Surface

Figure 5.4: X-like unit cell [86].

Table 5.4: "X" FSS unit cell parameters

Iteration x1_FSS y2_FSS h_PIC
1 7 7 9.6
2 5.5 7 9.6
3 4 7 9.6
4 2.5 7 9.6
5 2.5 5.5 9.6
6 4 4 9.6
7 5.5 2.5 9.6
8 2 7 3
9 2 7 6

10 2 7 9
11 2 7 12
12 2 7 15
13 2 7 18
14 2 7 21
15 2 7 24
16 2 7 27

Constants
y1_FSS = x2_FSS = x_PIC = y_PIC = 2
z_FSS = 0.25

The X shape unit cell in Figure 5.4 shows better insensitivity to the angle of incidence for both

Zt and Zz , which means the same values of impedance along the frequency, in addition to

being able to control the slope of Zt or Zz when modifying the length of the arms of the surface

(iterations 1 to 7). In any case, these results are not required, but it is possible to achieve them

if the height is modified as in iterations 11 to 16 (Figure C.7 and Figure C.8).
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5 Design of an High Impedance Surface

Figure 5.5: Jerusalem cross unit cell [86].

Table 5.5: Jerusalem cross unit cell parameters

Iteration y3_FSS x4_FSS h_PIC
1 6 6 9.6
2 6 5.5 9.6
3 6 4 9.6
4 6 2.5 9.6
5 5.5 6 9.6
6 4 6 9.6
7 2.5 6 9.6
8 6 6 3
9 6 6 6

10 6 6 9
11 6 6 12
12 6 6 15
13 6 6 18
14 6 6 21
15 6 6 24
16 6 6 27

Constants
x1_FSS = y2_FSS = 7
y1_FSS = x2_FSS = x_PIC = y_PIC = 2
x3_FSS = x4_FSS = z_FSS = 0.25

Finally, the Jerusalem cross structure of the Figure 5.5 is the one that presents the best results,

being able to observe from the plots of Figure C.9 and Figure C.10 better insensibility to

the angle of incidence. In addition, by varying the length of the parameters "x4_FSS" and

"y3_FSS", changes in Zt or Zz can be observed independently, which would allow the design of

the required anisotropic surface ( but the non-linearity still needs to be corrected). Regarding

whether it complies with the required ranges, this structure reaches the impedance values and

frequency range from iterations 1 to 7, reaching almost the entire frequency range sought in

iterations 11 to 16.

Due to the time, the results obtained in this section did not reach the proposed goal, which

consisted in obtaining the impedance values within the ranges shown in Table 4.5. Even so,

these results and procedures are left to continue the search of the unit cells.

36



Conclusions
Currently, research in metamaterials has allowed to open a field of electromagnetism that only

existed in the theoretical world since the ’60s, and the fruits of this work have materialized

in new technologies for fields like optics, electronics, acoustic among others, so it is an inter-

disciplinary work, since it deals with composite materials that have physical properties that

can exceed or complement what already exists in nature. Initially, the metamaterials were

developed to modify at will the electromagnetic properties of the medium, but this concept

has already been extended to include elastic, acoustic and thermal properties. Since 1999,

thanks to the discovery of Pendry, the field of metamaterials has attracted all the attention of

the scientific community, being able to apply in branches of antenna and waveguide engineer-

ing, imaging, sensors and light manipulation. Metamaterial research has brought together

electrical engineers, material and optical scientists, chemists, and mathematicians; it has also

advanced our understanding of electrodynamics, pushed the boundaries of nanofabrication,

and stimulated the development of novel characterization techniques.

The definition of metamaterial is not well defined, but a term common to all branches of

engineering is; artificially designed material (like composites) that offers properties not found

by natural means. Metamaterials have their unusual properties thanks to the way in which

their elementary blocks are organized (on a scale smaller than the wavelength of work), rather

than by the individual ordering of the atoms that make them up, such as metals and dielectrics.

And because of this subwavelength feature, metamaterials do not diffract light and hence are

different from photonic crystals, acting as uniform media that can, in principle, as ascribed to

effective refractive index.

Within the area of metamaterials, high impedance surfaces are found, these are composed by

resonant cavities synthesized by printing a selective frequency surface on top of a grounded

dielectric slab. These structures have the property of perfect magnetic conductor within a

frequency range and for this same reason are classified as artificial magnetic conductors. The

applications of this technology range from the design of ultra-thin electromagnetic absorbers,

low-profile antennas, Fabry-Perot or Leaky wave antennas, to mitigate the simultaneous

switching noise (SSN) in PCB circuit and other applications.There are several analytical models

that try to describe the behavior of some specific structure, but now these models have been

replaced by more advanced computational techniques, facilitating the development of new

designs.
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5 Conclusions

Waveguides were one of the earliest technologies to be developed for the propagation of elec-

tromagnetic waves at high frequencies. Their ease of construction and high-power capability

are one of the reasons to investigate in this well-known technology. In past research, the issue

of size reduction in rectangular waveguides has been addressed through the implementation

of anisotropic walls with the same surface impedance value, achieving better results than

with classical rectangular waveguides. This time, we sought to analyze the electromagnetic

properties in waveguides with anisotropic walls of different value, obtaining interesting results

such as the customized modification of the bandwidth or the displacement in the cutoff

frequency by means of the variation of one of the transverse impedances being able to exploit

this feature in the operating range of conventional waveguides with better performance. The

work done here allows us to advance in the search for a unit cell by means of high impedance

surfaces with the anisotropic impedance values analyzed.
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A Development of the analytic equa-
tions of section 3
A.1 Definition of hybrid modes:

Ez = (α−e j kx x +α+e− j kx x )sin(ky y) (A.1)

Hz = (δ−e j kx x +δ+e− j kx x )cos(ky y) (A.2)

Where kx is not determined and ky = mπ/b

A.2 Transversal fields definitions

Ex =− j [γz kx (α−e j kx x −α+e− j kx x )−Z0k0ky (δ−e j kx x +δ+e− j kx x )]
sin(ky y)

k2
c

(A.3)

Ey =−[γz ky (α−e j kx x +α+e− j kx x )+Z0k0kx (δ−e j kx x −δ+e− j kx x )]
cos(ky y)

k2
c

(A.4)

Hx =− j [−k0ky (α−e j kx x +α+e− j kx x )+Z0γz kx (δ−e j kx x −δ+e− j kx x )]
cos(ky y)

Z0k2
c

(A.5)

Hy = [k0kx (α−e j kx x −α+e− j kx x )+Z0γz kx (δ−e j kx x +δ+e− j kx x )]
sin(ky y)

Z0k2
c

(A.6)
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A Development of the analytic equations of section 3

A.3 Boundary conditions

Zt1 =
Ey

Hz

∣∣∣∣
x=−a

(A.7)

Zz1 =− Ez

Hy

∣∣∣∣
x=−a

(A.8)

Zt2 =− Ey

Hz

∣∣∣∣
x=a

(A.9)

Zz2 = Ez

Hy

∣∣∣∣
x=a

(A.10)

By replacing the field equations (A.1), (A.2) and (A.3) to (A.6) on the new boundary conditions

(A.7) to (A.10), we get following matrix form:

[M ] (α−,α+,δ−,δ+) =−→
0 (A.11)

Where:

[M ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

uX u
(

f +e1
)
X e1− f

u uX −e2+ f −(
e2+ f

)
X

(
g1+h

)
X −g1+h v1X v1

g2−h −(
g2+h

)
X v2 v2X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.12)

Where u = γky , f = Z0k0kx , e1 = Zt1k2
c , e2 = Zt2k2

c , h = Z0k2
c , g1 = Zz1k0kx , g2 = Zz2k0kx ,

v1 = Zz1Z0γky , v2 = Zz2Z0γky and X = e−2 j kx a .

A-2



A Development of the analytic equations of section 3

A.4 Case m=0

If we consider the case where m = 0, this will imply ky = mπ/b = 0 and also Ez = 0, hence the

transversal electromagnetic fields are as follows:

Ex = 0 (A.13)

Ey =−Z0k0kx (δ−e j kx x −δ+e− j kx x )

k2
c

(A.14)

Hx =− jγkx (δ−e j kx x −δ+e− j kx x )

k2
c

(A.15)

Hy = 0 (A.16)

The dispersion equation will be independent of Zz1 and Zz2, hence, evaluating the fields on

the boundaries (A.7) and (A.9) results in:

Zt1 =
Ey

Hz

∣∣∣∣
x=−a

(Z0kx k0 +Zt1k2
c )e− j kx aδ−+ (−Z0kx k0 +Zt1k2

c )e j kx aδ+ (A.17)

Zt2 =− Ey

Hz

∣∣∣∣
x=a

(−Z0kx k0 +Zt2k2
c )e j kx aδ−+ (Z0kx k0 +Zt2k2

c )e− j kx aδ+ (A.18)

Reorganizing (A.17) and (A.18) in matrix form:

[ (
Z0kx k0 +Zt1k2

c

)
e− j kx a

(−Z0kx k0 + Zt1k2
c

)
e j kx a(−Z0kx k0 +Zt2k2

c

)
e j kx a

(
Z0kx k0 +Zt2k2

c

)
e− j kx a

][
δ−
δ+

]
= 0 (A.19)

Calculating det(M) of (A.19):

(
Z0kx k0 +Zt1k2

c

)(
Z0kx k0 +Zt2k2

c

)
e−2 j kx a+

− (−Z0kx k0 + Zt1k2
c

)(−Z0kx k0 +Zt2k2
c

)
e2 j kx a = 0
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A Development of the analytic equations of section 3

tan(2kx a) =− j Z0kx k0k2
c (Zt1 +Zt2)

k4
c (Zt1Zt2)+ (Z0kx k0)2 (A.20)

Replacing (A.20) with kc =
√

k2
x +k2

y :

tan(2kx a) =−
j Z0kx k0

(
k2

x +k2
y

)
(Zt1 +Zt2)(

k2
x +k2

y
)2

(Zt1Zt2)+ (Z0kx k0)2

tan(2kx a) =− j Z0kx k0 (Zt1 +Zt2)(
k2

x +k2
y
)(

(Zt1Zt2)+ (Z0kx k0)(
k2

x+k2
y

)2

2
) (A.21)

Which is valid a solution and must be solved numerically.

A.5 Case Zz1, Zz2 = 0

Zt1 =
Ey

Hz

∣∣∣∣
x=−a

γz ky e− j kx aα−+ (
Z0k0kx +Zt1k2

c

)
e− j kx aδ−+

+γz ky e j kx aα++ (−Z0k0kx +Zt1k2
c

)
e j kx aδ+ = 0 (A.22)

Zt2 =− Ey

Hz

∣∣∣∣
x=a

−γz ky e j kx aα−+ (−Z0k0kx +Zt2k2
c

)
e j kx aδ−+

−γz ky e− j kx aα++ (
Z0k0kx +Zt2k2

c

)
e− j kx aδ+ = 0 (A.23)
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A Development of the analytic equations of section 3

Zz1 = 0 = − Ez

Hy

∣∣∣∣
x=−a

e− j kx aα−+e j kx aα+ = 0 (A.24)

Zz2 = 0 = Ez

Hy

∣∣∣∣
x=a

−e j kx aα−−e− j kx aα+ = 0 (A.25)

From (A.24):

α− =−e2 j kx aα+ (A.26)

Introducing (A.26) in (A.25) leads to:

(
e3 j kx a −e− j kx a

)
α+ = 0 (A.27)

Equation (A.27) leads to two possible solutions:

Solution 1:

α+ =α− = 0 (A.28)

This will yield to the case where m=0 and thus the general matrix reduces to:

[ (
Z0k0kx +Zt1k2

c

)
e− j kx a

(−Z0k0kx +Zt1k2
c

)
e j kx a(−Z0k0kx +Zt2k2

c

)
e j kx a

(
Z0k0kx +Zt2k2

c

)
e− j kx a

][
δ−
δ+

]
=

[
0

0

]
(A.29)

Solution 2:

From (A.27):

e3 j kx a −e− j kx a = 0

e j kx a
(
e2 j kx a −e−2 j kx a

)
= 0

e j kx a (
2 j si n (2kx a)

)= 0

kx = nπ

2a
(A.30)
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A Development of the analytic equations of section 3

With "n" an Integer, and assuming a �= 0.

Using (A.30) on (A.27):

α− =−e j nπα+

α− =−(−1)nα+ (A.31)

Because e j nπ = (−1)n , ∀n ∈ Z. From here we have two cases for “n”:

• Case n=2p

This implies:

kx = pπ

a
(A.32)

α− =−α+ (A.33)

Which, if we use (A.32) and (A.33) on eqs. (A.22) and (A.23) we get:

γz ky
(
2 j sin

(
pπ

))
α++

(
Z0k0

pπ

a
+Zt1k2

c

)
e− j pπδ−+

+
(
−Z0k0

pπ

a
+Zt1k2

c

)
e j pπδ+ = 0 (A.34)

γz ky
(
2 j sin

(
pπ

))
α++

(
−Z0k0

pπ

a
+Zt2k2

c

)
e j pπδ−+

+
(

Z0k0
pπ

a
+Zt2k2

c

)
e− j pπδ+ = 0 (A.35)

For every value of "p", sin(pπ) goes to cero, so eqs (A.34) and (A.35) will be:

(
Z0k0

pπ

a
+Zt1k2

c

)
e− j pπδ−+

(
−Z0k0

pπ

a
+Zt1k2

c

)
e j pπδ+ = 0

(
−Z0k0

pπ

a
+Zt2k2

c

)
e j pπδ−+

(
Z0k0

pπ

a
+Zt2k2

c

)
e− j pπδ+ = 0
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A Development of the analytic equations of section 3

Also e j pπ = e− j pπ = (−1)p , then:

(
Z0k0

pπ

a
+Zt1k2

c

)
(−1)pδ−+

(
−Z0k0

pπ

a
+Zt1k2

c

)
(−1)pδ+ = 0 (A.36)

(
−Z0k0

pπ

a
+Zt2k2

c

)
(−1)pδ−+

(
Z0k0

pπ

a
+Zt2k2

c

)
(−1)pδ+ = 0 (A.37)

Eqs. (A.36) and (A.37) can be reduced by factoring (−1)p , thus:

[ (
Z0k0

pπ
a +Zt1k2

c

) (−Z0k0
pπ
a +Zt1k2

c

)(−Z0k0
pπ
a +Zt2k2

c

) (
Z0k0

pπ
a +Zt2k2

c

)
][

δ−
δ+

]
=�0 (A.38)

Doing the operation (A.36) + (A.37) we get the following results:

(Zt1 +Zt2)k2
cδ−+ (Zt1 +Zt2)k2

cδ+ = 0

(Zt1 +Zt2)k2
c (δ−+δ+) = 0 (A.39)

Which are not valid because it gives two solutions: kc = 0 or Zt1 =−Zt2 and δ− =−δ+.

• Case n=(2p+1)

This implies:

kx =
(
2p +1

)
π

2a
(A.40)

α− =α+ (A.41)

Which, if we use (A.40) and (A.41) on eqs. (A.22) and (A.23):

γz ky

(
2cos

((
2p +1

)
π

2

))
α++

(
Z0k0

(
2p +1

)
π

2a
+Zt1k2

c

)
e− j (2p+1)π

2 δ−+

+
(
−Z0k0

(
2p +1

)
π

2a
+Zt1k2

c

)
e j (2p+1)π

2 δ+ = 0 (A.42)

−γz ky

(
2cos

((
2p +1

)
π

2

))
α++

(
−Z0k0

(
2p +1

)
π

2a
+Zt2k2

c

)
e j (2p+1)π

2 δ−+

+
(

Z0k0

(
2p +1

)
π

2a
+Zt2k2

c

)
e− j (2p+1)π

2 δ+ = 0 (A.43)
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A Development of the analytic equations of section 3

For every value of "p", cos
(

(2p+1)π
2

)
goes to zero, thus eqs. (A.42) and (A.43):

(
Z0k0

(
2p +1

)
π

2a
+Zt1k2

c

)
e− j (2p+1)π

2 δ−+

+
(
−Z0k0

(
2p +1

)
π

2a
+Zt1k2

c

)
e j (2p+1)π

2 δ+ = 0 (A.44)

(
−Z0k0

(
2p +1

)
π

2a
+Zt2k2

c

)
e j (2p+1)π

2 δ−+

+
(

Z0k0
(
2p +1

)
π

2a
+Zt2k2

c

)
e− j (2p+1)π

2 δ+ = 0 (A.45)

Also e j (2p+1)π
2 = j (−1)p and e− j (2p+1)π

2 =− j (−1)p , then eqs. (A.44) and (A.45):

−
(

Z0k0
(
2p +1

)
π

2a
+Zt1k2

c

)
(−1)pδ−+

+
(
−Z0k0

(
2p +1

)
π

2a
+Zt1k2

c

)
(−1)pδ+ = 0 (A.46)

(
−Z0k0

(
2p +1

)
π

2a
+Zt2k2

c

)
(−1)pδ−+

−
(

Z0k0
(
2p +1

)
π

2a
+Zt2k2

c

)
(−1)pδ+ = 0 (A.47)

Eqs (A.46) and (A.47) can be reduced by factoring (−1)p , thus:

⎡
⎣ −

(
Z0k0

(2p+1)π
2a +Zt1k2

c

) (
−Z0k0

(2p+1)π
2a +Zt1k2

c

)
(
−Z0k0

(2p+1)π
2a +Zt2k2

c

)
−

(
Z0k0

(2p+1)π
a +Zt2k2

c

)
⎤
⎦[

δ−
δ+

]
=�0 (A.48)
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Calculating det(M) = 0 of (A.48) gives:

(
Z0k0

(
2p +1

)
π

2a
+Zt1k2

c

)(
Z0k0

(
2p +1

)
π

2a
+Zt2k2

c

)

−
(
−Z0k0

(
2p +1

)
π

2a
+Zt2k2

c

)(
−Z0k0

(
2p +1

)
π

2a
+Zt1k2

c

)
= 0

k2
c (Zt1 +Zt2)

(
Z0k0

(
2p +1

)
π

2a

)
= 0 (A.49)

From (A.49), is possible to conclude that is not possible for it to be zero because,

Zt1, Zt2 �= 0, and k2
c = k2

x +k2
y �= 0.

Thus, the only real solution for the case Zz1, Zz2 = 0 is solution 1.
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B Unit Cell Tutorial for HFSS
1. The "Master1" plane is defined: Right click -> Assign Boundaries -> Master

Figure B.1: Assigning the Master plane (1).

2. The vector U of the "Master1" plane is defined, the red arrow shows from and to where

the vector is considered.

Figure B.2: Assigning the Master plane (2).

B-1



B Unit Cell Tutorial for HFSS

3. The vector V must be in the volume, so the box "Reverse direction" should be selected if

necessary.

Figure B.3: Assigning the Master plane (3).

4. The result of declaring the "Master1" plane can be seen in the following image:

Figure B.4: Assigning the Master plane (4).

5. The "Slave1" plane is defined: Right click -> Assign Boundaries -> Slave

Figure B.5: Assigning the Slave plane (1).
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6. In the box "Master Boundary" the option "Master1" is selected. Then we must define

the vector U associated with the plane "Slave1" as shown in the following image:

Figure B.6: Assigning the Slave plane (2).

7. Care must be taken to define the vector U (of the "Slave1") in the same direction, parallel

and of the same size to the vector U of the "Master1" plane. The result will show a vector

in red smaller than the vector of the associated master plane.

8. Similarly, the vector V of "Slave1" must be within the volume, so the "Reverse Direction"

box should be selected if necessary.

Figure B.7: Assigning the Slave plane (3).
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9. To make the scanning angles with the Floquet port, the option "Use scan angles to

calculate phase delay" is chosen and the created variables are entered: "phi_scan"

and "theta_scan". The angles θ and φ considered by HFSS are shown attached to the

following image:

Figure B.8: Defining scanning angles (1).

Figure B.9: Defining scanning angles (2).
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10. When configuring the "Slave1" plane, the arrow indicating the phase between "Master1"

and "Slave1" appears pointing on the same x-axis, this is due to the fact that the variables

"phi_scan" and "theta_scan" were defined as 0° and 89° respectively.

Figure B.10: Defining scanning angles (3).

11. The same steps are repeated to define the plane "Master2" and "Slave2"

Figure B.11: Master2 and Slave2 definitions (1).
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12. When defining the offset in "Slave2" the variables "phi_scan" and "theta_scan" are

already in their corresponding boxes, so it only remains to select the "Finish" tab

Figure B.12: Master2 and Slave2 definitions (2).

13. To assign floquet ports you must first go to: HFSS -> Solution type -> Modal

14. Then on the upper side: Right click -> Assign Excitation -> Floquet Port

Figure B.13: Assigning Floquet Port (1).

B-6



B Unit Cell Tutorial for HFSS

15. The direction of vector A is defined

Figure B.14: Assigning Floquet Port (2).

16. Then the address of vector B

Figure B.15: Assigning Floquet Port (3).

17. The direction of the vectors should look like in the following image:

Figure B.16: Assigning Floquet Port (4).

18. The following tab defines the number of modes to be propagated, in our case it is

necessary that the TE and TM modes are propagated, so in "Number of modes" it is
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placed as 2. Then the "m" and "n" indexes are defined "For mode 1 (TE) and mode

2 (TM), given that the indices" m "and" n "with zero this implies that they are two

orthogonal flat waves that propagate with an angle of incidence depending on the

variables θ and φ (which we previously defined on the faces "Master1" and "Slave1").

Figure B.17: Assigning Floquet Port (5).

19. Then, since it is necessary to obtain the phase variations at the height of the metama-

terial, the "Deembed" option is selected and the height at which the S parameters are

calculated, in our case the surface impedance is calculated as: a/2 - h_PIC, where "a"

corresponds to the width of the WR284 guide and h_PIC corresponds to the test height

used in the [52]

Figure B.18: Assigning Floquet Port - Deembeding (1).

20. The following image shows that floquet modes participate in the generation of adaptive

3D mesh. For more information check the following link in the section Floquet Port: 3D

refinement: http://www.1cae.com/articleAccessory/2017/04/16/HFSS%20Floquet%

20Ports.pdf
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Figure B.19: Assigning Floquet Port - Deembeding (2).

21. The result when you finish configuring the floquet port is seen in the following image,

the blue arrow indicates from which height the deembeding is performed.

Figure B.20: Assigning Floquet Port - Deembeding (3).
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22. The PEC boundary conditions are defined as shown in the following image:

Figure B.21: Assigning PEC boundary conditions.

23. Following the steps in [52] the solution setup is configured.

Figure B.22: Configuring Solution setup (1).
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Figure B.23: Configuring Solution setup (2).

Figure B.24: Configuring Solution setup (3).

Figure B.25: Configuring Solution setup (4).

24. To create the output variables, go to Project Manager -> Results -> Create Modal Solution

Data Report -> Rectangular Plot -> Output Variable. Then, create two output variables
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Figure B.26: Configuring Solution setup (5).

Z_z and Z_t, which will be used to obtain the surface impedance according to the

following equations:

Zt =

i m

⎛
⎜⎜⎝ Z0

cos

(
thet ascan ·π

180

) 1+S( f loquetPor t1 : 1, f loquetPor t1 : 1)

1−S( f loquetPor t1 : 1, f loquetPor t1 : 1)

⎞
⎟⎟⎠

Z0
(B.1)

Zz =
i m

(
Z0 ·cos

(
thet ascan ·π

180

)
1+S( f loquetPor t1 : 2, f loquetPor t1 : 2)

1−S( f loquetPor t1 : 2, f loquetPor t1 : 2)

)
Z0

(B.2)

25. These formulas correspond to equations (3.16) and (3.17) of [52]

Figure B.27: Defining output variables (1).
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26. Finally the variables created are selected in Output Variables

Figure B.28: Defining output variables (2).

Figure B.29: Defining output variables (3).
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C Surface Impedance plots
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Figure C.1: Zt iterations, PIC unit cell
.
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Figure C.2: Zz iterations, PIC unit cell
.
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Figure C.3: Zz iterations, T unit cell (x-axis)
.

C-3



C Surface Impedance plots

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(1) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(2) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(3) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(4) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(5) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(6) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(7) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(8) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(9) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(10) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(11) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(12) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(13) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(14) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(15) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency[GHz]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Im
pe

da
nc

e[
-]

(16) Im(Z
t
/Z

0
)

Theta scan = 0°
Theta scan = 45°
Theta scan = 89°

Figure C.4: Zt iterations, T unit cell (x-axis)
.
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Figure C.5: Zt iterations, T unit cell (y-axis)
.
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Figure C.6: Zz iterations, T unit cell (y-axis)
.
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Figure C.7: Zt iterations, X unit cell
.
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Figure C.8: Zz iterations, X unit cell
.
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Figure C.9: Zt iterations, Jerusalem cross unit cell
.
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Figure C.10: Zz iterations, Jerusalem cross unit cell
.
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