PONTIFICIA UNIVERSIDAD CATOLICA DE VALAPARAISO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA QUIMICA

PROYECTO PARA OPTAR AL TITULO DE INGENIERO CIVIL QUIMICO:

ESTUDIO DE PREFACTIBILIDAD TECNICO Y ECONOMICA DE UNA PLANTA DE AMONIACO

Mauricio Rebolledo Navarro

Profesor Guía: Jaime Fernández Celis

Resumen del Proyecto

El objetivo del presente proyecto es la simulación, diseño y evaluación de una Planta de Amoniaco a partir de Gas Natural. La simulación completa de la planta fue realizada a través del software de simulación de procesos químicos HYSYS. Este software proporciona paquetes termodinámicos para la estimación de propiedades físicas, equilibrios líquidovapor, balances de materia y energía. Los paquetes termodinámicos utilizados fueron el "SRK" que usa la ecuación de estado cúbica Soave Redlich Kwong y el "AMINE" que es especifico para el sistema de absorción de dióxido de carbono. Con los datos obtenidos a través del simulador HYSYS, se procedió al diseño de los equipos involucrados en el proceso.

El Amoniaco es el segundo producto químico sintético de mayor producción mundial. La mayoría del amoniaco producido en el mundo se utiliza para la fabricación de fertilizantes en la forma de Urea o Sales de Amonio. Chile no es productor de Amoniaco, el 100% de la importación de amoniaco lo realiza ENAEX para producir Nitrato de Amonio, el cual es utilizado principalmente para la elaboración de Anfo para la industria minera.

Los pasos básicos para el proceso de producción industrial son: producción de Gas de Síntesis, acondicionamiento del gas, compresión, y síntesis de Amoniaco. El objetivo de la producción de Gas de Síntesis y de los pasos de acondicionamiento es proporcionar una corriente de gas cuya composición sea principalmente Hidrógeno y Nitrógeno a la entrada del convertidor de síntesis.

De acuerdo al estudio de mercado realizado, el comportamiento de la demanda nacional de Amoniaco entre los años 2003-2006 se ha incrementado, alcanzando el último año las 183.793 toneladas, importadas principalmente desde Venezuela y Argentina. Con esta información y considerando una proyección de crecimiento en el consumo de 5% anual, se puede determinar la factibilidad de suplir gran parte de la demanda nacional entre el periodo del 2011-2020, estableciendo una capacidad de producción máxima de 1000 toneladas diarias al segundo año de funcionamiento.

La planta proyectada se ubicará en Mejillones, Región de Antofagasta, cerca de ENAEX, ya que es la única empresa que consume el total del Amoniaco importado por Chile.

Se analizaron distintos métodos de producción de Gas de Síntesis, llegando a la conclusión de que la Reformación con Vapor Combinada del Gas Natural es la que posee más ventajas. En cuanto al acondicionamiento del Gas de Síntesis, Síntesis de Amoniaco y separación final del Amoniaco se utilizaron los métodos mas adecuados de acuerdo a las condiciones de operación del proceso.

Finalmente se establece que el proyecto es técnicamente factible, con una inversión total de 277,8 MM USD, obteniéndose un TIR de 20% a un costo del gas natural de 4 USD/Millón de Btu y un precio de venta del Amoniaco de 370 USD/ton en el año 2006.

Económicamente, el proyecto es muy sensible al precio del Gas Natural y a los precios internacionales del Amoniaco, por lo que no se recomienda su implementación hasta tener una fuente estable, segura y económica de Gas Natural.

Índice de Materias

	Página
CAPITULO 1 Descripción del Producto	1
1.1 Introducción	2
1.2 Origen del Compuesto	2
1.3 Propiedades Físicas	2
1.4 Propiedades Químicas	3
1.4.1 Comportamiento básico	3
1.4.1.1 Reacciones en NH ₃ líquido	3
1.4.1.2 Sales amónicas	4
1.4.2 Reacciones como reductor	5
1.5 Síntesis Industrial	6
1.6 Materias Primas	7
1.7 Usos del Amoniaco	10
1.8 Referencias	12
CAPÍTULO 2 Descripción de la Materia Prima	13
2.1 Descripción y características técnicas del Gas Natural	14
2.2 Usos del Gas Natural	16
2.3 Reservas probadas de Gas Natural en el mundo	17
2.4 Reservas de Gas Natural en Sudamérica	18
2.5 Suministro de Gas Natural a Chile	20
2.5.1 Red de Gasoductos	21
2.6 Proyección de la demanda de Gas Natural 2003-2012	24
2.7 Precios	27
2.7.1 Evolución histórica de los precios	29
2.8 Posible abastecimiento de Gas Natural a Chile	30
2.8.1 Anillo energético del MERCOSUR	30
2.8.2 Gasoducto Sur	31
2.8.3 Gas Natural Licuado	32
2.8.4 Proyecto Lago Mercedes	32
2.8.5 Hidratos de Metano	33
2.9 Referencias	34

CARÍTULO 3 - Estudio d	a Marcada	36
2.1 Droducción		00 27
2.2. Provide del A		37
3.2 Precio del A	an Chile de Americae	44
3.3 Produccion		40
3.4 Usuarios de		40
3.5 Capacidad		46
3.6 Ubicación d	e la Planta	47
3.7 Referencias	j	48
CAPÍTULO 4 Análisis c	le Tecnologías	49
4.1 Tecnologías	de Producción de Gas de Síntesis	50
4.1.1 F	eformación con Vapor	51
4.1.2 0	Dxidación Parcial	53
4.1.3 F	Reformación Autotérmica	54
4.1.4 F	Reformación Combinada	55
4.1.5 F	Reformación con Intercambio de Calor	57
	4.1.5.1 Kellogg`s Reforming Exchanger System	57
	4.1.5.2 Gas Heated Reforming	58
4.1.6 0	asificación del Carbón	59
4.1.7 E	lectrólisis	62
4.2 Comparació	on del Tecnologías	64
4.3 Selección d	el Proceso de Producción de Gas de Síntesis	65
4.4 Referencias	j	66
CAPITULO 5 Etapas de	I Proceso	67
5.1 Reformació	n	68
5.1.1 F	retratamiento de la alimentación	71
5.1.2 F	leformadores	71
5.2 Conversión	del Monóxido de Carbono	72
5.3 Eliminación	del Dióxido de Carbono	73
5.4 Metanizació	n	75
5.5 Compresiór	1	76
5.6 Síntesis de	Amoniaco	76
5.6.1 C	atálisis	79

	5.6.2 Separación del Amoniaco	82
	5.7 Diseño de Plantas de Amoniaco	83
	5.8 Referencias	86
CA	APÍTULO 6 Simulación del Proceso	87
	6.1 Aspectos Generales	88
	6.2 Simulación del Reformador Primario	91
	6.3 Simulación del Reformador Secundario	91
	6.4 Simulación del Convertidor de CO HTS	92
	6.5 Simulación del Convertidor de CO LTS	92
	6.6 Simulación del Metanizador	93
	6.7 Simulación del Convertidor de Síntesis de Amoniaco	94
	6.8 Simulación del Sistema de Absorción de CO ₂	96
	6.9 Referencias	98
CA	APÍTULO 7 Descripción del Proceso	99
	7.1 Reformado	100
	7.2 Conversión del Monóxido de Carbono	105
	7.3 Enfriamiento y Condensación del Agua	107
	7.4 Absorción de Dióxido de Carbono	109
	7.5 Metanización	114
	7.6 Condensación y secado del Gas de Síntesis	116
	7.7 Compresión del Gas de Síntesis	118
	7.8 Circuito de Síntesis de Amoniaco	120
	7.8.1 Síntesis de Amoniaco	121
	7.8.2 Etapa de purificación	124
	7.9 Sección de combustión y convección del Reformador Primario	128
	7.10 Distribución del agua de enfriamiento	131
	7.11 Producción de vapor de Proceso	132
	7.12 Ciclo de Vapor 120 bar	135
	7.13 - Referencias	138

CAPÍTULO 8 Diseño de Equipos	139
8.1 Diseño del Reformador Primario	140
8.2 Diseño del Reformador Secundario	143
8.3 Diseño de Convertidores de CO	145
8.3.1 Diseño de Convertidor HTS	147
8.3.2 Diseño de Convertidor LTS	149
8.4 Diseño del Metanizador	151
8.5 Sistema de Absorción de CO ₂	154
8.5.1 Aspectos Generales	154
8.5.2 Consideraciones de diseño	154
8.5.3 Características del Sistema de Absorción de CO ₂ con MEA	158
8.6 Reactor de Síntesis de Amoniaco	160
8.6.1 Aspectos Generales	160
8.6.2 Expresión de la cinética de la síntesis de amoniaco	163
8.6.3 Formación de amoniaco en el Convertidor	164
8.6.4 Convertidores comerciales	165
8.6.5 Efecto de la temperatura en el Convertidor	166
8.6.6 Perfil óptimo de temperatura	168
8.6.7 Diseño del Convertidor	173
8.6.8 Especificaciones del Convertidor	174
8.6.9 Especificaciones del Catalizador	174
8.6.10 Representación gráfica del diseño del Convertidor	175
8.7 Deshidratador	176
8.7.1 Características del Deshidratador	176
8.8 Intercambiadores de Calor	177
8.8.1 Características Intercambiador de Calor E-100	177
8.8.2 Características Intercambiador de Calor E-101	177
8.8.3 Características Intercambiador de Calor E-104	178
8.8.4 Características Intercambiador de Calor E-106	178
8.8.5 Características Intercambiador de Calor E-110	179
8.8.6 Características Intercambiador de Calor E-112	179
8.8.7 Características Intercambiador de Calor E-113	180
8.8.8 Características Intercambiador de Calor E-116	180
8.8.9 Características Intercambiador de Calor E-111a	181

8.9 Condensadores	182
8.9.1 Características Condensador Torre T-101	182
8.9.2 Características Condensador E-107	182
8.9.3 Características Condensador E-108	183
8.9.4 Características Condensador E-111b	183
8.9.5 Características Condensador E-117b	183
8.9.6 Características Condensador E-118	184
8.9.7 Características Condensador E119	184
8.10Vaporizadores	185
8.10.1 Características Vaporizador E105	185
8.10.2 Características Vaporizador E-117a	185
8.10.3 Características Vaporizador E-502	185
8.10.4 Características Vaporizador E-109	186
8.10.5 Características Reboiler	186
8.11 Intercambiadores de Calor de Flujo Cruzado	187
8.11.1 Características Intercambiador de Flujo Cruzado E-102	187
8.11.2 Características Intercambiador de Flujo Cruzado E-103	187
8.11.3 Características Intercambiador de Flujo Cruzado E-114	187
8.11.4 Características Intercambiador de Flujo Cruzado E-115	188
8.11.5 Características Intercambiador de Flujo Cruzado E-501	188
8.11.6 Características Intercambiador de Flujo Cruzado E-503	188
8.11.7 Características Intercambiador de Flujo Cruzado E-504	189
8.12 Separadores Líquido-Vapor	190
8.12.1 Características Separador V-100	190
8.12.2 Características Separador V-101	190
8.12.3 Características Separador V-102	190
8.12.4 Características Separador V-103	191
8.12.5 Características Separador V-104	191
8.12.6 Características Separador V-105	191
8.12.7 Características Separador V-106	192
8.13 Referencias	192

CAPÍTULO 9 Evaluación Económica	194
9.1 Inversión Total	195
9.1.1 Capital Fijo	195
9.1.1.1 Total Capital Fijo	196
9.1.2 Capital de Trabajo	198
9.1.2.1 Inventario materias primas	199
9.1.2.2 Inventario de productos	199
9.1.2.3 Cuentas por cobrar	200
9.2 Costos de Producción	200
9.3 Flujo de Caja	200
9.3.1 Valor Actual Neto (VAN)	201
9.3.2 Tasa Interna de Retorno (TIR)	201
9.3.3 Naturaleza de la deuda	202
9.3.4 Cálculo Flujo de Caja	202
9.4 Análisis de sensibilidad	204
9.5 Conclusión	209
9.6 Referencias	210
CAPÍTULO 10 Conclusiones	211
ANEXO A: Simulador Hysys	214
ANEXO B: Diseño de Columnas de Absorción y Desorción	223
ANEXO C: Simulación del Convertidor de Amoniaco	234
ANEXO D: Diseño del Deshidratador	246
ANEXO E: Diseño de Intercambiadores de Calor	254
ANEXO F: Diseño de separadores Líquido-Vapor	322
ANEXO G: Detalle de Balance de Masa y Energía por Equipos	345

Capítulo 1

DESCRIPCION DEL PRODUCTO

1.- Descripción del Producto

1.1.- Introducción [1]

El nombre de amoniaco deriva del nombre dado a una divinidad egipcia: Amón. Los egipcios preparaban un compuesto, cloruro amónico, a partir de la orina de los animales en un templo dedicado a este Dios. Cuando se llevo a Europa mantuvo ese nombre en recuerdo de la sal de Amón.

- Formula: NH₃
- Peso Molecular: 17,03 g/mol
- Composición: N: 82,25 % y H: 17,75 %

1.2.- Origen del compuesto [2]

En 1784 Berthollet descubrió que el amoniaco estaba formado por nitrógeno e hidrógeno. En 1795 Hildebrandt intentó su síntesis a partir de la homogeneización de sus elementos a temperatura ambiente.

A principios del siglo XIX se empezaron a realizar experimentos para sintetizar amoniaco con la ayuda de catalizadores como el hierro.

Alrededor de 1900 Haber empezó a investigar el equilibrio del amoniaco. En 1913 se establece la primera planta de producción de amoniaco a escala industrial.

1.3.- Propiedades físicas [2]

- Gas incoloro en condiciones normales
- Temperatura de solidificación: –77,7°C
- Temperatura normal de ebullición: -33,4°C
- Calor latente de vaporización a 0°C: 302 kcal/kg

•	Presión de vapor a 0ºC:	4,1 atm.
•	Temperatura crítica:	132,4°C
•	Presión crítica:	113 atm.
•	Densidad del gas (0°C y 1atm.):	0,7714 g/l
•	Constante dieléctrica:	22

1.4.- Propiedades químicas [2]

En las reacciones químicas, el NH₃ puede actuar como base o bien como un reductor.

1.4.1.- Comportamiento básico:

Se debe al par de electrones no enlazantes de su molécula, capaz de unirse a un protón por un enlace covalente coordinado.

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^ Kb = 1.8 \times 10^{-5}$$

El valor de Kb indica que es una base débil, por lo que se utiliza en muchas reacciones como fuente moderada de iones OH⁻.

1.4.1.1.- Reacciones en NH₃ líquido:

La transferencia de H⁺ puede tener lugar desde una molécula a otra del propio NH₃. Así en NH_3 líquido existe la autoionización:

$$NH_3 + NH_3 \rightarrow NH_4^+ + NH_2^ K = 10 - 30$$
 $T^a = 33^{\circ}C$

Análoga a la autoionización del H₂O, pero en mucho menor grado.

En NH₃ líquido como disolvente, el ión amonio NH₄⁺, es el ácido análogo al H₃O⁺, en disoluciones acuosas y el ión amiduro, NH₂⁻, es la base, análoga al OH⁻ acuoso.

Asimismo, los hidróxidos alcalinos (bases muy fuertes en H_2O) tienen sus análogos amoniacales en amiduros alcalinos (bases muy fuertes en NH_3), que se pueden obtener de forma similar por ejemplo:

$$Na + NH_3 \rightarrow Na + NH_2^- + 1/2H_2$$

Reacción completamente análoga, (aunque mucho más lenta) a la correspondiente con H₂O:

$$Na + H_2O \rightarrow Na + OH^- + 1/2H_2$$

1.4.1.2.- Sales amónicas:

Se obtienen fácilmente por reacción del NH₃ con el ácido correspondiente. En disolución acuosa, la reacción general es:

$$NH_3 + H_3O^+ \rightarrow H_2O + NH_4^+$$

Las sales amónicas son compuestos iónicos en los que existe el ión NH_4^+ , que puede actuar como acido y reaccionar con el H_2O :

$$NH_4^+ + H_2O \rightarrow NH_3 + H_3O^+$$

Es decir, que las sales amónicas se hidrolizan en pequeño grado y sus disoluciones tienen carácter ácido, esto ocurre cuando son sales amónicas de ácidos fuertes, pero si son de ácido débil, la disolución puede ser, acida, neutra o básica.

Por otra parte, como el ión NH_4^+ , se transforma fácilmente, cediendo un protón, en NH_3 que es gaseoso, las sales amónicas son térmicamente inestables. La mayoría se descomponen al calentarlas en NH_3 y el ácido correspondiente. Si éste es también volátil, la descomposición es muy fácil:

$$NH_4Cl(s) \rightarrow HCl(g) + NH_3(g)$$

Con calor y hasta en algún caso, puede ocurrir de forma espontánea.

$$(NH_4)_2 CO_3(s) \rightarrow NH_4 HCO_3(s) + NH_3(g)$$

Si el anión de la sal amónica, tiene propiedades oxidantes $(Cr_2O_7)^{=}$, $(NO_3)^{-}$, $(NO_2)^{-}$, etc., al calentar la sal, se produce la oxidación del ión NH_4^+ originando N_2 (caso del NH_4NO_2) o bien N_2O (caso del NH_4NO_3).

1.4.2.- Reacciones como reductor:

El NH₃ solo puede actuar como reductor en las reacciones redox a temperatura ambiente, el NH₃ es bastante inerte como reductor debido en muchos casos a la lentitud de la reacción (control cinético), pero a temperatura elevada, puede reducir a óxidos de metales poco activos.

A temperatura elevada, el NH_3 se oxida con oxígeno molecular, y puede ocurrir de dos formas:

$$4NH_3 + 3O_2 \rightarrow 6H_2O + 2N_2 \qquad \Delta G = -1305[KJ]$$
$$4NH_3 + 5O_2 \rightarrow 6H_2O + 4NO \qquad \Delta G = -1132[KJ]$$

Es más favorable termodinámicamente la primera, pero con un catalizador de Pt (800°C) se cataliza selectivamente la segunda reacción que es prácticamente la única que tiene lugar.

1.5.- Síntesis industrial [1]

El NH₃ se obtiene exclusivamente por el método denominado Haber-Bosh (Fritz Haber y Carl Bosh recibieron el Premio Nobel de química en los años 1918 y 1931). El proceso consiste en la reacción directa entre el nitrógeno y el hidrógeno gaseoso.

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$
 $\Delta H = -46.2 \left[\frac{KJ}{mol} \right]$
 $\Delta S < 0$

Es una reacción exotérmica por lo que un excesivo aumento de temperatura no favorece la formación de amoniaco.

Sin embargo, la velocidad a la que se forma NH_3 a temperatura ambiente es casi nula. Es una reacción muy lenta, puesto que tiene una elevada energía de activación, consecuencia de la estabilidad del N_2 . La solución de Haber al problema fue utilizar un catalizador (óxido de hierro que se reduce a hierro en la atmósfera de H_2) y aumentar la presión, ya que esto favorece la formación del producto. Convertir el método de Haber en un proceso de fabricación fue trabajo realizado por Carl Bosh, ingeniero químico de la BASF, quien de este modo consiguió su Nobel.

En la práctica las plantas operan a presiones de 100-1000 atm y temperaturas de 400-600°C. En el reactor de síntesis se utiliza α -Fe como catalizador (Fe₂O₃ sobre AlO₃ \rightarrow catálisis heterogénea). A pesar de todo, la formación de NH₃ es baja con un rendimiento alrededor del 15%. Los gases de salida del reactor pasan por un condensador donde se puede licuar el NH₃ separándolo así de los reactivos, los cuales pueden ser nuevamente utilizados.

Los estudios sobre el mecanismo de la reacción indican que la etapa determinante de la velocidad de la reacción es la ruptura de la molécula de N_2 y la coordinación a la superficie del catalizador. El otro reactivo, H_2 , se activa mas fácilmente. Se producen una serie de reacciones de inserción entre las especies adsorbidas para producir el NH₃.

El catalizador funciona adsorbiendo las moléculas de N₂ en la superficie del catalizador debilitando el enlace interatómico N-N; de esta forma se origina N atómico el cual reacciona

con átomos de hidrógeno que provienen de la disociación de H₂ que también tiene lugar en la superficie metálica.

Existen numerosos métodos en la síntesis actual del amoniaco, pero todos ellos derivan del proceso Haber-Bosch original. Las modificaciones más importantes están relacionadas con la fuente del gas de síntesis, la diferencia en los procesos de preparación del gas de síntesis y las condiciones de obtención del amoniaco.

La producción de una planta típica de NH_3 ronda las 1500 ton/día.

1.6.- Materias primas [1], [3], [4], [5]

El amoniaco es obtenido por la reacción catalizada de nitrógeno e hidrógeno. La fuente de nitrógeno es el aire atmosférico; el hidrógeno requerido puede ser producido de diferentes materias primas pero actualmente es producido principalmente de la reformación con vapor de combustibles fósiles. Dependiendo del tipo de combustible fósil, diferentes métodos de producción son aplicados para producir hidrógeno para la síntesis de amoniaco.

Actualmente alrededor del 80% de la capacidad de producción mundial de amoniaco es proporcionada por el proceso de reformado con vapor.

Tabla 1.1: Procesos aplicado y materia prima en la producción de amoniaco. La t	tercera
columna muestra el porcentaje de la capacidad mundial.	

Materia prima	Proceso	% capacidad mundial
Gas Natural	Reformación con vapor	77
Nafta, LPG, Gas de Refinería	Reformación con vapor	6
Fracciones de hidrocarburos pesados	Oxidación parcial	3
Coque, carbón	Oxidación parcial	13,5
Agua	Electrólisis del agua	0,5

Tabla 1.2: Diferencia de costo y energía total demandada para la producción deamoniaco.

Materia prima	Proceso	consumo de energía primaria neta GJ/t de NH ₃ (LHV)	Inversión relativa
Gas Natural	Reformación con vapor	28	1
Hidrocarburos pesados	Oxidación parcial	38	1,5
Carbón	Oxidación parcial	48	2 - 3

Tabla 1.3: Costo de producción de distintas materias primas

	Gas Natural	Fuel oil pesado	Carbón
Consumo de energía	1,0	1,3	1,7
Costo de inversión	1,0	1,4	2,4
Costo de producción	1,0	1,2	1,7

Las previsiones son que el gas natural siga siendo la materia prima principal durante por lo menos los próximos 50 años.

Puesto que la mayor parte de la producción mundial de amoniaco utiliza como materia prima el gas natural, el costo de este es el principal en la producción de amoniaco. Una planta media de amoniaco consume 33 Millones de Btu de gas natural y 101,4 KWh de electricidad para producir una tonelada métrica de amoniaco.

La figura 1.1, muestra la dependencia del costo del amoniaco con el gas natural. El costo de conversión permanece constante de acuerdo a USGS, mientras que cerca del 90% o más del costo de producción de amoniaco, como por ejemplo a alto precio del gas natural, constituye el costo del combustible fósil. Un cambio en el precio del gas natural de USD 1 por millón de Btu resulta en alrededor de USD 33 de variación por tonelada en el costo de producción de amoniaco.

Figura 1.1: Costo de Producción de Amoniaco (2005) [5]

1.7.- Usos del amoniaco

El amoniaco, nitrato de amonio, urea, soluciones nitrogenadas, sulfato de amonio y fosfatos de amonio como fosfato de diamonio (DAP) y fosfato de monoamonio (MAP) están categorizados como fertilizantes nitrogenados.

Figura 1.2: Usos del Amoniaco

El amoniaco es la materia prima base para la industria mundial de fertilizantes basados en nitrógeno y el compuesto principal para la manufactura de seis productos principales: urea, nitrato de amonio, sulfato de amonio, fosfatos de amonio, ácido nítrico y soluciones nitrogenadas. A escala mundial, 85–90% del amoniaco se consume como fertilizantes nitrogenados. El amoniaco también tiene una variedad amplia de aplicaciones industriales

como: producción de acrilonitrilo y caprolactama, compuesto intermedio para fibras sintéticas y resinas. También es usado para fabricación de otros compuestos orgánicos incluyendo alquilaminas, etanolaminas y anilina. Otras aplicaciones incluyen limpiadores líquidos, producción de pulpa y papel, refrigeración y metalurgia. Estos usos finales forman parte del 10–15% del amoniaco producido.

1.8.- Referencias

[1] AMONIACO

http://www.textoscientificos.com/quimica/amoniaco/produccion

- [2] M.C. Pantoja. AMONIACO. Universidad de Castilla la Mancha, España.
 http://www.uclm.es/profesorado/afantinolo/QAVANZADA/MC%20Pantoja%20Suarez(AMONIACO).doc
- [3] Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals-Ammonia, Acids and Fertilizers. 2006.
 Institute for Prospective Technological Studies. Seville http://www.epa.ie/download/advice/brefslarge%20volume%20inorganic%20-%20ammonia,%20etc.pdf
- [4] Wen-Yuan Huang. Agosto 2007. Impact of Rising Natural Gas Prices on U.S. Ammonia Supply. United States Department of Agriculture. http://www.ers.usda.gov/publications/wrs0702.pdf
- [5] Abram, A. and Foster, D.L.. 2005. A Primer on Ammonia, Nitrogen Fertilizers, and Natural Gas Markets. Department of AED Economics, The Ohio State University. http://www.aede.osu.edu/resources/docs/pdf/kp90ms9c-3h54-c92j-73lb0htnncbaf66g.pdf

Capítulo 2

DESCRIPCION DE LA MATERIA PRIMA

2.- Descripción de la Materia Prima

2.1.- Descripción y características técnicas del Gas Natural [1],[2],[3],[4]

El gas natural es incoloro, inodoro, insípido, sin forma particular y más ligero que el aire. Se presenta en su forma gaseosa por encima de los -161°C. Por razones de seguridad, se le añade mercaptanos, un agente químico que le da un olor característico, con el propósito de detectar una posible fuga de gas.

Se formó hace millones de años cuando una serie de organismos descompuestos como animales y plantas, quedaron sepultados bajo lodo y arena, en lo más profundo de antiguos lagos y océanos. En la medida que se acumulaba lodo, arena y sedimento, se fueron formando capas de roca a gran profundidad. La presión causada por el peso sobre éstas capas más el calor de la tierra, transformaron lentamente el material orgánico en petróleo crudo y en gas natural. El gas natural se acumula en bolsas entre la porosidad de las rocas subterráneas. Pero en ocasiones, el gas natural se queda atrapado debajo de la tierra por rocas sólidas que evitan que el gas fluya, formándose lo que se conoce como un yacimiento.

El gas natural se puede encontrar en forma "asociado", cuando en el yacimiento aparece acompañado de petróleo, o gas natural "no asociado" cuando está acompañado únicamente por pequeñas cantidades de otros hidrocarburos o gases.

Compuesto	Composición Química	Rango (en %)
Metano	CH4	91-95
Etano	C_2H_6	2-6
Dióxido de Carbono	CO ₂	0-2
Propano	C ₃ H ₈	0-2
Nitrógeno	N ₂	0-1

Tabla 2.1: Composición Típica del Gas Natural:

La composición del gas natural incluye diversos hidrocarburos gaseosos, con predominio del metano, por sobre el 90%, y en proporciones menores etano, propano, butano, pentano y pequeñas proporciones de gases inertes como dióxido de carbono y nitrógeno.

Extraído del subsuelo, el gas natural se trata para quitarle las impurezas como el agua, otros gases, arena y otros compuestos. Algunos hidrocarburos se remueven y se venden por separado, como el propano y el butano. Otras impurezas también se quitan, como el ácido sulfídrico (la refinación del cual puede producir azufre, que entonces también se comercializa por separado).

El gas natural no es ni corrosivo ni tóxico, su temperatura de combustión es elevada y posee un estrecho intervalo de inflamabilidad, lo que hace de él un combustible fósil seguro en comparación con otras fuentes de energía. Además, por su densidad de 0,60, inferior a la del aire (1,00), el gas natural tiene tendencia a elevarse y puede, consecuentemente, desaparecer fácilmente del sitio donde se encuentra por cualquier grieta.

A presión atmosférica normal, si el gas natural se enfría a una temperatura de -161°C aproximadamente, se condensa bajo la forma de un líquido llamado Gas Natural Licuado (GNL). Un volumen de este líquido ocupa casi 600 veces menos espacio que el gas natural y es dos veces menos pesado que el agua (45% aproximadamente).

El gas natural es considerado como un combustible limpio. Bajo su forma comercializada, casi no contiene azufre y virtualmente no genera dióxidos de azufre (SO₂). Sus emisiones de óxidos de nitrógeno (NO_x) son menores a las generadas por el petróleo y el carbón. Las emisiones de dióxido de carbono (CO₂) son inferiores a la de otros combustibles fósiles (según Eurogas emite 40 a 50% menos que el carbón y 25 a 30% menos que el petróleo).

El gas natural se puede medir de diversas maneras. Como gas, puede ser medido por el volumen que ocupa a temperaturas y presiones normales, siendo expresado comúnmente en metros cúbicos. Las compañías de producción y distribución miden comúnmente el gas natural en miles de metros cúbicos, millones de metros cúbicos, o trillones de metros cúbicos.

A pesar que medir por su volumen es útil, el gas natural se puede también medir como fuente de energía. Como otras formas de energía, el gas natural se mide y se expresa comúnmente en calorías. Un metro cúbico de gas natural contiene cerca de 9.300.000 calorías o 9.300 kilo calorías

2.2.- Usos del Gas Natural [2]

El gas natural tiene diversas aplicaciones en la industria, el comercio, la generación eléctrica, el sector residencial y el transporte de pasajeros. Ofrece grandes ventajas en procesos industriales donde se requiere de ambientes limpios, procesos controlados y combustibles de alta confiabilidad y eficiencia.

En el siguiente cuadro se presentan algunas de las aplicaciones más comunes de gas natural:

Sector	Aplicaciones/Procesos
Industrial	Generación de vapor
	Industria de alimentos
	Secado
	Cocción de productos cerámicos
	Fundición de metales
	Tratamientos térmicos
	Temple y recocido de metales
	Generación eléctrica
	Producción de petroquímicos
	Sistema de calefacción
	Hornos de fusión
Comercio y Servicios	Calefacción central
	Aire acondicionado
	Cocción/preparación de alimentos
keese see a se	

Tabla 2.2: Aplicaciones del Gas Natural:

	Agua caliente
Energía	Cogeneración eléctrica
	Centrales térmicas
Residencial	Cocina
	Calefacción
	Agua caliente
	Aire acondicionado
Transporte de pasajeros	Taxis
	Buses

2.3.- Reservas Probadas de Gas Natural en el Mundo [1], [5]

Las reservas mundiales de gas natural, aunque limitadas, son muy importantes y las estimaciones de su dimensión continúan progresando a medida que las nuevas técnicas de explotación, de exploración y de extracción son descubiertas. Las reservas de gas natural son abundantes y ampliamente distribuidas por el mundo. Se estima que una cantidad significativa de gas natural queda aún por descubirr.

Región	Reservas Probadas de Gas Natural
América del Norte	276,9
Centro y Sudamérica	240,7
Europa y Eurasia	2.195,1
Medio Oriente	2.566,0
Africa	484,4
Asia y Oceanía	419,5
Total Mundial	6.182,7

Tabla 2.3: Reservas probadas de Gas Natural en el Mundo, Enero 2007. (Trillones de pies cúbicos)

Figura 2.1: Reservas Probadas de Gas Natural en el mundo en porcentaje por región, Enero 2007.

Las reservas probadas son aquellas que podrían ser producidas con la tecnología actual.

2.4.- Reservas de Gas Natural en Sudamérica [5]

La mayor reserva, por muy lejos de gas natural se encuentra en Venezuela. Luego de ella viene Bolivia quién aún no tiene las inversiones necesarias para explotar este recurso. Posteriormente Argentina tiene el tercer lugar, sin embargo su alta demanda interna producto del congelamiento de precios le hace destinar prácticamente toda su producción al consumo interno.

La lejanía de Venezuela y las condiciones de Bolivia y Argentina hacen que en la zona sur del continente se esté experimentando una situación de escasez de éste combustible.

	Reservas Probadas
País	de Gas Natural
	(trillones de pies cúbicos)
Argentina	16,090
Bolivia	24,000
Brasil	10,820
Chile	3,460
Colombia	3,996
Ecuador	0,000
Paraguay	0,000
Perú	8,723
Uruguay	0,000
Venezuela	153,380
TOTAL	220,469

Tabla 2.4: Reservas probadas de Gas Natural en Sudamérica, Enero 2007.

Figura 2.2: Reservas Probadas de Gas Natural en Sudamérica en porcentaje por país, Enero 2007.

2.5.- Suministro de Gas Natural a Chile [6], [7]

Figura 2.3: Suministro de Gas en Chile (2004). *Fuente: Presentación ICARE Ministerio de Energía 10/05/2006*

Como se aprecia en la figura 2.3, Chile se abastece de gas en un 100% desde Argentina, excepto en la zona austral en que sólo el 55% proviene desde el mencionado país.

Tanto en la zona norte como centro, un porcentaje muy significativo del gas es utilizado para generación eléctrica.

2.5.1.- Red de gasoductos en Chile

GASODUCTOS ZON	A NORTE (Cuenca Noroeste)		
Gasoducto	Tramos	Capacidad	Longitud
	(Origen/Destino)	(MMm3/día)	(km)
Gasatacama	Cornejo (Salta, Argentina)/ Paso de Jama	8,5	530
(internacional)	(frontera)		
	Paso de Jama (frontera) / Mejillones	8,5	411
Norandino	Pichanal (Salta, Argentina) / Paso de	7,1	450
(internacional) Jama (frontera)			
	Paso de Jama (frontera) / Crucero	7,1	260
	Crucero / Tocopilla	1,6	79
	Crucero / Quebrada Ordóñez	5,5	252
	Quebrada Ordóñez / Mejillones	3,9	35
	Quebrada Ordóñez / Coloso	1,6	104
Taltal (nacional)	Mejillones / La Negra	2,4	89
	La Negra / Paposo (Taltal)	1,8	135

Tabla 2.5: Gasoductos Zona Norte

Tabla 2.6: Gasoductos Zona Centro Sur

GASODUCTOS ZON	GASODUCTOS ZONA CENTRO SUR (Cuenca Neuquén)			
Gasoducto	Tramos	Capacidad	Longitud	
	(Origen/Destino)	(MMm3/día)	(km)	
GasAndes	La Mora (Mendoza, Argentina) / Paso	9	313	
(internacional)	Maipo (frontera)			
	Paso Maipo (frontera) / San Bernardo	9	150	
	(City Gate II)			
	Válvula 17 / City Gate I	9	4	
Electrogas	San Bernardo / Maipú	4,1	12	
(nacional)	Maipú / Quillota	4,1	111	
	Km 121 línea principal / Est. Colmo	1,2	15	
Gas Pacífico	Loma La Lata (Cullen, Argentina) /	9,7	276	
(internacional)	P.Butamallín (frontera)			

	Paso Butamallín (frontera) / Recinto	9,7	76
	Recinto / Las Mercedes	9,7	168
	Las Mercedes / Gasco y Petrox	6,7	17
	La Leonera / Coronel	2,1	28
	Paso Hondo / Nacimiento	1	73
Red SGN	Penco / Lirquén	No	
Transporte		aplicable	
(nacional)	Las Mercedes / Concepción	a la red	38
	Lateral Talcahuano		
	Lateral Coronel		
	Otros 6 laterales a localidades e	No definida	122
	instalaciones		
	en la VIIIª región.		

Tabla 2.7: Gasoductos Zona Magallanes

GASODUCTOS ZONA MAGA	GASODUCTOS ZONA MAGALLANES (Cuenca Austral)			
Gasoducto	Tramos	Capacidad	Longitud	
	(Origen/Destino)	(MMm3/día)	(km)	
Sara - Cullen	Planta Sara (Sector Cerro	0,7	45	
(nacional)	Sombrero) / Planta Cullen (Tierra			
	del Fuego)			
DAU Nº1 - Posesión	DAU Nº1 - Planta Posesión	3,8	4	
(nacional)				
DAU Nº2 - Posesión	DAU Nº2 - Planta Posesión	5	6	
(nacional)				
Dungeness - DAU Nº2	Dungeness - DAU N°2	4	42	
(nacional)				
Posesión -Daniel	Planta Posesión / Sector Daniel	1,5	18	
(nacional)				
Tres Lagos - Cullen	Tres Lagos (Tierra del Fuego) /	27,5	18	
(nacional)	Planta Cullen (Tierra del Fuego)			
BRC - Cullen	Batería de Recepción Catalina /	0,3	42	
(nacional)	Planta Cullen			

Daniel - DAU Nº1	Sector Daniel / DAU Nº1 (Sector	1	20
(nacional)	Planta Posesión)		
Posesión - Cabo Negro	Planta Posesión / Planta Cabo	6,3	180
(nacional)	Negro		
Marazzi - Cullen	Sector Marazzi / Planta Cullen	0,04	78
(nacional)			
Calafate - Punta Daniel	Sector Calafate / Sector BRC / DA	2,8	54
(nacional)	Nº1 / Playa Posesión (Sector BRP)		
Bandurria (Methanex PAN)	San Sebastián (Tierra del Fuego,	2	48
(internacional)	Argentina) /Paso Bandurria		
	(frontera)		
	Paso Bandurria/(frontera)/Planta	2	35
	Cullen (Tierra del Fuego)		
Cullen - Calafate	Planta Cullen / Sector Calafate	3,2	25
(nacional)			
Punta Daniel - Daniel	Punta Daniel / Sector Daniel	2,8	5
Central	Central		
(nacional)			
Dungeness – DAU Nº2	Dungeness (frontera chileno -	2,8	13
(complemento) (Methanex	argentina) / Daniel Este		
SIP)	Daniel / DAU Nº2 (Planta Posesión)	2,8	20
(internacional)			
Condor-Posesión	El Condor / Frontera Chilena-	2	8
(Methanex YPF)	Argentina		
(internacional)	Frontera Chileno-Argentina / Planta	2	1
	Posesión		
Kimiri Aike - Cabo Negro	Kimiri Aike / Planta Cabo Negro	2,9	180
(ampliación Posesión -			
Cabo Negro)			

2.6.- Proyección de demanda de Gas Natural 2003-2012 [6]

	Nacional	Importado	Importado	Importado	
año	Magallanes	Cuenca	Cuenca	Cuenca	Total
	(XII)	Austral (Arg)	Neuquén (Arg)	Noroeste (arg)	
2003	5,69	4,76	7,13	4,66	22,24
2004	5,74	4,90	8,08	6,02	24,74
2005	6,05	6,46	9,62	6,47	28,60
2006	6,08	6,49	10,86	6,76	30,19
2007	6,11	6,52	12,55	6,97	32,16
2008	6,14	6,56	14,40	7,14	34,24
2009	4,37	8,36	14,97	8,95	36,65
2010	4,41	8,36	15,71	9,10	37,58
2011	4,44	8,36	16,50	9,13	38,43
2012	4,47	8,37	18,81	9,13	40,79

Tabla 2.8: Consumo diario promedio nacional e importado (MMm³)

Figura 2.4: Proyección consumo GN por origen 2003 - 2012

año	Residencial	Comercial	Industrial	Termoeléctrico
2003	1,16	0,26	3,20	7,36
2004	1,29	0,29	4,07	8,65
2005	1,43	0,32	4,71	9,59
2006	1,64	0,37	4,91	10,71
2007	1,81	0,40	5,06	12,31
2008	1,99	0,44	5,31	13,92
2009	2,15	0,46	5,46	15,98
2010	2,31	0,48	5,63	16,56
2011	2,45	0,50	5,76	17,11
2012	2,59	0,52	5,90	19,15

Tabla 2.9: Consumo	sectorial diaric	medio	(MMm ³)
--------------------	------------------	-------	---------------------

año	Petroquímica (XIIa)	Refinerías y Procesos ENAP	Transporte	TOTAL
2003	8,36	1,83	0,06	22,24
2004	8,53	1,83	0,07	24,74
2005	10,36	2,11	0,09	28,60
2006	10,36	2,11	0,10	30,19
2007	10,36	2,11	0,12	32,16
2008	10,36	2,11	0,12	34,24
2009	10,36	2,11	0,13	36,65
2010	10,36	2,11	0,14	37,58
2011	10,36	2,11	0,14	38,43
2012	10,36	2,11	0,15	40,79

Figura 2.5: Proyección consumo sectorial de GN 2003 - 2012

año	Uso Energético	Materia Prima	TOTAL
2003	15,13	7,11	22,24
2004	17,49	7,25	24,74
2005	19,79	8,81	28,60
2006	21,38	8,81	30,19
2007	23,35	8,81	32,16
2008	25,44	8,81	34,24
2009	27,84	8,81	36,65
2010	28,77	8,81	37,58
2011	29,63	8,81	38,43
2012	31,98	8,81	40,79

Tabla 2.10: Consumo diario medio uso energético y materia prima (MMm³)

Figura 2.6: Proyección consumo para uso energético y como materia prima 2003 - 2012

2.7.- Precios [1], [8], [9]

El alza mundial de los precios del petróleo, ha llevado a que el precio del gas natural también suba o esté sujeto a reajustes. La correlación entre los precios del gas y los precios del petróleo se explican, entre otras, por el hecho de que estos dos energéticos se sustituyen entre sí, especialmente en el sector eléctrico, por ello es difícil hablar de una desconexión entre los precios de estos dos combustibles.

Asimismo, en general, los precios de gas, aún se pueden considerar regionales debido a que no existe un mercado mundial unificado de gas, sino en cambio, un mercado segmentado en el cual los precios se establecen considerando tanto las características de la oferta y la demanda, así como la oportunidad del mercado local y regional. Sin embargo, la tendencia a que sea considerado un bien transable (comodity) esta por llegar ya que el transporte de Gas Natural Licuado (GNL) en el mundo, presenta actualmente un porcentaje de crecimiento del 7 %; y se espera se duplique en los próximos años, con lo que la determinación de precios
deberá tomar en cuenta el desarrollo de esta tecnología. Actualmente en el mundo, solo el 23% del comercio de gas natural se realiza a través de GNL, el resto se lo hace por gasoductos.

En América Latina, el total del comercio de gas se realiza por gasoductos, previendo para los próximos años la instalación de plantas regasificadoras tanto en Chile, Brasil, Perú y México. El desarrollo gasífero en el Cono Sur, podría igualmente replicarse en mercados que se formarían en la región, aprovechando complementariedades por zonas geográficas y, con ello, formando mercados subregionales de gas. Ejemplo: México, Centro América y Colombia que podrían vincular también al Caribe y formarían un mercado subregional. Una segunda subregión entre Venezuela, Colombia, Ecuador y el norte de Perú y la tercera la del Cono Sur con un desarrollo en infraestructura muy avanzado con países como Bolivia, Chile, Argentina y Brasil, al que se sumaría Perú, entre algunos de los escenarios posibles.

En cuanto a la determinación de precios del gas, la literatura económica muestra que cuando existe un mercado competitivo, como en el caso de los EEUU e Inglaterra, el comercio del gas presenta un precio "director" (price maker) el cual es definido por los precios de corto plazo (los precios spot, de Henry Hub o de NBP, Nacional Balancing Point) o por las cotizaciones estandarizadas de los mercados de la bolsa Nymex (EEUU) o IPE (Inglaterra). Estos precios, reflejan la oferta y la demanda del mercado. Incluso en mercados desregulados como es el caso de los anteriores, existe una relación entre el precio del gas y el del petróleo, debido a que el precio del gas es influenciado directamente vía indexaciones con combustibles concurrentes.

2.7.1.- Evolución histórica de los precios

La siguiente figura ilustra, en cierta medida, la evolución y la volatilidad de los precios del gas natural en el transcurso de los últimos años.

Figura 2.7: Precios internacionales del gas natural (USD/milliones Btu), 1985-2004

<u>Fuente</u>: Secretariado de la UNCTAD según los datos de BP Amoco, Statistical Review of World Energy 2005

El precio actual (año 2006) de gas natural de Argentina a Chile está entre 4,5 y 4,8 \$US/MMBtu puesto en frontera.

Un tema muy relevante es el precio que el GNL tendrá en Chile. Estimaciones iniciales planteaban que el precio debería rondar los US\$ 4 por millón de Btu, siendo que en el mercado internacional (principalmente, el indicador Henry Hub) los precios han llegado fácilmente a US\$ 14 por millón de Btu. Por esto, la CNE en su informe de precios de nudo para el SIC de abril de 2006 corrige esta estimación inicial situando el precio promedio del GNL en US\$ 8,54 por millón de Btu, según los expertos del sector un precio mucho más acorde a lo que realmente se dará cuando comience a operar la planta de Quintero.

2.8.- Posible abastecimiento de Gas Natural a Chile [10], [11], [12]

2.8.1.- Anillo energético del MERCOSUR

Debido a la inestabilidad política y social generada en el país boliviano, durante el año 2005 se comenzó a generar un proyecto que uniría energéticamente a Perú con los países del cono sur de la región, tales como Argentina, Brasil, Uruguay y Chile. El proyecto, denominado Anillo Energético del MERCOSUR, permite el término de la dependencia, por parte de estos países, del gas natural proveniente del país boliviano.

Figura 2.8: Anillo energético del MERCOSUR

2.8.2.- Gasoducto Sur

Durante estos últimos años se han dado a conocer diversos proyectos de gasoductos en la región Latinoamericana, con el fin de generar un intercambio de gas natural entre países exportadores e importadores de este preciado combustible. Pero sin duda, el proyecto que más ha dado que hablar es el proyecto denominado "Gasoducto del Sur", que uniría a Venezuela, uno de los países con mayores reservas probadas de gas con los países de Brasil y Argentina principalmente. Esto permitiría abastecer también a países como Uruguay, Paraguay y Chile, lo que generaría a fin de cuentas una interconexión energética en el lado atlántico de Latinoamérica.

Figura 2.9: Gasoducto del Sur

2.8.3.- Gas Natural Licuado

El Proyecto de Gas Natural Licuado (GNL) que impulsa ENAP en conjunto con otras importantes compañías consumidoras de este producto en Chile consiste en construir la infraestructura básica para permitir la importación de GNL desde mercados de ultramar, y distribuirlo en Chile como gas natural en estado gaseoso.

De esta forma, basados en la cadena de valor del GNL, este proyecto considera la instalación de una terminal marítima para recibir el GNL que transportan buques-tanque, y una planta para regasificarlo (Terminal de Regasificación) y posteriormente distribuirlo a través de gasoductos ubicados en la Zona Central.

El Gas Natural Licuado llegará a Chile por vía marítima a una Terminal de Regasificación que se instalará en la bahía de Quintero (Quinta Región), a partir de la cual se almacenará y regasificará para luego ser entregado a los consumidores en las regiones de la Zona Central del país, suministrando gran parte de la energía que requiere Chile y que hoy importa desde Argentina. Esto además permitirá contar con una nueva fuente de abastecimiento de gas natural que se sumará a las actualmente existentes.

El proyecto podría estar concluido el año 2009. Sin perjuicio del plazo establecido para la entrada en operación del proyecto completo, se analizarán opciones para adelantar el suministro de GNL para el año 2008.

2.8.4.- Proyecto Lago Mercedes

La información geológica en poder de ENAP muestra que es posible encontrar nuevas reservas de gas natural en el área de Lago Mercedes, ubicada a 116 kilómetros al sureste de Porvenir, en el sector oriental de la isla de Tierra del Fuego, y también en el área continental de Magallanes, específicamente en los bloques Dorado-Puerto Sara, Punta del Cerro y Riquelme-Manzano

2.8.5.- Hidratos de Metano

Los hidratos de gas, son un tipo de formación natural que contiene grandes cantidades de gas natural (principalmente metano) y agua en forma de hielo. Se encuentran bajo la capa de suelo congelado permanente ("permafrost") del Ártico, y en sedimentos marinos de los márgenes continentales de todo el mundo, incluido el margen continental de Chile. Los hidratos de metano representan un enorme recurso potencial de gas natural. Se estima que las reservas mundiales de este recurso son del orden de 10¹⁵-10¹⁶m³, lo que equivale a varias veces las reservas de las fuentes convencionales de gas y petróleo. Los actuales conocimientos acerca de este tema han determinado que la producción de metano a partir de hidratos es técnicamente posible y económicamente viable.

La amplia distribución geográfica de los depósitos de hidratos de gas costa afuera puede proveer gas natural a aquellos países pobres en reservas de petróleo y gas. En Chile, estudios geofísicos (sísmica marina) han revelado la existencia de hidratos bajo el talud continental en diversos puntos del margen chileno.

El problema clave es la extracción, considerando que hasta ahora nadie lo hace comercialmente. Países como Rusia, Japón y Estados Unidos han realizado experiencias piloto, pero sólo para probar tecnologías.

2.9.- Referencias

- [1] Gas Natural. United Nations Conference on Trade and Development. http://r0.uncad.org/infocomm/espagnol/gas/descripc.htm
- [2] Gas Natural. INNERGY http://www.innergy.cl/formation.htm
- [3] Características Físico Químicas del Gas Natural. Asociación de Distribuidores de Gas Natural.
 http://www.agnchile.cl/general/general2.html
- [4] Gas Natural: Descripción y Características Técnicas. Fundación Española para la Ciencia y la Tecnología. http://www.fecyt.es/especiales/gas_natural/descripcion.htm
- [5] Statistical Review of World Energy. BP Amoco http://www.bp.com
- [6] Comisión Nacional de Energía http://www.cne.cl
- [7] Avendaño, Von Bernath. 2002. Mercado del Gas en Latino América. Pontificia Universidad Católica de Chile
- [8] Garrón, Cisneros. Precio del Gas Natural en Latino América. http://www.snmpe.org.pe/revista/edicion42feb2007/pdf/panorama.pdf
- [9] Cerda, Verdugo. 2006. Alternativas al Suministro de GNL para Chile. Pontificia Universidad Católica de Chile.
- [10] Anillos Energéticos Latinoamericanos ¿Mito o realidad?. Pontificia Universidad Católica de Chile.
 http://www2.ing.puc.cl/power/alumno06/ring/Anillosenergeticoslatinoamericanos.htm

- [11] Mercado de GNL en Chile. Pontificia Universidad Católica de Chile. http://www2.ing.puc.cl/power/alumno06/GNLdispatch/index.htm
- [12] Hidratos de Gas submarinos. Pontificia Universidad Católica de Valparaíso. http://www.hidrates.ucv.cl/page6.html

Capítulo 3

ESTUDIO DE MERCADO

3.- Estudio de Mercado

3.1.- Producción Mundial de Amoniaco [1], [2]

El nitrógeno se utiliza virtualmente en cada país en el mundo y consecuentemente muchos países tienen plantas productoras de amoníaco. En el 2003, un poco más de 146 millones de toneladas cortas de amoniaco fueron producidas en 75 países, representando todos los continentes exceptuando la Antártica. La producción total mundial casi es doblada en los últimos 25 años. Los mayores productores de amoniaco en orden descendente son:

País	Producción (Ton corta)	% de capacidad utilizada
China	40487	100
India	13015	85
Rusia	12200	79
EEUU	11757	74

Tabla 3.1: Mayores Productores de Amoniaco.

Juntos estos países representan cerca del 50% de la capacidad de producción mundial de amoniaco, y 55% de la producción actual. Asia es el mayor productor de amoniaco seguido por Norte América y Europa.

La figura 3.1 proporciona una interesante información sobre que ha pasado con la industria mundial del amoniaco en los últimos 25 años. La rentabilidad de la producción de amoniaco es gobernada principalmente por los precios del gas natural, los cuales representan alrededor del 90% de los costos de producción de amoniaco totales.

La figura 3.2 muestra un mapa de precios del gas natural en el 2007 en dólares de los EEUU por MMBtu.

Figura 3.1: Producción mundial de amoniaco (Data outsourced from USGS).

Figura 3.2: Mapa de Precios del Gas Natural.

Asia es el mayor productor de amoniaco. China, India, Indonesia, Pakistán, Bangladesh y Malasia produjeron: 40,5; 13,5; 5,6; 3,2; 1,2; y 1,9 millones de toneladas cortas, respectivamente en el 2003, lo cual constituye el 45% de la producción mundial. Su producción se ha incrementado constantemente desde 1980. Países como Uzbekistán, Kazajstán, Turkmenistán y Azerbaiján, se esperan reforzar el suministro de amoniaco en el futuro debido a sus grandes reservas de gas natural y sus transformaciones políticas y económicas. Una de las razones de por qué Asia es el mayor productor de amoniaco es el tamaño de su población, y la necesidad de alimento.

En Norte y Sudamérica, la producción es cambiante. EEUU es el cuarto productor de amoniaco en el mundo, pero su producción ha ido decreciendo a un índice de 9% anual desde 1998 cuando su peak de producción fue de 18,5 millones de toneladas cortas. México también ha ido decreciendo drásticamente su producción de amoniaco desde un promedio de 1,8 millones en los 90, a solo 0,44 millones en el 2003. Trinidad y Tobago con 4,8 millones de toneladas cortas y un crecimiento anual de 9% emerge como gran productor. Argentina continua con cerca de 1 millón de toneladas cortas y sobre un 5,3% de crecimiento anual en los últimos 5 años. Canadá y Brasil, con 6,1 millones de toneladas cortas anualmente, han mantenido sus producciones en un nivel estable en los últimos años.

La producción de amoniaco en Europa occidental ha disminuido enormemente en los últimos 10-15 años con la excepción de Bélgica y Alemania. Europa central y oriental, incluyendo países de la ex Unión Soviética, muestran resultados mixtos. Polonia, particularmente en el 2003, produjo mas debido a la exitosa reestructuración de la industria química destacando mejoras en la eficiencia. Ucrania desde su independencia en 1991 ha estado produciendo alrededor de 4,5 millones de toneladas cortas de amoniaco anualmente. Este incremento se debe al gas natural barato. Vecino a Ucrania, Rusia ha sido también uno de los grandes productores debido al bajo precio del gas natural pero también por mejoras en la industria. Su producción se incrementó un 40% desde 1998. Países como Hungría, Rumania o Bulgaria han disminuido su producción a menos de 50% desde mediados de los años 80 debido al no competitivo status de la industria química después de la caída del comunismo, y su fracaso hacia la transición. Finalmente, estados como Lituania, Republica Checa e Irlanda han mantenido su baja producción estable.

Vecino a Europa del sur, África, es un enigma. Aunque el precio del gas natural en África resulta ser mas bajo comparado a cualquier otra parte del mundo, la producción de amoniaco es relativamente pequeña. Egipto produce la mayor cantidad de amoniaco en África (2,4 millones de toneladas cortas en el 2003), y su industria ha experimentado el mayor crecimiento en los últimos 10 años. Libia y Argelia continúan con una producción total que no llegan a las 800.000 toneladas cortas cada uno en el 2003. Nigeria, un gran productor de petróleo con reservas de gas natural igual al 35% de las reservas del continente no produce amoniaco. Sudáfrica, el país mas industrializado del continente, también ha reducido su producción. Los bajos niveles de producción son causados principalmente por carecer de infraestructura, know-how y su inestabilidad política. También, el costo del gas natural en Sudáfrica es alto debido a no tener reservas, y África no tiene gasoductos internacionales que podrían transportar el gas natural barato al sur.

La meca de la energía de nuestro tiempo, el oriente medio, donde el precio del gas natural es muy bajo, produce poco amoniaco. Arabia Saudita, Irán, y Qatar son los principales productores con una producción igual a 5,4 millones de toneladas cortas (menos que el 4% del mercado mundial) con una producción de 43%, 30% y 27% respectivamente, y con un crecimiento anual en los últimos 10 años de 5%, 7% y 4% respectivamente.

La tabla 3.2 muestra estadísticas de producción anual de amoniaco por país:

Paía	Año					
Fais	2001	2002	2003	2004	2005	
Afghanistan ^e	20	20	20	20	20	
Albania ^e	10	10	10	10	10	
Algeria	469	563	578	543	550	
Argentina	597	617	724	701	580	
Australia	762	686	787	790	790	
Austria ^e	440	440	440	440	440	
Bahrain	372	377	312	311	312	
Bangladesh ³	1.273	1.289	1.389	1.380	1.380	
Belarus	725	799	726	765	800	
Belgium	788	842	874	857	860	
Bosnia and Herzegovina ^e	1	1	1	1	1	
Brazil	769	1.021	939	1.077	1.070	
Bulgaria	477	328	321	389	390	
Burma	28	21	63	35	35	
Canada	3.439	3.700	3.662	4.107	4.000	

Tabla 3.2: Producción de Amoniaco por país (miles de Ton).

China	28.200	30.200	31.500	34.800	37.800
Colombia	95	111	108	98	100
Croatia	259	235	264	332	330
Cuba ^e	135	135	135	135	135
Czech Republic	206	215	235	233	233
Denmark ^e	2	2	2	2	2
Egypt	1.801	1.839	1.790	1.675	1.640
Estonia	151	39	81	166	170
Finland ^e	80	87	77	61	63
France	1.380	1.172	1.153	1.120	1.150
Georgia	60	90	125	130	130
Germany	2.522	2.623	2.803	2.741	2.700
Greece	57	66	123	132	130
Hungary	324	238	232	304	300
Iceland	3				
India⁵	10.081	9.827	10.048	10.718	10.800
Indonesia	3.655	4.200	4.250	4.120	4.400
Iran	1.087	1.119	1.115	1.088	1.020
Iraq ^e	280	532		30	30
Ireland ^e	443	400			
Italy	434	391	475	532	500
Japan	1.318	1.192	1.061	1.101	1.083
Korea, North ^e	100	100	100	100	100
Korea, Republic of	385	153	119	163	150
Kuwait	400	414	444	413	440
Libya	495	533	577	577	580
Lithuania	444	468	462	424	430
Malaysia	726	848	910	843	920
Mexico	548	437	440	568	440
Netherlands	1.989	2.053	1.750	1.970	1.700
New Zealand	117	109	128	124	120
Norway	323	330	354	420	450
Oman					706
Pakistan	2.228	2.214	2.357	2.114	2.110
Peru ^e	5	5	5	5	5
Poland	1.735	1.311	1.906	1.976	2.000
Portugal	202	190	245	244	245
Qatar	1.159	1.166	1.185	1.428	1.700
Romania	949	930	1.180	1.172	1.200
	8.690	8.600	9.100	9.800	10.000
Saudi Arabia	1.774	1./3/	1.743	1.726	1.780
Serbia and wontenegro	00	115	02	130	135
Slovakla	215	220	230	208	270
South Allica	000	492	493	404	400
Spalli	430	415	43Z	404	400
Switzenand	র্ড। 120	33 140	29	32 115	3Z
	100	143	101		120
Taiikiston ^e	1Z E	1	11	11	11
rajikistan	5	15	20	20	20

Trinidad and Tobago	3.036	3.296	3.529	3.875	4.200
Turkey	67	301	289	329	330
Turkmenistan ^e	75	85	85	85	85
Ukraine	3.700	3.700	3.900	3.900	4.300
United Arab Emirates	358	364	421	380	360
United Kingdom	850	837	1.044	1.071	1.080
United States ⁶	9.120	10.300	8.450	8.990	8.040
Uzbekistan	670	740	815	840	850
Venezuela	808	666	732	1.012	900
Vietnam	53	58	80	216	220
Zimbabwe ^e	58	61	55	48	30
Total	105.216	108.883	110.266	117.202	121.933

Desde una perspectiva histórica, la tendencia general parece ser la relocalización de la producción hacia países donde el precio del gas natural es menor como en Asia, Europa del este, Medio Oriente, y Latino América. Esta transferencia viene a costa de Norte América y Europa del oeste.

La tabla 3.3 acompañada por la figura 3.3 muestra el porcentaje de capacidad de producción de amoniaco por región del mundo para 1999 y 2002 y un pronóstico para el 2008.

	1992	2002	2008
China	17%	23%	22%
Asia	15%	19%	18%
North Am.	19%	16%	14%
FSU	21%	15%	14%
Middle East	3%	5%	9%
Western Eu.	11%	8%	7%
Latin Am.	3%	5%	6%
Central Eu.	8%	6%	5%
Africa	3%	3%	3%
Oceania	0%	0%	2%

Tabla 3.3: Porcentaje de capacidad de producción por región.

Figura 3.3: Porcentaje de capacidad de producción por región 2008

China se considera aparte debido a su importancia en la industria del nitrógeno del mundo, es el país que ha visto los cambios más grandes. Los aumentos más significativos en la capacidad de producción durante el período de 10 años (1992-2002) estaban en Asia. China aumentó su parte al total del mundo a 23% desde 17%. En el resto de Asia, el porcentaje total de capacidad mundial se ha incrementado desde 15 a 19% durante el mismo periodo. Una importante contribución al incremento fue desde India e Indonesia. La capacidad de producción de amoniaco europea cayó durante este periodo de 19 a 14% del total mundial. La capacidad de producción de amoniaco en los EEUU ha aumentado a 18400 toneladas cortas en el 2002 desde 16700 toneladas cortas en 1970, aunque ha fluctuado durante este periodo.

En el 2003, Asia fue el mayor consumidor de amoniaco, siendo autosuficiente. Norte América fue el segundo mayor consumidor, usando mas de lo que produce contando con importaciones. La distribución del suministro de gas natural y los desafíos de envío hacen que el amoniaco todavía sea un producto doméstico o regional, con solo un 13% de la producción mundial comercializada entre países.

3.2.- Precio del amoniaco [3]

El costo del gas natural corresponde aproximadamente a un 90% del costo de producción de amoniaco, por lo tanto, los precios del amoniaco responden a los cambios de precio del gas natural.

La tabla 3.4 hace una comparación de precios de amoniaco de diferentes países exportadores.

Promedio de Precio Unitario CIF (USD/Ton)	AÑO			
PAIS DE ORIGEN	2003	2004	2005	2006
ARGENTINA	301	331	377	359
BRASIL	249	289	294	-
INDONESIA	240	319	_	-
MÉXICO	-	338	-	385
TRINIDAD Y TOBAGO	-	292	406	-
USA	432	212	326	381
VENEZUELA	246	335	330	374
PROMEDIO	294	302	357	375

Tabla 3.4: Precio promedio de amoniaco por tonelada en USD

3.3.- Producción en Chile de Amoniaco [3]

Chile no es productor de amoníaco, el 100% de su requerimiento es importado desde Argentina y Venezuela principalmente.

	Año			
PAIS DE ORIGEN	2003	2004	2005	2006
ARGENTINA	79.486	53.678	47.487	31.160
VENEZUELA	47.511	26.410	67.803	119.011
U.S.A.	0	14.650	32.155	16.621
BRASIL	3.990	43.584	10.499	0
TRINID.Y TOBAGO	0	21.297	17.050	0
INDONESIA	29.308	3.621	0	0
MEXICO	0	11.076	0	17.001
Total general	160.295	174.316	174.994	183.793

Tabla 3.5.- Importaciones de NH₃, en Toneladas. (Año 2006 hasta Noviembre)

Figura 3.4: Principales proveedores de Amoniaco

En la figura 3.4, se observa que en los últimos tres años se ha visto un reemplazo de proveedor principal de amoníaco a Chile, traspasando las operaciones de Argentina a Venezuela, esta medida es debido principalmente a una estrategia de no dependencia de Argentina.

3.4.- Usuarios de Amoniaco en Chile [3]

El 100% del amoníaco importado a Chile, es realizado por ENAEX, este es usado para producir Nitrato de Amonio, el cual es utilizado en un 90%, para producir anfo, para la industria minera, un 9,8 para Nitrato de amonio como fertilizante y un 0,2% es reexportado a Perú (Fabrica de explosivos municiones del Perú).

		AN	10	
Importador	2003	2004	2005	2006
ENAEX S.A.	160.291	174.316	174.977	183.792
MOLIBDENOS Y METALES S.A.	0	0	18	0
SULFOQUIM S.A.	4	0	0	0
THERMO ELECTRON (CHILE) S.A.	0	0	0	0
Total general	160.295	174.316	174.995	183.792

Tabla 3.6.- Importaciones de Chile NH₃, toneladas datos 2006 hasta Noviembre.

3.5.- Capacidad de la Planta

La capacidad de la planta se basa en los antecedentes de crecimiento de la minería en Chile que esta directamente relacionada con el uso de explosivos, el supuesto es un crecimiento de un 5% anual en el consumo de amoniaco y se proyecta a 10 años plazo, esto se describe en la figura 3.5. Se considera que la planta al segundo año de funcionamiento estará en su capacidad de producción máxima, es decir 300.000 ton/año, para esto el tamaño de la planta debe ser de unas 1000 ton/día. Los primeros seis años de producción abastecerán por completo el consumo de amoniaco nacional, existiendo un excedente que puede ser exportado. Los años restantes de producción de la planta serán para abastecer

exclusivamente el consumo nacional ya que este no logrará suplir el total requerido. Este criterio de diseño de la planta, se basa en que el único consumidor de NH₃ es ENAEX. La ingeniería, construcción y puesta en marcha de la planta requiere de un tiempo aproximado de tres a cuatro años, por lo que se estima que debería satisfacer una demanda inicial al año 2011 de 235000 ton/año aproximadamente.

Figura 3.5: Proyección de consumo amoníaco en Chile

3.6.- Ubicación de la Planta

Se plantean 4 posibilidades de ubicación de la Planta de amoníaco: Camisea en Perú, en Bolivia, Mejillones o Magallanes en Chile.

La ubicación más ventajosa es en Mejillones, ya sea cercana o como parte de ENAEX, debido a los antecedentes antes expuestos así como para aprovechar la economía de escala.

3.7.- Referencias

- [1] Abram, A. and Foster, D.L.. 2005. A Primer on Ammonia, Nitrogen Fertilizers, and Natural Gas Markets. Department of AED Economics, The Ohio State University. http://www.aede.osu.edu/resources/docs/pdf/kp90ms9c-3h54-c92j-73lb0htnncbaf66g.pdf
- [2] 2005 Minerals Yearbook. 2006. Nitrogen. U.S. Department of the Interior. http://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/nitromyb05.pdf
- [3] Cabrera, Cid, Fredes, Gallardo, Rios, Sanches. 2007. Estudio de Prefactibilidad Técnico y Económica de una Planta de Amoniaco. Pontificia Universidad Católica de Valparaíso.

Capítulo 4

ANALISIS DE TECNOLOGIAS

4.- Análisis de Tecnologías.

4.1.- Tecnologías de Producción de Gas de Síntesis [1], [2], [3], [4], [5], [6]

Si un hidrocarburo es la materia prima utilizada para obtener hidrógeno, entonces simultáneamente se producen el monóxido de carbono (CO) y dióxido de carbono (CO₂). A la mezcla CO/H₂ (junto con ciertas proporciones de CO₂) se le conoce como "Gas de Síntesis". En principio, el gas de síntesis puede ser producido desde cualquier hidrocarburo. Estos incluyen: gas natural, nafta, aceite residual, coque de petróleo, carbón, y biomasa. La ruta de menor costo para la producción de gas de síntesis está basada en gas natural. Considerado como la base de la química orgánica, el gas de síntesis es lo que se obtiene en primera instancia en el proceso de producción de H₂ a partir de hidrocarburos por lo que se necesitan etapas posteriores de purificación para separar el H₂ de los óxidos de carbono.

Las tecnologías son básicamente dos: reformado con vapor y oxidación parcial (método al que, dependiendo de la materia prima utilizada, se lo conoce también como gasificación).

La composición del gas de síntesis, precisamente la razón H_2/CO , varia en función de la tecnología de producción y de la alimentación.

Otra tecnología para la producción de hidrógeno es la electrólisis del agua. Aunque el elevado consumo eléctrico hace que esta alternativa no sea muy atractiva para la mayoría de los usuarios industriales, algunas ventajas de este proceso lo convierten en un buen candidato para su utilización en regiones aisladas donde el suministro eléctrico se encuentre disponible a bajos precios.

Las principales tecnologías de producción de gas de síntesis incluyendo la electrólisis del agua se mencionan a continuación:

4.1.1.- Reformación con Vapor

La Reformación con Vapor (SR) se refiere a la conversión catalítica, endotérmica de hidrocarburos livianos, como por ejemplo metano, etano, gas de petróleo licuado, nafta ligera, con vapor de agua.

El proceso de Reformación con Vapor puede ser descrito por dos reacciones principales:

$$C_n H_m + nH_2 O \rightarrow \left(n + \frac{m}{2}\right) H_2 + nCO$$
 (4.1)

$$CO + H_2O \rightarrow H_2 + CO_2$$
 $\Delta H = -41 \left[\frac{KJ}{mol} \right]$ (4.2)

La primera reacción es la de Reformación, mientras que la segunda es la reacción de conversión de monóxido de carbono. Debido a que la reacción global es endotérmica, es requerido suministro de calor. Esto es conseguido por la combustión de gas natural u otro combustible en un horno de quemado directo. La reacción (4.1) es favorecida por altas temperaturas y baja presión, y procede usualmente en presencia de un catalizador basado en níquel. El proceso es llevado a cabo a temperaturas de alrededor de 800°C y presiones por sobre las 30 atm.

En un horno de quemado directo una mezcla precalentada de hidrocarburo y vapor es pasada a través de tubos rellenos de catalizador calentados externamente, donde es convertida a hidrógeno, monóxido de carbono y dióxido de carbono, figura (4.1). Es de gran importancia controlar la temperatura máxima de los tubos y el flujo de calor en el reformador para mantener el funcionamiento seguro y prolongado. Para obtener ésto, diferentes arreglos de quemadores son empleados: quemadores en la parte superior, quemadores en la parte inferior y quemadores en la parte lateral.

El gas de síntesis producido sale del reformador a temperaturas entre 800–900°C. El calor de los gases es generalmente utilizado en la parte convectiva del reformador para generar vapor y precalentar la alimentación. Solo una porción del vapor generado en las calderas es

requerida para el proceso de reformación, mientras que la mayor parte del vapor (alrededor del 60%) es consumido en otra parte.

Para evitar el envenenamiento del catalizador es requerida una etapa de desulfuración de la alimentación antes de entrar al reformador.

Figura 4.1: Reformación de metano con vapor (SMR).

Los parámetros típicos de operación para el proceso de Reformación de metano con vapor son:

Presión:	20 – 26 bar
Temperatura:	850 – 900°C
Razón H ₂ /CO:	2,9-6,5

La conversión completa no puede ser obtenida en el proceso de reformado de metano con vapor, típicamente el 65% del metano es convertido. Para obtener una mejor conversión se debe usar un reformador secundario.

En vista a la alta razón H_2/CO , la Reformación con vapor es el medio mas efectivo para la producción de hidrógeno. El monóxido de carbono luego es oxidado a dióxido de carbono en la reacción (4.2), obteniendo cada vez más hidrógeno.

4.1.2.- Oxidación Parcial

La oxidación parcial (POX) combina el hidrocarburo y el oxígeno para producir H_2 y CO cuando la razón O_2 /hidrocarburo es menor a la requerida para la combustión completa.

La reacción principal, reacción (4.3), consiste en la combustión incompleta en presencia de vapor de agua, de cualquier sustancia que contenga carbono orgánico. El vapor de agua también reacciona con la alimentación, reacción de reformado (4.4), y actúa como moderador de la combustión parcial, de forma que controlando su dosificación, se estabiliza la temperatura del reactor.

$$C_n H_m + \frac{n}{2}O_2 \to nCO + \frac{m}{2}H_2$$
(4.3)

$$C_n H_m + nH_2 O \rightarrow nCO + \left(\frac{m}{2} + n\right) H_2$$
 (4.4)

Debido a que la reacción global es exotérmica, no requiere de combustible extra. El proceso de oxidación parcial es usado para la gasificación de alimentación pesada como residuos de petróleo y carbón. El proceso es muy flexible y puede operar en un amplio rango de hidrocarburos, desde el gas natural hasta el asfalto más pesado incluyendo residuos de materiales como plásticos.

El hidrocarburo, el oxígeno y el vapor son introducidos a un tanque refractario a elevada presión, sobre los 80 bar, figura (4.2). La reacción de oxidación ocurre inmediatamente en la zona de combustión bajo el quemador. Para evitar el asentamiento de carbono, los reactantes deben estar completamente mezclados y la temperatura de reacción no debiera ser menor que 1200°C.

Figura 4.2: Reactor de Oxidación Parcial.

En la práctica, el gas de síntesis desde el proceso de Oxidación Parcial tiene una razón H_2/CO entre 1,6 y 1,8. Casi el 100% de conversión es obtenida en la reacción de oxidación parcial, y es por esta razón que es usada en la reformación combinada para completar la conversión de metano que viene del reformador de metano con vapor.

La necesidad de oxígeno resulta en un alto costo de operación. El costo de oxígeno puede constituir un 50% del costo operacional de la producción de gas de síntesis en una planta de Oxidación Parcial.

4.1.3.- Reformación Autotérmica

La Reformación autotérmica (ATR) es una combinación de Reformación con Vapor y Oxidación Parcial. Ambas reacciones toman lugar dentro de un reactor autotérmico. El proceso involucra vapor, oxígeno y el hidrocarburo para producir gas de síntesis. La reacción de oxidación parcial, la cual es exotérmica, proporciona el calor necesario para la reacción de reformación que es endotérmica. El proceso es usado para la producción de metanol y amoniaco. Hidrocarburos livianos y pesados pueden ser convertidos. En el último caso un pre-reformador adiabático debe ser usado. Una mezcla precalentada del hidrocarburo (generalmente gas natural), vapor y oxígeno es alimentada en el tope del reactor. En la zona superior, procede la oxidación parcial a temperaturas del orden de los 1200°C. Después de eso, la mezcla es pasada a través de un lecho catalizado, donde la reformación final toma lugar figura (4.3). La temperatura de salida del lecho catalizado está entre 850 y 1050°C.

Figura 4.3: Reformación Autotérmica.

Las principales ventajas del ATR son la favorable razón H_2/CO (1,6 a 2,6), reducción de emisiones debido al suministro de calor interno, una alta conversión de metano, y la posibilidad de ajustar la composición del gas de síntesis cambiando la temperatura de la reacción. Sin embargo, requiere de una fuente de oxígeno.

4.1.4.- Reformación Combinada

Debido a que menos del 100% del metano es convertido en la reacción de reformación con vapor, un reformador secundario a continuación de la unidad de reformación con vapor puede ser instalada para proporcionar la conversión completa del metano y también tener la posibilidad de ajustar la razón H_2 /CO. Además, el tamaño de la planta de reformación con vapor puede ser reducido trasladando parte de la carga al segundo reformador que puede

ser un reformador de oxidación parcial o autotérmico. Mediante la utilización de aire en vez de oxígeno para la segunda fase de reformación, se introduce en el sistema el nitrógeno necesario para la síntesis de amoniaco y se evita una planta de oxígeno.

La figura (4.4) muestra el esquema del proceso, el que consiste en un reformador primario SR y un reformador secundario ATR.

Figura 4.4: Reformación Combinada.

Un pre-reformador es instalado frecuentemente antes del primer reformador, figura (4.5). El pre-reformador amplía el rango de hidrocarburos para la reformación. Éste también toma algo de carga desde el reformador primario, tal que pueda operar bajo condiciones menos severas. Esto, a su vez, permite materiales menos costosos y de menos superficies de transferencia de calor, lo que resulta en costos reducidos de equipamiento. Sin embargo, la necesidad de una planta de oxígeno puede mitigar estas ventajas si es que se quiere transferir mas carga al segundo reformador de la que se puede realizar con el aire que aporta el nitrógeno estequiométrico para la síntesis de amoniaco.

Figura 4.5: Reformación Combinada con Pre-reformador.

Temperaturas de salida de sobre los 1050°C son comunes. En este proceso se pueden obtener conversiones de metano sobre 99%.

4.1.5.- Reformación con intercambio de calor

Solo la mitad del calor generado por el combustible quemado en un horno SMR es usado para la reacción de reformación, mientras que el resto tiene que ser recuperado en un complicado recuperador de calor para generar vapor. La cantidad de carga transferida al lecho del catalizador puede ser aumentada sobre un 80% si es usado un reformador intercambiador de calor. Los siguientes dos tipos de reformadores (KRES y GHR) emplean este principio para mejorar el funcionamiento y reducir las emisiones.

4.1.5.1.- Kellogg's Reforming Exchanger System (KRES)

En este esquema, el flujo de alimentación es dividido entre el reformador de tubos y el reformador secundario. La razón de flujo es de 75/25 al reformador secundario y primario respectivamente. Una mezcla de metano y vapor entra al reformador en el tope, pasa a

través de los tubos rellenos de catalizador y sale por el fondo, donde se mezcla con el flujo de salida del ATR figura (4.6). Después de mezclado, esta corriente sirve como medio de calentamiento para el reformador principal cuando pasa por la carcasa del reformador hacia el tope.

Figura 4.6: Kellogg Reforming Exchanger System.

Las principales ventajas del KRES comparada a la reformación con vapor convencional son: menor costo de capital, mejora en la eficiencia energética, reducción de las emisiones de NO_x y CO_2 , fácil mantención, y menos espacio utilizado. Existen algunas dificultades de diseño mecánico como la expansión térmica y problemas en los tubos. También esta opción, debido a su configuración en paralelo, tiene un mayor índice de metano no convertido que el arreglo en serie de la opción GHR, a saber 2,3% vs 0,7%.

4.1.5.2.- Gas Heated Reforming (GHR)

En similar manera al KRES, el concepto de reformación calentada con gas, es un proceso sin combustión donde el calor para la reacción endotérmica es suministrado por el enfriamiento del gas reformado desde el segundo reformador. En contraste al KRES, la alimentación en el reformador calentado con gas no es dividida entre los reformadores, es pasada primero al reformador primario donde alrededor del 25% de la reformación tiene lugar. El gas parcialmente reformado es luego pasado al reformador secundario ATR figura (4.7). El gas de salida de este último es usado para calentar la alimentación en el reformador primario. Para la puesta en marcha, es empleado un horno auxiliar.

Figura 4.7: Gas Heated Reforming.

El volumen de un GHR es generalmente 15 veces más pequeño que el volumen de un horno reformador para la misma salida.

4.1.6.- Gasificación del Carbón

La gasificación del carbón para producir gas de síntesis puede ser considerada desde el punto de vista químico como la oxidación parcial del carbón o como la reducción del agua con carbón. Sin embargo el proceso total es mucho más complejo y solo describible usando numerosas reacciones paralelas y secundarias. La combustión parcial exotérmica del carbón y la formación de gas de agua endotérmica representan las reacciones de gasificación.

• Combustión parcial:

$$C + O_2 \leftrightarrow 2CO$$
 $\Delta H = -60 \left| \frac{Kcal}{mol} \right|$ (4.5)

• Reacción de gas de agua heterogénea::

$$C + H_2 O \leftrightarrow H_2 + CO$$
 $\Delta H = +28 \left[\frac{Kcal}{mol} \right]$ (4.6)

Otras reacciones importantes que toman lugar son:

• Boudouard Reaction:

$$C + O_2 \leftrightarrow 2CO$$
 $\Delta H = +41, 4 \left\lfloor \frac{Kcal}{mol} \right\rfloor$ (4.7)

• Homogeneous water gas reaction (water gas shift)

$$CO + H_2O \leftrightarrow H_2 + CO_2$$
 $\Delta H = -10 \left\lfloor \frac{Kcal}{mol} \right\rfloor$ (4.8)

• Hydrogenative gasification:

$$C + 2H_2 \leftrightarrow CH_4$$
 $\Delta H = -21 \left[\frac{Kcal}{mol} \right]$ (4.9)

• Metanización:

$$CO + 3H_2 \leftrightarrow H_2O + CH_4 \qquad \Delta H = -49 \left\lfloor \frac{Kcal}{mol} \right\rfloor$$
 (4.10)

Los tipos de Sistemas de gasificación se clasifican de acuerdo con el tipo de lecho gasificador: lecho fijo, lecho fluidizado y lecho de arrastre. Los ejemplos de estos sistemas son el proceso Lurgi (de lecho fijo), el proceso Winkler (de lecho fluidizado) y el proceso Koppers-Totzek (de flujo de arrastre).

El proceso Lurgi tiene un sistema de lecho móvil presurizado (hasta 2800 Kpa) que no puede usar carbón fuertemente aglutinantes ni que operen con aire o con oxígeno. El carbón clasificado se alimenta por la parte superior del gasificador y, ya se trate de vapor u oxígeno, se inyecta en el fondo. La temperatura de gasificación es mas baja que la que se tiene con otros tipos de lechos. Tan pronto como el carbón baja y se calienta, la desvolatización comienza y, desde una temperatura de 620 a 760°C y hacia arriba, la desvolatilización se acompaña por la gasificación del carbón resultante. El gas crudo que sale se pasa a través de un lavador y luego se enfría a una temperatura a la cual el gas se satura con vapor. El gas que sale del gasificador es, sobre todo, CO₂, CO, CH₄, H₂ y H₂O.

El gasificador Winkler, de lecho fluidizado, cuenta con la ventaja de tener una distribución uniforme de temperatura y un excelente contacto sólido-gas. El carbón triturado o fino se alimenta por la parte superior y, oxígeno y vapor por el fondo. Se puede manejar una gran variedad de carbón sin pérdidas significativas de eficiencia. Las temperaturas de operación (800 a 1000°C) son más altas que las del lecho de arrastre. Los gases de salida tienen un alto contenido de polvo y deben ser tratados para eliminarlos.

El gasificador Koppers-Totzek, de lecho de arrastre, tiene la más alta capacidad por unidad de volumen, de los tres procesos. El carbón pulverizado, el oxígeno y el vapor se alimentan juntos y el carbón se gasifica en suspensión. Tiene la propiedad de utilizar todo tipo de carbón y produce un gas libre de alquitranes y fenoles. Sin embargo, requiere de altas temperaturas (1900°C) y grandes cantidades de oxígeno. Las tazas globales de producción de gas son mas altas que en el lecho fijo o de arrastre.

	Lurgi	Kopper-Totzek	Winkler
H ₂	38,0	36,7	41,8
CO	20,2	55,8	33,3
CO ₂	28,6	6,2	20,5
CH ₄	11,4	0,0	3,0
C ₂ H ₆	1,0	0,0	0,0
H ₂ S o COS	0,5	0,3	0,4
N ₂	0,9	1,0	1,0

Tabla 4.1: Composición de gases de productos típicos (base seca) (%mol)

4.1.7.- Electrólisis

La producción de hidrógeno y oxígeno por electrólisis del agua ha sido llevada a cabo a escala industrial desde comienzos del siglo XIX. El hidrógeno electrolíticamente producido puede ser usado directamente para la producción de amoniaco.

La electrólisis usa electricidad para disociar el agua en hidrógeno y oxígeno. Un potencial eléctrico es aplicado a través de una celda con dos electrodos inertes contenidos en un medio conductor, generalmente una solución electrolítica alcalina, como por ejemplo una solución acuosa de hidróxido de potasio (KOH). Los electrones son absorbidos y liberados en los electrodos formando hidrógeno en el cátodo y oxígeno en el ánodo. Bajo condiciones alcalinas, este proceso puede ser descrito por las siguientes ecuaciones:

Cátodo:
$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$
 (4.11)

Ánodo:
$$2OH^- \rightarrow \frac{1}{2}O_2 + H_2O + 2e^-$$
 (4.12)

$$H_2 O \to H_2 + \frac{1}{2}O_2$$
 (4.13)

Como materia prima se necesita agua completamente libre de sales, la cual se obtiene en intercambiadores iónicos y en filtros de lecho combinado. El efecto neto es producir H_2 y O_2 suministrando solo agua y electricidad.

Las celdas se construyen de acero al carbono, estando refrigeradas por agua que disipa el calor generado. Los electrodos están situados en dos reglones separados por un diafragma fabricado en material cerámico, el material del ánodo es níquel, mientras que el cátodo suele ser de acero inoxidable.

En las celdas bipolares se conectan dos de ellas en serie a través de un separador de níquel, el cual hace en una celda de ánodo y en la contigua de cátodo con lo que se consigue una importante reducción de volumen del aparato.

En este proceso, el hidrógeno desde la planta de electrólisis y el nitrógeno desde la planta de separación de aire pasan a estanques de almacenamiento separados. La electrólisis del agua proporciona una alimentación de gas extremadamente pura, conteniendo una pequeña cantidad de oxígeno (0,1 a 0,2%), comparado al gas de síntesis generado a partir de hidrocarburos. El oxígeno actúa como un veneno para el catalizador del convertidor de amoniaco y por lo tanto debe ser removido. Esto es hecho por medio de combustión catalítica, la cual toma lugar inmediatamente después del mezclador de H₂ y N₂. Una pequeña cantidad de hidrógeno reacciona con el oxígeno presente produciendo agua. El gas mezclado purificado es entonces pasado a estanques de almacenamiento para la etapa de síntesis de amoniaco. El circuito de síntesis de amoniaco es el mismo que para las plantas de amoniaco basadas en combustibles fósiles.

La producción de amoniaco basada en electrólisis del agua es llevada a cabo en plantas de pequeña escala, sobre 500 Ton/día. El proceso es considerado como económicamente no viable. Sin embargo, bajo ciertas circunstancias, puede ser una tecnología interesante y competitiva, en particular cuando la energía hidroeléctrica está disponible y es de bajo costo.

Las emisiones de este proceso son mínimas comparadas a la reformación con vapor y oxidación parcial.
4.2.- Comparación de Tecnologías [4]

Las siguientes tablas comparan los diferentes procesos explicados anteriormente utilizando metano como materia prima.

	SMR	POX	ATR
Temperatura, °C	800-900	1000-1450	850-1300
Presión, bar	20-30	30-85	20-70
Razón H ₂ /CO	3-6	1,6-2	1,6-2,5
Conversión CH ₄ , %	65-95	95-100	95-100
Oxígeno	no	alto	alto
Consumo de vapor	alto	opcional	bajo
Costo de capital, %	100 (referencia)	80-110	65-80
Emisiones	altas	bajas	bajas
Escala	gran	pequeña a gran	gran
Estado de desarrollo	comercial	comercial	comercial

 Tabla 4.2: Procesos básicos de producción de Gas de Síntesis.

Tabla 4.3: Procesos combinados producción de Gas de Síntesis.

	Combinado	KRES	GHR
Temperatura °C	primario: 800,	primario: 800,	primario: 450,
	secundario: 1000-1200	secundario: 1000	secundario: 1000
Presión, bar	20-30	20-30	20-30
Razón H ₂ /CO	2,5-4	2,5-4	3,4
Conversión CH ₄ , %	95-100	95-100	95-100
Oxígeno	bajo	medio	medio
Consumo de vapor	medio medio		medio
Costo de capital, %	75-115	65-90	60-80
Emisiones	medias	bajas	bajas
Escala	gran	gran	media a gran
Estado de desarrollo	comercial	pre-comercial	3 unidades
	comercial	pre-comercial	comerciales

4.3.- Selección del Proceso de Producción de Gas de Síntesis

El proceso seleccionado para la producción de Gas de Síntesis es el proceso de Reformación Combinada debido a las siguientes ventajas:

- Posee una alta conversión del metano, consiguiendo conversiones de hasta 100%.
- La utilización de un reformador secundario autotérmico permite la adición de aire el cual aporta el nitrógeno necesario para la síntesis de amoniaco y el oxígeno para proporcionar la conversión completa del metano, y así reducir el tamaño del reformador primario trasladando parte de la carga al segundo reformador.
- No necesita de una planta de oxígeno
- Se consigue una alta razón H₂/CO.
- Es una tecnología consolidada a nivel mundial.

4.4.- Referencias

- [1] El hidrógeno como nueva fuente de energía
 http://cursa.ihmc.us/servlet/SBReadResourceServlet?rid=1197102721734_46214854
 0_6418
- [2] Spath, Dayton. 2003. Preliminary Screening-Technical and economic Assessment of Synthesis Gas to Fuel and Chemicals with Emphasis on the Potencial for Biomasa-Derived Syngas. National Renewable Energy Laboratory NREL http://www.nrel.gov/docs/fy04osti/34929.pdf
- [3] Gary R. Maxwell. 2005. Synthetic Nitrogen Products. A Practical Guide to the Products and Processes. Memphis, Tennessee
- [4] Korobitsyn, Van Berkel, Christie. 2000. SOFC as Gas Separator http://www.ecn.nl/docs/library/report/2000/c00122.pdf
- [5] Hydrogen Production Methods. 2005. MPR Associated, Inc. http://www.mpr.com/pubs/hydroprod.pdf
- [6] Martínez, Santos. 2003. El Hidrógeno Combustible. Métodos de obtención y aplicación a la energía eléctrica. http://dialnet.unirioja.es/servlet/articulos?codigo=638220

Capítulo 5

ETAPAS DEL PROCESO

5.- Etapas del Proceso

5.1.- Reformación [1]

Reformación es el nombre general de la reacción de un hidrocarburo como el metano, con agua y/o dióxido de carbono, para producir una mezcla de monóxido de carbono e hidrógeno. Los pasos típicos en el proceso de reformado con vapor se muestra en la figura 5.1 y 5.2.

Si es utilizado vapor de agua, el proceso es llamado reformación con vapor o crackeo con vapor. La reacción de reformación (5.1) es endotérmica y requiere de catalizador.

$$CH_4 + H_2O \leftrightarrow 3H_2 + CO$$
 $\Delta H = +49 \left[\frac{Kcal}{mol} \right]$ (5.1)

La reformación con vapor es en principio una reducción del agua con el carbono de la materia orgánica inicial. Para el caso del metano, 1/3 del hidrógeno es aportado por el agua.

Otras reacciones que ocurren al mismo tiempo que la reacción de reformación son:

•
$$CO + H_2O \leftrightarrow H_2 + CO_2$$
 $\Delta H = -10 \left[\frac{Kcal}{mol} \right]$ (5.2)

• $CH_4 \leftrightarrow 2H_2 + C$ $\Delta H = +17 \left[\frac{Kcal}{mol} \right]$ (5.3)

•
$$2CO \leftrightarrow CO_2 + C$$
 $\Delta H = -41 \left[\frac{Kcal}{mol} \right]$ (5.4)

Figura 5.1: Diagrama de bloques del proceso de reformación de vapor/aire

Figura 5.2: Proceso de reformación con vapor típico

La composición de equilibrio del gas de síntesis depende de los siguientes factores:

- Razón vapor/gas que entra al reactor
- Temperatura de la reacción
- Presión de la reacción
- Cantidad de inertes en la mezcla que entra al reactor

Para evitar la formación de carbono (como indican las reacciones (5.3) y (5.4)), la razón vapor/gas debe ser mantenida lo suficientemente alta para favorecer la reacción de reformación (5.1) y la reacción de conversión de monóxido de carbono (5.2) por sobre las reacciones que forman carbono.

El metano no convertido tiene influencia en la selección de las condiciones de operación del reformador. Como muestra la figura 5.3, las mejores condiciones de operación estarán dentro de los siguientes rangos:

Razón vapor/metano:	2,5 a 4,5
Temperatura:	1090 a 1150 K (815 a 875°C)
Presión:	7 a 30 bar

5.1.1.- Pretratamiento de la alimentación

La mayoría de los catalizadores usados en el proceso de reformado con vapor son sensibles al azufre y a los compuestos de azufre. Por lo tanto, es necesario remover estos compuestos presentes en la corriente de alimentación a una concentración por debajo de 0,1 ppm en peso, con el fin de evitar el envenenamiento de los catalizadores corriente abajo.

El gas natural que llega a la planta es mezclado con hidrógeno y calentado entre 350 a 400°C generalmente en la sección de convección del reformador primario. Luego es alimentado al hidrogenador, cargado normalmente con un catalizador de cobalto-molibdeno, donde los sulfuros orgánicos, usualmente metilmercaptanos, se hidrogenan a sulfuro de hidrógeno, reacción (5.5) y (5.6). Para retirar el sulfuro de hidrógeno se pasa la corriente por un absorbedor cargado con óxido de zinc, reacción (5.7).

$$RSH + H_2 \leftrightarrow RH + H_2S \tag{5.5}$$

$$R_2S + 2H_2 \leftrightarrow 2RH + H_2S \tag{5.6}$$

$$ZnO + H_2S \leftrightarrow ZnS + H_2O \tag{5.7}$$

Se ha dejado afuera en el diseño de la planta la sección de pretratamiento de la alimentación, bajo el supuesto de obtener una materia prima ya tratada y pagando por tanto un precio por el servicio prestado.

5.1.2.- Reformadores

La reformación con vapor se refiere a la conversión catalítico endotérmica de hidrocarburos livianos (metano a gasolina) en presencia de vapor (reacción 5.1). La reacción de reformación tiene lugar en un catalizador de níquel que está empacado en tubos en un horno tubular, externamente calentado mediante fuego directo (Reformador Primario). Alineado a éste se encuentra un reactor de cámara llamado reformador secundario, en donde es

alimentado aire caliente para introducir el nitrógeno al proceso. Las condiciones de reacción típicas en el reformador primario son de 700 a 800°C y de 15 a 40 bar.

A temperatura constante, un aumento de la presión provocará que la concentración de metano en el gas producto (el cual no es deseado en el gas de síntesis) aumente. Sin embargo, debido a los materiales de construcción, temperaturas mayores a 830°C no pueden ser alcanzadas externamente en los tubos del reformador. Por esta razón, el gas producto del reformador primario es alimentado a un reformador secundario que consiste en un reactor recubierto en su interior con material refractario y relleno con un catalizador de níquel resistente a altas temperaturas. Una parte del gas es quemado en el tope del reformador secundario con adición de aire u oxígeno alcanzando temperaturas por sobre los 1200°C. A esta temperatura, el metano no convertido, reacciona con el vapor llegando hasta cantidades no convertidas de 0,2 a 0,3% en volumen. Por lo tanto, la concentración de salida de metano depende de la presión, temperatura, y la cantidad de nitrógeno y vapor que están presentes. El calor sensible resultado de la síntesis del gas es utilizado para la generación de vapor. En general, las reacciones son exotérmicas y generan mucho calor que tiene que ser retirado del sistema.

5.2.- Conversión de monóxido de carbono [1]

La conversión de monóxido de carbono es uno de los pasos tradicionales de purificación que todavía es utilizado en muchas plantas de amoniaco. El CO debe ser retirado porque actúa como veneno para el catalizador que es utilizado para la síntesis de amoniaco.

Esta etapa elimina la mayor parte del monóxido de carbono (CO) desde el gas de síntesis, y como muestra la reacción (5.8) también produce más hidrógeno.

$$CO + H_2O \leftrightarrow H_2 + CO_2$$
 $\Delta H = -10 \left[\frac{Kcal}{mol} \right]$ (5.8)

La conversión de monóxido de carbono a dióxido de carbono ocurre generalmente en dos etapas: primero una conversión a alta temperatura y luego una conversión a baja temperatura.

La reacción (5.8) es exotérmica, por lo tanto altas temperaturas son desfavorables para la conversión completa. En la conversión de alta temperatura (HTS), el gas de síntesis es pasado a través de un lecho catalizado de óxido de hierro/óxido de cromo a alrededor de 400°C y 25 a 28 bar. El contenido de CO del gas es reducido cerca de un 3% (en base seca de gas), que es limitado por el equilibrio a la temperatura de operación. Idealmente, el catalizador lleva la reacción al equilibrio a la temperatura lo mas baja posible porque esto favorece la producción de hidrógeno.

El gas desde el HTS es enfriado para incrementar la conversión, y luego es pasado a través del convertidor LTS. El convertidor LTS posee un catalizador que contiene óxido de cobre, óxido de zinc y óxido de aluminio. Este opera a alrededor de 200 a 220°C. El contenido de CO residual del gas convertido es de 0,2 a 0,4% (en base seca de gas). Nuevamente, el catalizador lleva la reacción al equilibrio a la temperatura mas baja posible porque favorece la producción de hidrógeno.

5.3.- Eliminación de dióxido de carbono [2], [3], [4], [5]

El CO₂ es un constituyente indeseable en el gas de síntesis debido a que es un veneno para el catalizador de síntesis de amoniaco. El contenido de CO₂ en el gas de síntesis debe ser reducido a un rango de 50 a 1000 ppmv dependiendo del tipo y diseño de la unidad de eliminación. El proceso es llevado a cabo normalmente después del paso de conversión de monóxido de carbono. El gas de proceso desde el convertidor LTS contiene principalmente hidrógeno, nitrógeno, CO₂ y el excedente de vapor de proceso. El gas es enfriado y la mayor parte del vapor es condensado antes de entrar a la etapa de eliminación de CO₂.

El proceso de remoción de CO_2 está basado en la absorción física o química del CO_2 en un solvente. Existen diferentes tipos de procesos disponibles para remover el CO_2 desde el gas de síntesis. Basado en el proceso usado, la absorción del gas puede ser clasificada como un proceso de absorción química o física. Todos los procesos operan esencialmente de la misma forma. Ellos lavan el gas de alimentación en torres de absorción para colectar el CO_2 y luego regeneran el solvente en un desorbedor y liberan el CO_2 .

En los procesos de absorción química, el CO₂ reacciona con el solvente químico para formar un compuesto intermedio débilmente enlazado que se rompe con la aplicación de calor. El calor regenera el solvente original y produce una corriente de CO₂ (figura 5.4). Los solventes más comunes están basados en aminas o carbonatos. Los procesos de carbonato de potasio caliente disponibles comercialmente son el proceso Benfield, Glycine Vetrocoke y Cataract. En los procesos de alcanolaminas la solución contiene un componente amino. Los solventes mas utilizados son la monoetanolamina (MEA), dietanolamina (DEA), etc. Actualmente el solvente preferido en los procesos de alcanolamina es la Metildietanolamina activada (a-MDEA). Estos procesos pueden ser usados a baja presión parcial de CO₂, pero el gas de alimentación debe estar libre de SO₂, O₂, hidrocarburos y partículas. Los hidrocarburos y partículas causan problemas de operación en el absorbedor.

Figura 5.4: Esquema básico de un proceso de alcanolamina.

Los procesos de absorción física utilizan solventes orgánicos para absorber físicamente componentes del gas ácido en vez de reaccionar químicamente. La captura de CO_2 por absorción física esta basada en la solubilidad de CO_2 en los solventes. La solubilidad de CO_2 depende de la presión parcial y de la temperatura del gas de alimentación. Una alta presión parcial de CO_2 y bajas temperaturas favorecen la solubilidad de CO_2 en el solvente. La

regeneración del solvente puede ser conseguida por flashing a menor presión o por stripping con vapor o gas inerte. Los solventes típicos son Selexol (dimetileter de polietilen glicol) y Rectisol (metanol frío) los cuales son aplicados a alta presión.

Para el diseño de la planta se optó por la absorción química utilizando MEA como solvente. La selección de la solución de MEA es debido a que opera en forma óptima cuando se trata de condiciones de baja presión parcial de CO_2 (< 100 psia) y se requiere una alta captura de CO_2 . Otra de sus ventajas es su alta alcalinidad y su facilidad de descarga, lo que hace que pueda ser regenerado fácilmente.

5.4.- Metanización [1]

En el proceso de reformación con vapor que incluye la conversión de CO y la eliminación de CO_2 , el gas de síntesis contiene 0,1 a 0,2% en mol de CO y 100 a 1000 ppmv de CO_2 . El método más simple para eliminar estas pequeñas concentraciones de compuestos de oxígeno se muestra en las reacciones (5.9) y (5.10) (que son las inversas a la del proceso de reformación de metano). El metano que se forma no causa ningún problema corriente abajo en el proceso de síntesis de amoniaco. El metano actúa como un inerte.

$$CO + 3H_2 \leftrightarrow H_2O + CH_4 \qquad \Delta H = -49,27 \left[\frac{Kcal}{mol}\right]$$
(5.9)

$$CO_2 + 4H_2 \leftrightarrow 2H_2O + CH_4 \qquad \Delta H = -39 \left[\frac{Kcal}{mol}\right]$$
 (5.10)

Ambas reacciones son fuertemente exotérmicas. La temperatura normal de operación de la metanización es de 250 a 300°C, y en presencia de un gran exceso de hidrógeno. La velocidad espacial típica en el reactor es de 5000 a 9000 h⁻¹. El equilibrio se desplaza fuertemente hacia el lado derecho de la reacción por lo que el CO y CO₂ pueden ser reducidos a alrededor de 5 ppm. Las ventajas de la metanización (simplicidad y bajo costo) superan las desventajas (consumo de hidrógeno y producción adicional de inertes en la alimentación de gas de síntesis al circuito de amoniaco).

El catalizador esta formulado en una base de oxido de calcio/ aluminato de calcio con níquel activo incorporado en una solución sólida de NiO/MgO.

5.5- Compresión [1]

La síntesis de amoniaco es llevada a cabo a presiones mayores que las de la preparación del gas de síntesis. Por lo tanto el gas de síntesis purificado debe ser comprimido a mayor presión. La presión del circuito de síntesis emplea industrialmente rangos entre 8 a 45 Mpa (80 a 450 bar). Sin embargo la mayoría de las plantas de amoniaco tiene un circuito de síntesis que opera en el rango de 15 a 25 Mpa (150 a 250 bar).

Debido a los grandes desarrollos de tecnología en los procesos de amoniaco que empezaron a finales de los años sesenta, plantas de amoniaco con capacidades de 1000 a 1500 Ton/día se han convertido en la industria estándar para las nuevas construcciones de plantas. En el 2001 plantas tan grandes como de 2000 Ton/día se han convertido en comunes. Estas plantas tienen mucho menos costos de producción promedio que las primeras generaciones de las primeras plantas. El gran factor ha sido el cambio desde compresores alternativos accionados eléctricamente, al uso de compresores centrífugos accionados con vapor, calentado por gas natural. Algunos compresores son accionados por turbinas de vapor usando vapor de alta presión generado en calderas que utilizan el calor residual del proceso.

5.6.- Síntesis de amoniaco [1]

La reacción de síntesis de amoniaco es:

$$N_2 + 3H_2 \leftrightarrow 2NH_3 \qquad \Delta H_{298} = 11,04 \left[\frac{Kcal}{mol}\right]$$
 (5.11)

En la mayoría de los procesos la reacción toma lugar en un catalizador de hierro. La presión de la reacción esta generalmente en el rango de 150 a 250 bar, y la temperatura en el rango de 350 a 550°C. En condiciones normales de operación de un convertidor convencional, la

conversión conseguida por paso es de 20 a 30%. En muchas plantas de amoniaco comerciales, todavía es usado el proceso "Haber Recycle Loop" para obtener sustancialmente la conversión completa del gas de síntesis. En el proceso "Haber" el amoniaco es separado desde el gas reciclado por enfriamiento y condensación. Luego el gas de síntesis no convertido es mezclado con alimentación fresca y retornado como alimentación al convertidor de síntesis de amoniaco.

La disposición del circuito de síntesis difiere con respecto a:

- 1. Los puntos en el circuito en el cual es ingresada la alimentación fresca,
- 2. Donde es retirado el amoniaco y
- 3. Donde es retirado el gas de purga.

La mejor disposición, y por lo tanto la escogida en el diseño, es mostrada en la figura 5.5 (A). Después que el gas deja el convertidor de síntesis, el amoniaco es condensado por enfriamiento y el gas reciclado es retornado al compresor de reciclo. Esta disposición es la más favorable desde el punto de vista de mínima energía. El resultado es el menor contenido de amoniaco a la entrada del convertidor y la mayor concentración de amoniaco en la condensación.

Cuando la alimentación fresca contiene agua o CO_2 , la etapa de condensación está localizada parcial o completamente entre el punto de suministro de alimentación fresca y el convertidor (figura 5.5 (B)). Esta disposición es usada porque el agua y el CO_2 son completamente absorbidos por la condensación de amoniaco. Las desventajas de esta disposición son: 1) la concentración de amoniaco a condensar es reducida debido a la dilución con la alimentación fresca, 2) una concentración mas alta de amoniaco existe en la entrada del convertidor y 3) el amoniaco producido debe ser comprimido junto con el gas reciclado en el compresor de reciclo.

La configuración de la figura 5.5 (C) disminuye el consumo de energía de la configuración de la figura 5.5 (B). En esta disposición, la compresión del reciclo sigue directamente después de que el amoniaco es condensado y separado. También es posible enfriar el gas reciclado usando agua de enfriamiento o aire antes de ser mezclado con la alimentación fresca lo cual reduce el gasto de energía del sistema de enfriamiento.

La figura 5.5 (D) divide el paso de enfriamiento para la condensación de amoniaco y también comprime el gas reciclado junto con la alimentación fresca. Esta configuración es especialmente útil para presiones de síntesis por encima de 25 Mpa (250 bar).

Figura 5.5: Diagramas de flujo de circuitos de síntesis de amoniaco típicos

La purga debería ser retirada después de la condensación de amoniaco y antes de la adición de alimentación fresca. Esta configuración depende de que la alimentación fresca haya sido tratada en un paso de secado antes de entrar en el circuito. Si la alimentación fresca contiene trazas de H_2O o CO_2 , debe ser adicionada antes de la condensación de amoniaco. Sin embargo este punto de adición tendrá efectos negativos en la condensación de amoniaco y en la eficiencia de energía.

La reformación convencional con metanización como paso final de purificación produce un gas de síntesis que contiene inertes (CH_4 y Ar) en cantidades que no son eliminadas en el amoniaco condensado. Gran cantidad de los inertes son retirados del circuito de síntesis en una corriente de purga. El tamaño de esta corriente controla los niveles de inertes en el circuito en 10 a 15%. El gas de purga es lavado con agua para retirar el amoniaco para luego ser usado como combustible o enviado a recuperar el hidrógeno.

5.6.1.- Catálisis

Cuando el amoniaco es producido a partir del gas natural usando el proceso de reformación con vapor, son necesarias varias etapas de reacción por lo que la catálisis es clave en la economía de la operación de cada etapa. La química de las diferentes etapas del proceso y las materias primas de que están compuestos los catalizadores se muestran en la figura 5.6.

Para una presión de operación dada y una velocidad de producción deseada, el catalizador determina el rango de temperatura de operación, el flujo de gas de reciclo y requerimientos de refrigeración. También influencia indirectamente los requerimientos de pureza de la alimentación fresca.

El catalizador industrial para la síntesis de amoniaco debe satisfacer los siguientes requerimientos:

- Alta actividad catalítica a la temperatura de reacción más baja posible. Esto permite que el proceso tome ventaja del favorable equilibrio termodinámico que existe a bajas temperaturas.
- La más alta insensitividad posible al oxígeno y al cloro ya que son venenos para catalizador, teniendo presente que los efectos de los venenos pueden hacerse más severos cuando la temperatura disminuye.
- Larga vida. Esto está determinado esencialmente por la resistencia a la degradación térmica y al envenenamiento irreversible. En algunas plantas, los catalizadores de fierro convencionales han conseguido servicios de vida sobre los 14 años.

 Resistencia mecánica. Insuficiente resistencia a la presión y abrasión puede llevar a un excesivo aumento de la caída de presión en el convertidor. Esto lleva eventualmente a una prematura parada de planta.

Metales o aleaciones de metales son adecuados como catalizadores de amoniaco, especialmente metales del grupo de transición. La mayoría de los catalizadores son complejos y contienen otros óxidos metálicos que son difíciles de reducir. Estos promueven la actividad del hierro metálico.

El catalizador para la síntesis de amoniaco ha sido basado tradicionalmente en fierro y fabricado por la reducción de magnetita (Fe₃O₄). La diferencia entre los distintos productos disponibles comercialmente consiste en niveles de promotores de óxidos metálicos que están incluidos dentro de la estructura de la magnetita. Estos óxidos metálicos promueven la actividad y mejoran la estabilidad térmica del catalizador. Promotores típicos son la alúmina (Al₂O₃), óxido de potasio (K₂O), y óxido de calcio (CaO).

Compuestos oxigenados (CO, CO₂, etc.) son los venenos mas graves para el catalizador de síntesis de amoniaco porque tienen una fuerte afinidad y son preferencialmente adsorbidos en esta superficie. Con la exposición continua a compuestos de oxígeno, puede ocurrir un daño irreversible a la actividad del catalizador debido al crecimiento de cristales de fierro.

Figura 5.6: Materias primas de los catalizadores y química del proceso de amoniaco.

5.6.2.- Separación de amoniaco

La separación del amoniaco producido, es llevada a cabo mediante refrigeración mecánica o absorción/destilación. La elección es realizada examinando los costos fijos y de operación. Generalmente, la refrigeración es más económica a presiones de síntesis de 100 atm (1470 psia) o mayores. A bajas presiones, la absorción/destilación es favorecida. Los dos métodos son comparados en la tabla 5.1.

Generalmente la concentración de amoniaco en el reciclo es de 3 a 4%, pero reduciendo esta cantidad a 1,5% puede aumentar la capacidad de la planta en alrededor de un 2,5%.

Condensación	Absorción		
Alto costo energético a bajas presiones del	Costos energéticos casi constantes		
circuito (debajo de 100 atmósferas).	independientes de la presión. Menos		
	separación por condensación debajo de 100		
	atmósferas.		
Costos fijos altos a presiones menores de 100 atmósferas.	Costos fijos casi constantes en una gama de presiones. Menos separación por condensación a presiones debajo de 100 atmósferas.		
Económico a presiones de operación más altas.	Económico a presiones bajas de síntesis (debajo de 100 atmósferas) comparado al proceso de condensación.		
Consumo de energía en ciclos de refrigeración.	Ineficiente consumo de energía en el proceso de destilación.		

Tabla 5.1: Comparación de Técnicas de Separación de Amoniaco

Proceso	simple	con	condensadores	у	Proceso más complejo con absorbedor,
separadores.		columna de destilación, bombas, reboilers,			
					condensadores, y acumuladores de reflujo.
					La instrumentación asociada es también
					compleja.
Ningún rie	esgo pote	ncial o	de envenenamier	to	Aumento del potencial de envenenamiento
del cataliz	ador.				del catalizador debido al oxígeno en los
					absorbentes.

Considerando lo expuesto en la tabla 5.1 el método mas adecuado de separación de amoniaco para el diseño de la planta es la técnica de condensación, debido a que el circuito de síntesis trabaja a una presión de 220 bar.

5.7.- Diseño de plantas de amoniaco [1]

Un flowsheet simplificado de una planta de amoniaco que procesa gas natural vía reformación con vapor se muestra en la figura 5.7. Un diagrama de bloques de esta misma planta se muestra en la figura 5.8. Este diagrama muestra las típicas composiciones de las corrientes, condiciones de operación, catalizadores y volúmenes de catalizador.

Figura 5.7: Flowsheet simplificado de una planta de amoniaco

Figura 5.8: Diagrama de bloques de una planta de amoniaco de 1000 Ton/día

5.8.- Referencias

- [1] Gary R. Maxwell. 2005. Synthetic Nitrogen Products. A Practical Guide to the Products and Processes. Memphis, Tennessee
- [2] Kohl, Nielsen. Gas Purification, 5^a Edición. Gulf Publishing Company. Houston, Texas
- [3] Kunjunng, Patel, Nath. Revamping of CO₂ Removal Section in Ammonia Plant at IFFCO Kalol. http://www.iffco.nic.in/applications/Birhaspat.nsf
- [4] Jaureguiberry. 2005. Estudio Comparativo de Procesos de Recuperación de CO₂ por Absorción con Aminas. Universidad Politécnica de Cataluña. España
- [5] Salako A.E.. 2005. Removal of Carbon Dioxide from natural Gas for LNG Production. Technology Norwegian University of Cience and Technology. Trendheim, Norway http://www.ipt.ntnu.no/jsg/studenter/prosjekt/salako2005.pdf

Capítulo 6

SIMULACION DEL PROCESO

6.- Simulación del proceso [1]

6.1.- Aspectos generales

HYSYS es un poderoso software para simulación de procesos en estado estacionario y dinámico. Incluye herramientas para la estimación de propiedades físicas, equilibrios líquidovapor, balances de materia y energía, diseño y optimización de procesos.

En HYSYS, toda la información necesaria perteneciente a los cálculos de propiedades físicas y equilibrio líquido-vapor está contenida en el "Fluid Package", por lo tanto, elegir el correcto "Fluid Package" para un componente o una mezcla de componentes dado es esencial como punto de partida para un modelado preciso del proceso.

HYSYS requiere de un mínimo de datos de entrada proporcionados por el usuario, los más importantes parámetros de entrada necesitados para definir una corriente son la temperatura, la presión y flujo de la corriente.

Después de estudiar el problema se decidió utilizar un método de cálculo de propiedades ("Fluid Package") para toda la planta de amoniaco, excepto para el sistema de absorción de dióxido de carbono donde fue elegido un método de cálculo de propiedades específico para la absorción de aminas.

El "Fluid Package" elegido para la planta de amoniaco es SRK que usa la ecuación de estado cúbica Soave Redlich Kwong para el cálculo de todas las propiedades termodinámicas. Este método es recomendado para procesamiento de gases, refinerías y aplicaciones petroquímicas. También puede ser usado para mezclas no polares y medianamente polares. Ejemplos son hidrocarburos y gases livianos como CO₂, H₂S y H₂. Para el caso especial del sistema de absorción de dióxido de carbono fue elegido el Fluid Package AMINE y el modelo termodinámico KENT-EISENBERG ya que es el mas adecuado y preciso para el proceso. Estos dos paquetes termodinámicos son descritos en al Anexo A.

Para el modelamiento del Reformador Primario, Reformador Secundario, Convertidor de CO HTS, Convertidor de CO LTS y Metanizador se asumen que operan idealmente al equilibrio. Por lo tanto, se selecciona la opción de "Equilibrium Reaction" como el tipo de reacción que modelará HYSYS. Esta opción calcula la conversión para cualquier número de reacciones simultáneas o secuenciales con los parámetros de equilibrio de reacción y los coeficientes estequiométricos de las reacciones.

La constante de equilibrio puede ser expresada como:

$$K = \prod_{j=1}^{N_c} \left[\left(BASE \right)_{ej}^{v_j} \right]$$

Donde:

- *K*= Constante de equilibrio
- $(BASE)_{ej} =$ Base del componente j al equilibrio
- v_i = Coeficiente estequiométrico de componente j
- N_c = Número de componentes

La opción elegida para el cálculo de la constante de equilibrio es a través de la energía libre de Gibbs según la siguiente expresión:

$$\ln K_{eq} = \frac{\Delta G_{rxn}}{RT}$$

Las siguientes son las reacciones involucradas en el modelamiento de los equipos mencionados anteriormente, las cuales serán agrupadas en set de reacciones según corresponda a cada reactor:

Reformación: $CH_4 + H_2O \Leftrightarrow 3H_2 + CO$ Shift: $CO + H_2O \Leftrightarrow H_2 + CO_2$ Combustión: $CH_4 + \frac{1}{2}O_2 \Leftrightarrow 2H_2O + CO$

Metanización: $CO + 3H_2 \Leftrightarrow CH_4 + H_2O$

Los tipos de reactores proporcionados por HYSYS que son utilizados para la simulación de la planta de amoniaco son el Reactor Gibbs, el Reactor de Equilibrio y el Reactor PFR. Este último reactor que simula el convertidor de síntesis de amoniaco será tratado mas adelante.

El Reactor de Equilibrio es un reactor que modela reacciones de equilibrio. La corriente de salida del reactor esta en estado de equilibrio químico y físico. El set de reacciones que se adjunta al reactor puede contener un ilimitado número de reacciones de equilibrio, las cuales son simultáneamente o secuencialmente resueltas.

El Reactor Gibbs calcula la composición de salida de una corriente cuando el equilibrio químico y de fase es conseguido. El Reactor Gibbs no necesita hacer uso de la estequiometría de la reacción para calcular la composición de salida de la corriente, es decir, no se necesita adjuntar set de reacciones. La condición de que la energía libre de Gibbs del sistema reaccionante es mínima al equilibrio, es usada para calcular la composición de la mezcla producto. Cuando un set de reacciones es adjuntado al reactor, la estequiometría de las reacciones involucradas es utilizada en los cálculos del reactor Gibbs. En este caso el Reactor Gibbs actúa en forma similar al Reactor de Equilibrio.

6.2.- Simulación Reformador Primario R-1

•	Tipo de reactor:	Reactor Gibbs
•	Set de reacciones:	- Reformación
		- Shift
•	Base componentes:	Actividad
•	Fase:	Vapor
•	Fuente de K _{eq} :	Energía libre de Gibbs
•	Fluid Package:	SRK

Parámetros de diseño conocidos para definir la corriente de salida:

- 1. Temperatura de la corriente de entrada
- 2. Presión de la corriente de entrada
- 3. Composición y flujo de la corriente de entrada
- 4. Temperatura de la corriente de salida
- 5. Caída de presión

6.3.- Simulación Reformador Secundario R-2

•	Tipo de reactor:	Reactor Gibbs
•	Set de reacciones:	- Reformación

- Shift
- Combustión
- Base componentes: Actividad
- Fase: Vapor
- Fuente de K_{eq} : Energía libre de Gibbs
- Fluid Package: SRK

Parámetros de diseño conocidos para definir la corriente de salida:

- 1. Temperatura de las corrientes de entrada
- 2. Presión de las corrientes de entrada
- 3. Composición y flujo de las corrientes de entrada
- 4. El reactor opera adiabáticamente
- 5. Caída de presión

6.4.- Simulación Convertidor de CO de alta temperatura HTS

- Tipo de reactor: Reactor de Equilibrio
- Set de reacciones: Shift
- Base componentes: Actividad
- Fase: Vapor
- Fuente de K_{eq}: Energía libre de Gibbs
- Fluid Package: SRK

Parámetros de diseño conocidos para definir la corriente de salida:

- 1. Temperatura de la corriente de entrada
- 2. Presión de la corriente de entrada
- 3. Composición y flujo de la corriente de entrada
- 4. El reactor opera adiabáticamente
- 5. Caída de presión

6.5.- Simulación Convertidor de CO de baja temperatura LTS

- Tipo de reactor: Reactor de Equilibrio
- Set de reacciones: Shift
- Base componentes: Actividad

- Fase: Vapor
- Fuente de K_{eq}: Energía libre de Gibbs
- Fluid Package: SRK

Parámetros de diseño conocidos para definir la corriente de salida:

- 1. Temperatura de la corriente de entrada
- 2. Presión de la corriente de entrada
- 3. Composición y flujo de la corriente de entrada
- 4. El reactor opera adiabáticamente
- 5. Caída de presión

6.6.- Simulación Metanizador M-100

- Tipo de reactor: Reactor Gibbs
- Set de reacciones: Metanización
- Base componentes: Actividad
- Fase: Vapor
- Fuente de K_{eq}: Energía libre de Gibbs
- Fluid Package: SRK

Parámetros de diseño conocidos para definir la corriente de salida:

- 1. Temperatura de la corriente de entrada
- 2. Presión de la corriente de entrada
- 3. Composición y flujo de la corriente de entrada
- 4. El reactor opera adiabáticamente
- 5. Caída de presión

6.7.- Simulación Convertidor de síntesis de amoniaco

El convertidor de síntesis de amoniaco será modelado utilizando la ecuación cinética. Para definir una reacción cinética, es necesario especificar los parámetros de Arrhenius de la reacción directa y reversa, los coeficientes estequiométricos de cada componente y el orden de la reacción directa y reversa. HYSYS realiza un cálculo iterativo, que requiere una estimación inicial de las composiciones de salida. Con estas estimaciones se determina la velocidad de reacción. Luego se realiza un balance molar como chequeo de la velocidad de reacción. Si la convergencia no es conseguida, una nueva estimación es hecha y se ejecuta una nueva iteración.

$$r_A = k \times f(BASIS) - k' \times f'(BASIS)$$

La ecuación relaciona la velocidad de reacción r_A con las constantes de velocidad de reacción y las bases de los componentes (ej. concentración).

El tipo de reactor utilizado es el PFR o reactor flujo pistón. Esto implica que la corriente es radialmente isotrópica (sin gradientes de masa o energía) y que la mezcla axial es despreciable.

Como los reactantes fluyen a lo largo del reactor, ellos son continuamente consumidos, por lo tanto, hay una variación de la concentración en forma axial. Debido a que la velocidad de reacción es función de la concentración, la velocidad de reacción también varía axialmente.

Para obtener los perfiles axiales de composición, temperatura, etc., el reactor es dividido en varios subvolumenes. Dentro de cada subvolumen, la velocidad de reacción es considerada espacialmente uniforme. Un balance molar es hecho en cada subvolumen j:

$$F_{j0} + F_j + \int_V r_j dV = \frac{dN_j}{dt}$$

Debido a que la velocidad de reacción es considerada espacialmente uniforme en cada subvolumen, el tercer término se reduce a r_jV. En estado estacionario, el lado derecho de la ecuación es igual a cero, por lo tanto, la ecuación se reduce a:

$$F_{i} = F_{i0} + r_{i}V$$

Hysys calcula la caída de presión a lo largo del reactor utilizando la ecuación de Ergun. Para ello es necesario ingresar la fracción de huecos del reactor (0,5), el diámetro de partícula del catalizador (0,00310 m) y la esfericidad de partícula del catalizador (1).

El convertidor de amoniaco ha sido modelado utilizando tres reactores PFR con unidades de enfriamiento entre ellos. Los parámetros de diseño para la simulación son los siguientes:

Lecho Nº 1

- 1. Temperatura de la corriente de entrada
- 2. Presión de la corriente de entrada
- 3. Flujo y composición de la corriente de entrada
- 4. Reactor adiabático
- 5. Temperatura de la corriente de salida
- 6. Diámetro del reactor
- 7. Fracción de huecos
- 8. Diámetro y esfericidad de la partícula de catalizador

Lecho Nº 2

- 1. Velocidad de reacción
- 2. Presión de la corriente de entrada
- 3. Flujo y composición de la corriente de entrada
- 4. Reactor adiabático
- 5. Temperatura de la corriente de salida
- 6. Diámetro del reactor
- 7. Fracción de huecos
- 8. Diámetro y esfericidad de la partícula de catalizador

Lecho Nº 3

- 1. Velocidad de reacción
- 2. Presión de la corriente de entrada
- 3. Flujo y composición de la corriente de entrada
- 4. Reactor adiabático
- 5. Temperatura de la corriente de salida
- 6. Diámetro del reactor
- 7. Fracción de huecos
- 8. Diámetro y esfericidad de la partícula de catalizador

6.8.- Simulación Sistema de absorción de CO₂

Como se mencionó anteriormente, el paquete de propiedades elegido es el Fluid Package AMINE y el modelo termodinámico KENT-EISENBERG, ya que es el único que puede simular efectivamente sistemas de absorción química con alcanolaminas. La clave para resolver el sistema de absorción de CO₂ con aminas se centra en la simulación del absorbedor y el regenerador. En ambas columnas, son utilizados cálculos de eficiencia de etapas de no equilibrio. Tanto la eficiencia del absorbedor como la del regenerador incorporan parámetros de reacción cinética y de transferencia de masa.

El tipo de amina utilizada es la monoetanolamina o MEA. La configuración sistema de absorción de CO_2 es mostrado en la figura 7.4 en el capítulo 7. Los parámetros de diseño para las columnas de absorción y desorción son los siguientes:

Columna de absorción:

- 1. Temperatura y presión del gas de entrada.
- 2. Flujo y composición del gas de entrada
- 3. Temperatura y presión de la solución de MEA de entrada o MEA pobre.
- 4. Flujo y composición de la solución de MEA pobre
- 5. Número de platos reales
- 6. Diámetro y espaciamiento de platos

7. Presión de salida de las corrientes

Columna de desorción:

- 1. Temperatura y presión de la solución de MEA de entrada o MEA rica en CO₂.
- 2. Flujo y composición de la solución de MEA rica.
- 3. Número de platos reales
- 4. Diámetro y espaciamiento de platos
- 5. Número del plato de alimentación
- 6. Presión del condensador parcial
- 7. Presión del reboiler
- 8. Temperatura del tope de la columna
- 9. Carga térmica del reboiler

La simulación se realiza del tal modo de que al ir variando parámetros como la temperatura, presión, flujo y composición de la solución de MEA de entrada al absorbedor, se consiga llegar a la pureza deseada del gas de salida. Debido a que la solución de MEA se mantiene en un circuito cerrado cualquier cambio afectará a todo el proceso. Por lo que se debe tener el cuidado, luego de cualquier cambio, que todos los parámetros de operación estén en los rangos industriales. Si no es así, se debe ir ensayando con los parámetros críticos hasta alcanzarlos.

En el Anexo A se presentan con más detalle los métodos de cálculos utilizados por ambos paquetes de propiedades y las ecuaciones utilizadas para el cálculo de los restantes equipos.

6.9.- Referencias

[1] Manual HYSYS 3.2. 2003. Hyprotech

Capítulo 7

DESCRIPCION DEL PROCESO
7.- Descripción del Proceso

7.1.- Reformado

El objetivo del reformado es convertir el gas natural (principalmente metano) en una mezcla de hidrógeno, nitrógeno y óxidos de carbono, a través del agregado de vapor de agua y de aire. El reformado tiene lugar en dos etapas: en un reformador primario calentado mediante fuego directo y en un reformador secundario, catalítico y autotérmico.

Figura 7.1: Etapa de Reformación

La reacción se realiza sobre un catalizador de níquel y con suministro de calor en el reformador primario (R-1). En el reformador secundario (R-2) se agrega aire precalentado, y se combustiona parte de la mezcla, esencialmente hidrocarburo no reaccionado en el reformador primario. El calor generado en la combustión permite el avance ulterior de la reacción de reformado. La concentración de metano en la corriente de salida del reformador secundario es de 0,6 % en volumen (base seca).

La cámara en donde ocurre el reformado contiene tubos de acero con alto contenido de Cr-Ni, montados verticalmente y rellenos con el catalizador. El gas natural libre de compuestos de azufre se mezcla con vapor de agua en el mezclador Mix-100. La relación vapor/carbono es de 3/1. La mezcla reactiva (corriente 2) se precalienta en la unidad E-102 y se alimenta a los tubos catalíticos a través de distribuidores, a 600 °C, donde se llevan acabo las siguientes reacciones:

$$CH_4 + H_2O \leftrightarrow 3H_2 + CO$$

$$CO + H_2O \leftrightarrow H_2 + CO_2$$

El gas de síntesis producido sale del reformador a 800°C y 38,23 bar (corriente 3). Los tubos son calentados por medio de quemadores, alimentados con gas natural y distribuidos sobre las paredes del horno, de tal manera que se asegure un control óptimo de la temperatura del lecho catalítico en toda la longitud de los tubos.

El calor de los gases de combustión es utilizado en la parte convectiva del reformador para precalentar la alimentación a R-1 (E-102), precalentar el aire a R-2 (E-103), recalentamiento de vapor de 120 bar (E-503), recalentamiento del vapor de proceso (E-501), producción de parte del vapor de proceso saturado (E-502) y producción de líquido saturado para alimentación a vaporizadores (E-504).

El aire a temperatura y presión atmosférica es comprimido a 38,4 bar para su posterior utilización en el reformador secundario. Para esto se utilizaran tres compresores centrífugos (K-100, K-101, K-102) con una razón de compresión de 3,42 y enfriamiento intermedio (E-100, E-101).

Posterior a la compresión, el aire (corriente 8) necesita elevar su temperatura a 600°C antes del ingreso a R-2. Esto logra en el intercambiador E-103, el cual utiliza el calor de los gases de combustión de la sección de convección del reformador primario R-1.

El gas de proceso proveniente del reformador primario (corriente 3) es enviado al reformador secundario R-2. El gas es ingresado al recipiente a través de una cámara de mezclado ubicada en el tope, donde se mezcla con el aire de proceso (corriente 9). El reformador secundario consiste en un recipiente de acero especial, recubierto en su interior con material refractario. El reactor contiene en el tope del recipiente un mezclador en el cual se lleva a cabo la combustión y hacia abajo un lecho de catalizador de níquel, soportado por una grilla de material resistente a las altas temperaturas. Las reacciones que tienen lugar son las siguientes:

$$CH_{4} + \frac{3}{2}O_{2} \rightarrow CO + 2H_{2}O$$
$$CH_{4} + H_{2}O \leftrightarrow 3H_{2} + CO$$

$$CO + H_2O \leftrightarrow H_2 + CO_2$$

La cantidad de aire alimentada al reformador secundario está determinada por la necesidad de obtener a la entrada del circuito de síntesis de NH_3 una relación H_2/N_2 de 3/1 (volumen).

El reactor procede adiabáticamente. El gas de proceso abandona el reformador secundario a 981,2 °C (corriente 10) y es enfriado hasta 350 °C en el recuperador de calor E-104, donde se recalienta vapor saturado de 120 bar a 490°C.

Después del enfriamiento, el gas de proceso fluye hacia el convertidor de CO de alta temperatura, HTS.

Corriente	Gas Natural	Vapor	1	2	3
Temperatura [°C]	33,0	320,0	237,7	600,0	800,0
Presión [bar]	40,1379	40,1380	40,1379	40,0000	38,2290
Frac. Vapor	1,0000	1,0000	1,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	-1125,5	-3080,4	-2630,0	-2409,3	-1866,4
F. másico [Kg/h]					
CH₄	20054	0	20054	20054	8442
H₂O	0	67557	67557	67557	47672
H ₂	0	0	0	0	5144
CO	0	0	0	0	9631
CO ₂	132	0	132	132	16854
N ₂	40	0	40	40	40
O ₂	0	0	0	0	0
Ar	0	0	0	0	0
NH ₃	0	0	0	0	0
MEA	0	0	0	0	0
Total	20226	67557	87783	87783	87783

	E-102	R-1
Q [Kcal/h]	19370134	47655185

Corriente	Aire	4	5	6	7
Temperatura [°C]	20,0	182,0	30,0	197,2	30,0
Presión [bar]	1,0135	3,4660	3,3281	11,3832	11,2454
Frac. Vapor	1,0000	1,0000	1,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	-1,3	38,2	1,0	41,9	0,6
F. másico [Kg/h]					
CH₄	0	0	0	0	0
H ₂ O	0	0	0	0	0
H ₂	0	0	0	0	0
CO	0	0	0	0	0
CO ₂	0	0	0	0	0
N ₂	37794	37794	37794	37794	37794
O ₂	11613	11613	11613	11613	11613
Ar	690	690	690	690	690
NH ₃	0	0	0	0	0
MEA	0	0	0	0	0
Total	50097	50097	50097	50097	50097

	K-100	E-100	K-101	E-101
Q [Kcal/h]	1977691	1863404	2047717	2068531

Corriente	8	9	10	11
Temperatura [°C]	196,9	600,0	981,2	350,0
Presión [bar]	38,3666	38,2287	38,1560	38,0181
Frac. Vapor	1,0000	1,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	41,6	146,6	-1135,0	-1477,8
F. másico [Kg/h]				
CH ₄	0	0	573	573
H ₂ O	0	0	51238	51238
H ₂	0	0	6722	6722
CO	0	0	22321	22321
CO ₂	0	0	18502	18502
N ₂	37794	37794	37834	37834
O ₂	11613	11613	0	0
Ar	690	690	690	690
NH ₃	0	0	0	0
MEA	0	0	0	0
Total	50097	50097	137880	137880

	E-103	R-2	E-104
Q [Kcal/h]	5262882	0	47272575

7.2.- Conversión de monóxido de carbono

Figura 7.2: Etapa de conversión del CO

La conversión de monóxido de carbono se realiza por medio de una reacción exotérmica y catalítica con vapor de agua, obteniéndose dióxido de carbono como subproducto e hidrógeno.

$$CO + H_2O \leftrightarrow H_2 + CO_2$$

La conversión del CO tiene lugar en dos reactores adiabáticos, HTS y LTS. En ambas etapas ocurre la misma reacción, pero usando estas dos etapas se maximiza la conversión. El reactor HTS contiene un catalizador de alta actividad y alta resistencia mecánica. El convertidor LTS es cargado con un catalizador diferente, de baja temperatura caracterizado por su alta actividad, resistencia mecánica.

Después de la sección de reformado (corriente 11), la concentración de CO en el gas de proceso es de 13,4 % en volumen (base seca). A la salida del reactor HTS (corriente 12) se

reduce al 2,9 % y su temperatura aumenta de 350 °C a 428,4 °C. El gas es luego enfriado hasta 200 °C (corriente 14), antes de ingresar al reactor LTS, en el cual el contenido de CO es reducido hasta el 0,24 % en volumen, aumentando la temperatura hasta 222,9 °C.

El contenido calórico de la corriente de proceso de salida del HTS (corriente 12) es recuperado en los intercambiadores de calor E-105 y E-106. El equipo E-106 es utilizado para ajustar la temperatura de entrada del reactor M-100 (metanizador). El equipo E-105 genera vapor saturado a 40,14 bar.

Corriente	11	12	13	14	15
Temperatura [°C]	350,0	428,4	342,1	200,0	222,9
Presión [bar]	38,0181	35,5039	35,3660	35,2281	30,9582
Frac. Vapor	1,0000	1,0000	1,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	-1477,8	-1477,8	-1523,1	-1596,0	-1596,0
F. másico [Kg/h]					
CH₄	573	573	573	573	573
H ₂ O	51238	40289	40289	40289	37172
H ₂	6722	7947	7947	7947	8296
CO	22321	5298	5298	5298	452
CO ₂	18502	45247	45247	45247	52862
N ₂	37834	37834	37834	37834	37834
O ₂	0	0	0	0	0
Ar	690	690	690	690	690
NH ₃	0	0	0	0	0
MEA	0	0	0	0	0
Total	137880	137880	137880	137880	137880

	HTS	E-105	E-106	LTS
Q [Kcal/h]	0	6233923	10063172	0

7.3.- Enfriamiento y condensación de agua

Figura 7.3: Etapa de enfriamiento y condensación de agua

El gas de proceso procedente del Convertidor LTS (corriente 15) es enfriado a 35°C en dos etapas E-107 y E-108. Después de cada etapa de enfriamiento parte del agua es condensada y removida en los Separadores Liq-Vap V-100 y V-101. Este procedimiento es necesario para el correcto ingreso del gas de proceso a la etapa de absorción de CO₂.

El intercambiador E-107 enfría la corriente 15 desde 222,9°C hasta 149,7°C, mientras que el E-108 enfría la corriente 16 desde 149,7°C hasta los 35°C utilizando agua de enfriamiento.

Corriente	15	16	17	18	19
Temperatura [°C]	222,9	149,7	149,7	149,7	35
Presión [bar]	30,9582	30,8203	30,8203	30,8203	30,6824
Frac. Vapor	1,0000	0,9160	0,0000	1,0000	0,8372
Entalpía [Kcal/Kg]	-1596,0	-1681,2	-3651,3	-1470,5	-1635,5
F. másico [Kg/h]					
CH₄	573	573	0	573	573
H ₂ O	37172	37172	13300	23873	23873
H ₂	8296	8296	0	8296	8296
CO	452	452	0	452	452
CO ₂	52862	52862	19	52843	52843
N ₂	37834	37834	1	37833	37833
O ₂	0	0	0	0	0
Ar	690	690	0	690	690
NH ₃	0	0	0	0	0
MEA	0	0	0	0	0
Total	137880	137880	13319	124560	124560

	E-107	E-108
Q [Kcal/h]	11741782	20547583

Corriente	20	21
Temperatura [°C]	35,0	35,0
Presión [bar]	30,6824	30,6824
Frac. Vapor	0,0000	1,0000
Entalpía [Kcal/Kg]	-3770,5	-1133,9
F. másico [Kg/h]		
CH₄	0	573
H ₂ O	23606	267
H ₂	0	8296
CO	0	452
CO ₂	64	52779
N ₂	1	37833
O ₂	0	0
Ar	0	690
NH ₃	0	0
MEA	0	0
Total	23671	100889

Figura 7.4: Sistema de absorción de CO₂

En esta etapa, el CO_2 contenido en el gas de síntesis se remueve a través de la absorción con aminas. La corriente pasa a través del absorbedor, donde el CO_2 se absorbe químicamente con la amina (Monoetanolamina). Por ser la reacción entre el CO_2 y la amina reversible, la amina es regenerada en la columna de desorción y luego nuevamente reutilizada como solvente en la columna de absorción.

El CO₂ en el gas de proceso proveniente del separador V-101 entra a la columna de absorción T-100, con una composición molar de 17,8%, para ponerse en contacto contracorriente con una solución de MEA al 28,5% en peso que desciende por la torre. La concentración de CO₂ en el gas de síntesis se reduce hasta 0,05% molar en el tope de la torre, para luego ser enviada hacia el metanizador M-100. La reacción que se lleva a cabo en esta columna es:

Formación de Carbamato (Rápida)

 $CO_2 + C_2H_4OHNH \leftrightarrow C_2H_4OHN^+HCOO^-$

 $C_2H_4OHN^+HCOO^- + C_2H_4OHNH \leftrightarrow C_2H_4OHNCOO^- + C_2H_4OHNH_2^+$

 $CO_2 + 2C_2H_4OHNH \leftrightarrow C_2H_4OHNH_2^+ + C_2H_4OHNCOO^-$

Ácido base (Lenta)

 $CO_2 + H_2O \leftrightarrow H_2CO_3$ (ácido carbónico)

 $H_2CO_3 \leftrightarrow H^+ + HCO_3^-$ (bicarbonato)

 $H^{+} + C_{2}H_{4}OHNH \leftrightarrow C_{2}H_{4}OHNH_{2}^{+}$

 $CO_2 + H_2O + C_2H_4OHNH \leftrightarrow C_2H_4OHNH_2^+HCO_3^-$

La solución de MEA rica en CO_2 del fondo de la columna T-100 pasa a través de la válvula de expansión VLV-100 donde se reduce su presión a 4,4 bar formándose dos fases (corriente 23). Esta corriente es enviada al separador V-102. La fase líquida de salida (corriente 25) es llevada al intercambiador E-109 donde su temperatura es elevada a 100°C por intercambio de calor con la solución de MEA pobre en CO_2 (corriente 27) proveniente de la columna regeneradora de MEA (T-101). Esta temperatura fue considerada como óptima para el ingreso a la columna de desorción de CO_2 T-101.

En la etapa de desorción la solución de MEA rica en CO_2 (corriente 26) es ingresada en la columna en el plato número 4, la cual consta de 20 platos, un condensador parcial y un reboiler, el cual sirve como fuente de calor en la regeneración de la amina.

La MEA pobre en CO₂ (corriente 27) deja la torre a 112,9°C y es enfriada hasta 64,8°C, al intercambiar calor en la unidad E-109 con la solución de MEA rica. Debido a las pérdidas de agua y MEA en las corrientes 33, 24 y CO₂, es necesario ingresarlas al ciclo como alimentación fresca. Esto es llevado a cabo en el mezclador MIX-101. A la salida del mezclador la corriente 29 es recirculada a la columna de absorción T-100, para ello es necesario disminuir su temperatura en el intercambiador E-110 y aumentar su presión en la bomba P-100 para alcanzar las condiciones de entrada a la columna: 30°C y 30,7 bar.

Corriente	21	22	23	24	25
Temperatura [°C]	35,0	62,5	62,0	62,0	62,0
Presión [bar]	30,6824	30,6824	4,4000	4,4000	4,4000
Frac. Vapor	1,0000	0,0000	0,0011	1,0000	0,0000
Entalpía [Kcal/Kg]	144,5	-267,1	-267,1	74,7	-267,7
F. másico [Kg/h]					
CH₄	573	1	1	1,095	0
H ₂ O	267	428353	428353	26,388	428327
H ₂	8296	14	14	12,937	1
CO	452	1	1	0,613	0
CO ₂	52779	80845	80845	1012,078	79833
N ₂	37833	39	39	37,595	1
O ₂	0	0	0	0,000	0
Ar	690	0	0	0,000	0
NH ₃	0	0	0	0,000	0
MEA	0	181544	181544	0,413	181543
Total	100889	690796	690796	1091,119	689705

Corriente	26	CO ₂	27	28	MEA
Temperatura [°C]	100,0	60,0	112,9	64,8	25,0
Presión [bar]	3,7105	1,5000	1,5000	1,2932	1,2930
Frac. Vapor	0,0164	1,0000	0,0000	0,0000	0,0000
Entalpía [Kcal/Kg]	-226,2	63,5	-217,1	-262,2	84,3
F. másico [Kg/h]					
CH ₄	0	0	0	0	0
H ₂ O	428327	3284	425043	425043	0
H ₂	1	1	0	0	0
CO	0	0	0	0	0
CO ₂	79833	51654	28179	28179	0
N ₂	1	1	0	0	0
O ₂	0	0	0	0	0
Ar	0	0	0	0	0
NH ₃	0	0	0	0	0
MEA	181543	0	181543	181543	1
Total	689705	54939	634766	634766	1

	E-109	Condensador	Reboiler
Q [Kcal/h]	28629051	16118906	37824838

Corriente	Agua	29	30	31	32	33
Temperatura [°C]	25,0	64,6	28,9	30,0	30,0	30,0
Presión [bar]	1,2930	1,2930	1,1551	30,6824	30,6824	30,6824
Frac. Vapor	0,0000	0,0000	0,0000	0,0000	0,0000	1,0000
Entalpía [Kcal/Kg]	-452,5	-263,1	-294,9	-293,9	-293,9	242,2
F. másico [Kg/h]						
CH ₄	0	0	0	0	0	572
H ₂ O	3185	428229	428229	428229	428229	142
H ₂	0	0	0	0	0	8282
CO	0	0	0	0	0	451
CO ₂	0	28179	28179	28179	28184	118
N ₂	0	0	0	0	0	37794
O ₂	0	0	0	0	0	0
Ar	0	0	0	0	0	690
NH ₃	0	0	0	0	0	0
MEA	0	181545	181545	181545	181545	0
Total	3185	637953	637953	637953	637958	48050

	E-110	P-100
Q [Kcal/h]	20227545	583428

7.5.- Metanización

Figura 7.5: Metanizador

Después de la absorción de CO_2 , el gas de síntesis contiene 0,05 % vol. de CO_2 y 0,3 % de CO (base seca). Estos compuestos deben ser eliminados porque constituyen venenos para el catalizador de síntesis de NH₃. La eliminación de CO y CO_2 se realiza en el metanizador (M-100), donde estos compuestos reaccionan con H₂ para formar metano (CH₄), que es inocuo para el catalizador de síntesis de NH₃.

$$CO + 3H_2 \rightarrow CH_4 + H_2O$$

$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$

La reacción tiene lugar sobre un catalizador de Níquel. El contenido de $CO + CO_2$ en el gas de proceso es reducido a menos de 10 ppm.

La corriente 33 proveniente de la columna T-100 es precalentada a 290°C en el intercambiador gas-gas E-106 antes de entrar al reactor M-100 y sale de él a 314,3°C.

Corriente	33	34	35
Temperatura [ºC]	30,0	290,0	314,3
Presión [bar]	30,6824	30,5445	28,0206
Frac. Vapor	1,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	-32,6	176,8	176,8
F. másico [Kg/h]			
CH₄	572	572	873
H₂O	142	142	529
H ₂	8282	8282	8164
CO	451	451	0
	118	118	0
N ₂	37794	37794	37794
O ₂	0	0	0
Ar	690	690	690
NH ₃	0	0	0
MEA	0	0	0
Total	48050	48050	48050

	E-106	M-100
Q [Kcal/h]	10063172	0

7.6.- Condensación y Secado del gas de síntesis.

Figura 7.6: Etapa de condensación y secado del gas de síntesis

El agua contenida en la corriente de salida del metanizador (corriente 35) causa envenenamiento en el catalizador de síntesis de amoniaco por lo que debe ser removida antes del ingreso al convertidor.

La corriente 35 es enfriada desde 314,3°C a 187,8°C en el intercambiador E-111a y posteriormente enfriada en el intercambiador E-111b desde 187,8°C hasta 35°C para condensar gran parte del agua y retirarla en el separador V-103. Luego de esto, el contenido remanente de agua en la corriente 38 es ingresada al secador de tamiz molecular S-100, en donde es eliminada.

Corriente	35	36a	36b	37	38	39
Temperatura [°C]	314,3	187,8	35,0	35,0	35,0	35,0
Presión [bar]	28,0206	27,9517	27,8827	27,8827	27,8827	27,8827
Frac. Vapor	1,0000	1,0000	0,9969	0,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	176,8	74,5	-51,1	-3776,8	-27,0	-12,3
F. másico [Kg/h]						
CH₄	873	873	873	0	873	873
H ₂ O	529	529	529	309	220	0
H ₂	8164	8164	8164	0	8164	8164
CO	0	0	0	0	0	0
CO ₂	0	0	0	0	0	0
N ₂	37794	37794	37794	0	37794	37794
O ₂	0	0	0	0	0	0
Ar	690	690	690	0	690	690
NH ₃	0	0	0	0	0	0
MEA	0	0	0	0	0	0
Total	48050	48050	48050	309	47741	47521

	E-111a	E-111b
Q [Kcal/h]	4917121	6035514

7.7.- Compresión del gas de síntesis

Figura 7.7: Etapa de compresión del gas de síntesis

En esta etapa el gas de síntesis seco (corriente 39) se comprime desde 27,9 a 220,1 bar. Para esto se utilizan dos compresores centrífugos (K-103 y K-104) con una razón de compresión de 2,8 y enfriamiento intermedio en E-112.

Corriente	39	40	41	42
Temperatura [°C]	35,0	178,5	37,8	182,2
Presión [bar]	27,8827	78,7244	78,5865	220,1379
Frac. Vapor	1,0000	1,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	-106,9	908,2	-80,7	983,5
F. másico [Kg/h]				
CH₄	873	873	873	873
H₂O	0	0	0	0
H ₂	8164	8164	8164	8164
CO	0	0	0	0
CO ₂	0	0	0	0
N ₂	37794	37794	37794	37794
O ₂	0	0	0	0
Ar	690	690	690	690
NH ₃	0	0	0	0
MEA	0	0	0	0
Total	47521	47521	47521	47521

	K-103	E-112	K-104
Q [Kcal/h]	5552876	5409703	5821535

7.8.- Circuito de síntesis de amoniaco

7.8.1.- Síntesis de Amoniaco

Figura 7.9: Etapa de síntesis de amoniaco

La Síntesis de Amoniaco tiene lugar sobre un catalizador de fierro a 200 bar y 400°C de acuerdo a la siguiente reacción:

$$N_2 + 3H_2 \leftrightarrow 2NH_3$$

Bajo estas condiciones el 27,8% del gas de síntesis es convertido por paso en el reactor.

A medida que la reacción de síntesis (exotérmica) procede, se produce una reducción en el volumen lo que significa que altas presiones y bajas temperaturas favorecen la reacción. Por otro lado, temperaturas altas aumentan la velocidad de reacción, por lo tanto la temperatura del reactor debe ser controlada. Esto se consigue separando el reactor en tres lechos catalizados con enfriamiento intermedio.

El gas de síntesis (alimentación fresca), proveniente de la sección de compresión se introduce en el lazo de síntesis en el mezclador Mix-102. El gas de síntesis se mezcla aquí con la corriente de reciclo (corriente 65), que luego de la etapa de purificación, se le ha condensado y extraído la mayor parte del amoniaco producido en el convertidor. A la salida del mezclador (Mix-102) la corriente 44 debe aumentar su temperatura desde 225,9°C a 400,9°C en el intercambiador E-113 antes de ingresar al convertidor de síntesis de amoniaco.

La corriente de salida del convertidor (corriente 49) posee una concentración de amoniaco de 15,2% molar y una temperatura de 509,4°C.

Corriente	42	43	44	45	46	47
Temperatura [°C]	182,2	225,9	400,9	549,9	497,6	527,6
Presión [bar]	220,1379	220,1379	220,0000	219,5400	219,4021	219,2050
Frac. Vapor	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	983,5	39,9	172,0	172,0	131,8	131,9
F. másico [Kg/h]						
CH ₄	873	17876	17876	17876	17876	17876
H₂O	0	0	0	0	0	0
H ₂	8164	28226	28226	22861	22861	21801
CO	0	0	0	0	0	0
CO ₂	0	0	0	0	0	0
N ₂	37794	127370	127370	102523	102523	97615
O ₂	0	0	0	0	0	0
Ar	690	24185	24185	24185	24185	24185
NH ₃	0	3642	3642	33853	33853	39821
MEA	0	0	0	0	0	0
Total	47521	201299	201299	201298	201298	201298

	E-113	PFR-100	E-114	PFR-101
Q [Kcal/h]	26599336	0	8094793	0

Corriente	48	49	50	63	64	65
Temperatura [°C]	475,0	509,4	350,0	26,4	241,3	241,3
Presión [bar]	219,0671	218,6393	218,5014	220,2758	220,1379	220,1379
Frac. Vapor	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	91,8	91,9	-26,6	-137,9	17,2	17,2
F. másico [Kg/h]						
CH₄	17876	17876	17876	17003	17003	17003
H₂O	0	0	0	0	0	0
H ₂	21801	20596	20596	20062	20062	20062
CO	0	0	0	0	0	0
CO ₂	0	0	0	0	0	0
N ₂	97615	92030	92030	89572	89572	89576
O ₂	0	0	0	0	0	0
Ar	24185	24185	24185	23495	23495	23495
NH ₃	39821	46611	46611	3642	3642	3642
MEA	0	0	0	0	0	0
Total	201298	201298	201298	153773	153773	153778

	E-115	PFR-102	E-116
Q [Kcal/h]	8057922	0	23847210

7.8.2.- Etapa de Purificación del Amoniaco

Figura 7.10: Etapa de purificación del amoniaco

En esta etapa se debe extraer la mayor parte del amoniaco de la corriente 49 antes de ser recirculado a reactor de síntesis. Para ello la corriente 49 es enfriada en cuatro unidades antes de la primera separación de condensado de amoniaco en V-104. Primero en el intercambiador E-116 a 350°C, donde el calor retirado es utilizado para calentar la corriente 63. Segundo en el intercambiador E-117a hasta 200°C, produciendo vapor de proceso saturado, tercero en E-177b a 40°C utilizando agua de enfriamiento y cuarto en E-118 a 23°C. Este último intercambiador ocupa la corriente de salida gaseosa del separador V-105 (corriente 57).

Después del enfriamiento en E-118 a 23°C la corriente 53 ingresa al separador V-104 donde ocurre la primera extracción de amoniaco (corriente 54). La corriente gaseosa de salida (corriente 55) es enviada al enfriador E-119 donde es disminuida su temperatura a -26°C para condensar el amoniaco remanente. Para esto se utiliza amoniaco como refrigerante.

Luego de esto, esta corriente es enviada a la unidad V-105 para separar el condensado de amoniaco (corriente 58).

La corriente gaseosa de salida (corriente 57), es enviada al intercambiador E-118 en donde se usa como fluido de enfriamiento elevando su temperatura a 25,2°C. Esta corriente contiene principalmente nitrógeno e hidrógeno, además de metano, argón y amoniaco no recuperado. Para prevenir la acumulación de metano y argón en el ciclo de síntesis cierta cantidad de gas circulante debe purgarse en forma continua. Esta purga se realiza en la unidad TEE-100. Después de esto, la corriente es comprimida a 220,3 bar en K-105, debido a que arrastra las caídas de presión del proceso. Además es calentada a 241,3 °C en E-116, por intercambio de calor con la corriente de salida del convertidor de amoniaco (corriente 49), y luego reciclada al circuito de amoniaco (corriente 64).

La corriente 54 proveniente del separador V-104 y la corriente 58 proveniente del separador V-105 son mezcladas en el Mix-103 para su última purificación. Esta corriente es pasada a través de la válvula de expansión VLV-101 donde se disminuye su presión desde 218,1 bar hasta 15 bar para lograr separar los gases contenidos en ella en el separador V-106. En este separador se libera una segunda purga y se obtiene por el fondo el producto final de 1022,7 toneladas por día de amoniaco al 99,56% de pureza.

Corriente	49	50	51	52	53
Temperatura [°C]	509,4	350,0	257,2	40,0	23,0
Presión [bar]	218,6393	218,5014	218,4325	218,3635	218,2256
Frac. Vapor	1,0000	1,0000	1,0000	0,9629	0,9146
Entalpía [Kcal/Kg]	91,9	-26,6	-93,3	-260,5	-290,7
F. másico [Kg/h]					
CH₄	17876	17876	17876	17876	17876
H ₂ O	0	0	0	0	0
H ₂	20596	20596	20596	20596	20596
CO	0	0	0	0	0
CO ₂	0	0	0	0	0
N ₂	92030	92030	92030	92030	92030
O ₂	0	0	0	0	0
Ar	24185	24185	24185	24185	24185
NH ₃	46611	46611	46611	46611	46611
MEA	0	0	0	0	0
Total	201298	201298	201298	201298	201298

	E-116	E-117a	E-117b	E-118
Q [Kcal/h]	23847210	13422997	33656712	6083480

Corriente	54	55	56	57	61
Temperatura [°C]	23,0	23,0	-26,0	-26,0	25,2
Presión [bar]	218,2256	218,2256	218,0877	218,0877	217,9498
Frac. Vapor	0,0000	1,0000	0,9368	1,0000	1,0000
Entalpía [Kcal/Kg]	-929,5	-195,9	-259,6	-177,4	-138,8
F. másico [Kg/h]					
CH₄	298	17578	17578	17428	17428
H ₂ O	0	0	0	0	0
H ₂	26	20569	20569	20563	20563
CO	0	0	0	0	0
CO ₂	0	0	0	0	0
N ₂	180	91850	91850	91812	91812
O ₂	0	0	0	0	0
Ar	81	24104	24104	24083	24083
NH ₃	25433	21178	21178	3733	3733
MEA	0	0	0	0	0
Total	26018	175280	175280	157619	157619

	E-119	E-118
Q [Kcal/h]	11166285	6083480

Corriente	Purga 1	62	63	64	58
Temperatura [°C]	25,2	25,2	26,4	241,3	-26,0
Presión [bar]	217,9498	217,9498	220,2758	220,1379	218,0877
Frac. Vapor	1,0000	1,0000	1,0000	1,0000	0,0000
Entalpía [Kcal/Kg]	-138,8	-138,8	-137,9	17,2	-993,0
F. másico [Kg/h]					
CH₄	425	17003	17003	17003	150
H ₂ O	0	0	0	0	0
H ₂	502	20062	20062	20062	6
CO	0	0	0	0	0
CO ₂	0	0	0	0	0
N ₂	2240	89572	89572	89572	38
O ₂	0	0	0	0	0
Ar	588	23495	23495	23495	21
NH ₃	91	3642	3642	3642	17445
MEA	0	0	0	0	0
Total	3846	153773	153773	153773	17661

	K-105	E-116
Q [Kcal/h]	142887	23847210

Corriente	59	60	Purga 2	Amoniaco
Temperatura [°C]	3,7	6,1	6,1	6,1
Presión [bar]	218,0877	15,0000	15,0000	15,0000
Frac. Vapor	0,0009	0,0270	1,0000	0,0000
Entalpía [Kcal/Kg]	-955,2	-955,2	-579,7	-964,6
F. másico [Kg/h]				
CH₄	449	449	280	168
H ₂ O	0	0	0	0
H ₂	32	32	31	1
CO	0	0	0	0
CO ₂	0	0	0	0
N ₂	218	218	208	10
O ₂	0	0	0	0
Ar	102	102	94	8
NH ₃	42878	42878	451	42426
MEA	0	0	0	0
Total	43679	43679	1066	42613

7.9.- Sección de Combustión y Convección del Reformador Primario

Figura 7.11: Sección de combustión y convección del Reformador Primario

En la parte de combustión del reformador se consigue alcanzar la temperatura necesaria para que ocurra la reformación de metano con vapor dentro de los tubos. Para ello se hace reaccionar metano del gas natural con oxígeno con un 10% de exceso de acuerdo a la siguiente reacción:

$$CH_4 + 2O_2 \rightarrow 2H_2O + CO_2$$

A través del poder calorífico del Gas Natural 11856,7 Kcal/Kg y la temperatura de salida necesaria para los gases de combustión, se obtuvo la masa necesaria para generar los 47655185,4 Kcal/h requeridos en el reformador primario, 8008,4 Kg/h. El 56% del calor disponible es gastado en la sección de combustión el resto es utilizado en la sección de convección. Los gases de combustión abandonan la primera sección a 1028,5°C. Estos gases son ocupados en la etapa de convección en los siguientes servicios:

- Recalentamiento final de vapor de 120 bar a 490°C (corriente 208) en el equipo E-503, para su utilización en E-113.
- Calentamiento final del aire (corriente 8) a 600°C luego de la etapa de compresión, en el equipo E-103.
- Precalentamiento final de la mezcla Gas Natural y Vapor (corriente 1) a 600°C antes de entrar al Reformador primario en E-102.
- Recalentamiento del Vapor de proceso a 320°C en E-501.
- Producción de parte del Vapor de proceso saturado en E-502.
- Producción de líquido saturado a 40,1 bar en E-504.

Los gases de combustión abandona la sección de convección a 247,3°C. El calor total utilizado en esta parte equivale a 37397794,4 Kcal/h.

Corriente	500	501	502	503	504
Temperatura [°C]	33,0	20,0	21,4	1028,5	1009,1
Presión [bar]	4,0000	4,0000	4,0000	4,0000	3,8621
Frac. Vapor	1,0000	1,0000	1,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	-1117,0	-1,4	-57,9	-358,8	-365,1
F. másico [Kg/h]					
CH₄	7940	0	7940	0	0
H₂O	0	0	0	17832	17832
H ₂	0	0	0	0	0
CO	0	0	0	0	0
	52	0	52	21834	21834
N ₂	16	113407	113423	113423	113423
O ₂	0	34846	34846	3171	3171
Ar	0	2071	2071	2071	2071
NH ₃	0	0	0	0	0
MEA	0	0	0	0	0
Total	8008	150324	158333	158331	158331

	R-1	E-503
Q [Kcal/h]	47655185	991968

Corriente	505	506	507	508	509
Temperatura [°C]	905,1	506,2	451,6	269,3	247,3
Presión [bar]	3,7242	3,5863	3,4484	3,3105	3,1726
Frac. Vapor	1,0000	1,0000	1,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	-398,3	-520,7	-536,7	-588,9	-595,0
F. másico [Kg/h]					
CH₄	0	0	0	0	0
H ₂ O	17832	17832	17832	17832	17832
H ₂	0	0	0	0	0
CO	0	0	0	0	0
CO ₂	21834	21834	21834	21834	21834
N ₂	113423	113423	113423	113423	113423
O ₂	3171	3171	3171	3171	3171
Ar	2071	2071	2071	2071	2071
NH ₃	0	0	0	0	0
MEA	0	0	0	0	0
Total	158331	158331	158331	158331	158331

	E-103	E-102	E-501	E-502	E-504
Q [Kcal/h]	5262882	19368849	2541368	8258268	974459

7.10.- Distribución de agua de enfriamiento

Figura 7.12: Distribución del agua de enfriamiento

Se consideró un total de 5001,8 Ton/h de agua a 25°C para enfriar las corrientes de los equipos mostrados en la figura 7.12. La temperatura del agua de salida de cada equipo es de 45°C. Todas estas corrientes son recolectadas y enviadas a una torre de enfriamiento para ser reutilizada nuevamente en el ciclo.

7.11.- Producción de Vapor de Proceso

Para la producción de Vapor de Proceso, el intercambiador E-107 recibe alimentación fresca de agua a 20°C y 15 bar y la entrega como líquido subenfriado a 180,4°C y 14,3 bar. Este líquido subenfriado es enviado a la bomba P-101 donde se aumenta la presión a 41,5 bar y luego alimentado a dos intercambiadores, primero a E-111a y posteriormente a E -504 donde se consigue la saturación. Este líquido saturado es distribuido en los vaporizadores E-105, E-117a y E-502 para producir el vapor de proceso necesario para el reformado, es decir, 3750 Kmol/h. Luego es recalentado en el intercambiador E-501.

Figura 7.13: Producción de Vapor de Proceso

Corriente	100	101	102	103	104
Temperatura [°C]	20,0	180,4	180,9	241,5	252,6
Presión [bar]	15,0000	14,3105	41,5170	40,8275	40,1380
Frac. Vapor	0,0000	0,0000	0,0000	0,0000	0,0000
Entalpía [Kcal/Kg]	-3793,2	-3619,4	-3618,4	-3545,6	-3531,2
F. másico [Kg/h]					
CH ₄	0	0	0	0	0
H ₂ O	67557	67557	67557	67557	67557
H ₂	0	0	0	0	0
CO	0	0	0	0	0
CO ₂	0	0	0	0	0
N ₂	0	0	0	0	0
O ₂	0	0	0	0	0
Ar	0	0	0	0	0
NH ₃	0	0	0	0	0
MEA	0	0	0	0	0
Total	67557	67557	67557	67557	67557

	E-107	P-101	E-111a	E-504
Q [Kcal/h]	11741782	66974	4917121	974459

Corriente	105	106	107	108	109
Temperatura [°C]	252,6	252,6	252,6	252,6	252,6
Presión [bar]	40,1380	40,1380	40,1380	40,1380	40,1380
Frac. Vapor	0,0000	0,0000	0,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	-3531,2	-3531,2	-3531,2	-3118,0	-3118,0
F. másico [Kg/h]					
CH ₄	0	0	0	0	0
H ₂ O	32485	15087	19986	32485	15087
H ₂	0	0	0	0	0
CO	0	0	0	0	0
CO ₂	0	0	0	0	0
N ₂	0	0	0	0	0
O ₂	0	0	0	0	0
Ar	0	0	0	0	0
NH ₃	0	0	0	0	0
MEA	0	0	0	0	0
Total	32485	15087	19986	32485	15087

	E-117a	E-105	E-502
Q [Kcal/h]	13422986	6233923	8258268

Corriente	110	111	Vap. Proceso
Temperatura [°C]	252,6	252,6	320,0
Presión [bar]	40,1380	40,1380	40,1380
Frac. Vapor	1,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	-3118,0	-3118,0	-3080,4
F. másico [Kg/h]			
CH ₄	0	0	0
H₂O	19986	67557	67557
H ₂	0	0	0
CO	0	0	0
CO ₂	0	0	0
N ₂	0	0	0
O ₂	0	0	0
Ar	0	0	0
NH ₃	0	0	0
MEA	0	0	0
Total	19986	67557	67557

	E-501
Q-[Kcal/h]	2541368

7.12.- Ciclo de Vapor 120 bar

El ciclo de vapor cumple con los requerimientos de calentamiento y enfriamiento de los distintos equipos involucrados, figura 7.14.

Figura 7.14: Ciclo de Vapor 120 bar

Estos equipos son descritos a continuación:

- Intercambiador E-104: Recibe vapor saturado a 120 bar (330,2°C) proveniente de E-113 y lo recalienta a 490°C
- Reboiler Torre T-101:Utiliza parte del vapor recalentado a 120 bar y 490°C producido enE-104 y lo entrega como vapor saturado al ciclo
- Intercambiador E-114: Recalienta vapor saturado a 120 bar y lo recalienta a 398°C ocupando el calor sensible de los gases de salida del primer lecho catalítico del convertidor de amoniaco.
- Intercambiador E-115: Recibe el vapor recalentado a 398°C proveniente de E-114 y lo recalienta 479°C ocupando los gases de salida del segundo lecho catalítico del convertidor de amoniaco.
- *Intercambiador E-503:* Recibe el vapor recalentado de E-115 y lo recalienta a 490°C, ocupando los gases de combustión del reformador primario.
- Intercambiador E-113: Utiliza el vapor recalentado a 120 bar y 490°C producido en E-104 y en E-503, para elevar la temperatura a 400,9°C de la corriente de alimentación al convertidor de síntesis de amoniaco (corriente 43). El vapor sale saturado y es enviado a E-104 iniciando nuevamente el ciclo.

Corriente	200	201	202	203	204	205
Temperatura [°C]	330,2	490,0	490,0	490,0	330,2	330,2
Presión [bar]	120,0000	120,0000	120,0000	120,0000	120,0000	120,0000
Frac. Vapor	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	-3128,5	-3013,9	-3013,9	-54295,3	-56359,8	-3128,5
F. másico [Kg/h]						
CH₄	0	0	0	0	0	0
H ₂ O	412508	412508	82442	330065	330065	180399
H ₂	0	0	0	0	0	0
CO	0	0	0	0	0	0
CO ₂	0	0	0	0	0	0
N ₂	0	0	0	0	0	0
O ₂	0	0	0	0	0	0
Ar	0	0	0	0	0	0
NH ₃	0	0	0	0	0	0
MEA	0	0	0	0	0	0
Total	412508	412508	82442	330065	330065	180399

	E-104	Reboiler
Q [Kcal/h]	47272575	37824838

Corriente	206	207	208	209	210	211
Temperatura [°C]	330,2	397,8	479,4	490,0	490,0	330,2
Presión [bar]	120,0000	120,0000	120,0000	120,0000	120,0000	120,0000
Frac. Vapor	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
Entalpía [Kcal/Kg]	-3128,5	-3074,4	-3020,5	-3013,9	-3013,9	-3128,5
F. másico [Kg/h]						
CH ₄	0	0	0	0	0	0
H ₂ O	149666	149666	149666	149666	232109	232109
H ₂	0	0	0	0	0	0
CO	0	0	0	0	0	0
CO ₂	0	0	0	0	0	0
N ₂	0	0	0	0	0	0
O ₂	0	0	0	0	0	0
Ar	0	0	0	0	0	0
NH ₃	0	0	0	0	0	0
MEA	0	0	0	0	0	0
Total	149666	149666	149666	149666	232109	232109

	E-114	E-115	E-503	E-113
Q [Kcal/h]	8094887	8058801	997790	26599276

7.13.- Referencias

- [1] Villesca, Bala, Garcia. 2005. Reactor Proyect: Ammonia Síntesis. Department of Chemical Engineering. Rice University. http://www.owlnet.rice.edu/ceng403/nh3syn97.html
- Strait, Allum, Gidwani. 2005. Síntesis Gas Reformer. Department of Chemical Engineering. Rice University. http:// www.owlnet.rice.edu/chbe403/nh3ref97.html
- [3] Jaureguiberry. 2005. Estudio Comparativo de Procesos de Recuperación de CO₂ por Absorción con Aminas. Universidad Politécnica de Cataluña. España
- [4] Salako A.E.. 2005. Removal of Carbon Dioxide from natural Gas for LNG Production. Technology Norwegian University of Cience and Technology. Trendheim, Norway http://www.ipt.ntnu.no/jsg/studenter/prosjekt/salako2005.pdf
- [5] Kohl, Nielsen. Gas Purification, 5^a Edición. Gulf Publishing Company. Houston, Texas
- [6] Victor Ferro. Simulación y Optimización de Procesos. Área de Ingeniería Química, Universidad Autónoma de Madrid, España http://www.uam.es/personal_pdi/ciencias/vferro
- [7] Ullmanns Encyclopedia of Industrial Chemistry. 2002. 6ª Edición. CD-ROM
- [8] Niño Z., Pérez S., Pérez L.. Simulación y Evaluación de la Sección de Lavado de CO₂ de una Planta de Amoniaco. Unidad de Investigación de Ingeniería de Procesos, Universidad de Carabobo, Venezuela http://dpi.eq.ufrj.br/ciaiq_22/CD/formCrCongreso/papers/06c/06c_573.pdf

Capítulo 8

DISEÑO DE EQUIPOS

8.- Diseño de Equipos

8.1.- Diseño Reformador Primario R-1 [1]

El reformador primario es de flujo de calor limitado; esto es, el tamaño del reactor es determinado basado en el área de superficie sobre el cual el calor necesario para la reformación es transferido. El tamaño de tubo elegido fue de 4 pulg de diámetro y 35 pies de largo. Este tamaño es consistente con el promedio industrial. El máximo flujo de calor a través de las paredes de los tubos del reformador es aproximadamente 5921,2 Kcal/pie²*h. Usando este valor y la carga calórica que necesita, el reformador primario fue calculado como sigue:

Máximo flujo de calor a través de las paredes del tubo

F_{calor} = 5921,2 [Kcal/pie²*h]

Flujo de calor a través del reformador primario

Q_{R-1} = 47655185,3 [Kcal/h] (Pág. 103)

Área de superficie total necesaria de los tubos

$$A_{total} = \frac{Q_{R-1}}{F_{calor}}$$
 Ec. 8.1

 $A_{total} = 8048,2 \text{ [pie}^2\text{]}$

Área de superficie por tubo

 $A_{tubo} = \pi \times D \times L$ Ec. 8.2

 $A_{tubo} = 36,7 \text{ [pie}^2\text{]}$

Número de tubos

$$N_{tubos} = \frac{A_{total}}{A_{tubo}}$$
 Ec. 8.3

N_{tubos} = 219,3 ≈ 220

Debido a la alta presión y temperatura en el reformador primario, el material más adecuado para los tubos es aleación 310, 25% Cr - 20% Ni,

El volumen de catalizador fue calculado del número de tubos y el volumen de tubo. El reformador primario contiene un total de 672 pie³ de catalizador.

Nombre	NIAP-18
Forma	anillo
Composición química, %	
NiO	10 - 12
Densidad bulk, g/cm ³	1,0
Tamaño (H x D x Di), mm	14,5*12*6,5

Tabla 8.1: Especificaciones del catalizador [2]

Condiciones de operación [2]

•	Presión:	sobre 34 bar
•	Temperatura de salida del horno:	750 – 850°C
•	Velocidad espacial:	1500 – 1800 h ⁻¹
•	Razón Vapor/gas:	2,9-4,0

Caída de presión:

La ecuación de Ergun da la caída de presión en lechos:

$$\frac{dP}{dL} = -\frac{G}{\rho \times g_c \times D_P} \times \left(\frac{1-\phi}{\phi^3}\right) \times \left[\frac{150 \times (1-\phi) \times \mu}{D_P} + 1,75 \times G\right]$$
 Ec. 8.4

Donde:

P = Caída de presión [lb/pie²]

V_p = Volumen de la partícula

S_p = Superficie de la partícula

 $D_P = 6^*V_p/S_p = Diámetro equivalente de la partícula [pie]$

 Φ = Fracción de huecos

 $g_c = 4,17*10^8 [lb_m*pie/h^{2*}lb_f]$ (Factor de conversión)

- ρ = Densidad [lb/pie³]
- u = Velocidad superficial [pie/h]

 μ = Viscosidad [lb_m/pie*h]

G = ρ^*u = Velocidad superficial másica [lb/pie^{2*}h]

L = Largo [pie]

Tabla 8.2: Datos de operación del Reformador Primario

Presión de entrada [lb/pie ²]	83541,7
F másico [lb/h]	193525,7
ρ promedio [lb/pie³]	0,4852
Área transversal del tubo [pie ²]	0,0872
G [lb/pie ² *h]	10080,5
L [pie]	35
μ promedio [lb _m /pie*h]	0,0688
Φ	0,55
V _p [pulg ³]	0,0707
S _p [pulg ²]	1,5539
D _P [pie]	0,0228

Por lo tanto la presión de salida es de 79842,6 lb/pie² o 38,23 bar, lo que da una caída de presión a través del lecho de 1,77 bar.

8.2.- Diseño Reformador Secundario R-2 [1]

El reformador secundario fue diseñado basado en datos industriales con una razón largodiámetro de aproximadamente 1. El reactor es de 12 pies de diámetro y 20 pies de largo. Los 10 pies superiores del reactor se encuentran libres de catalizador para que la reacción de combustión pueda ocurrir fuera del catalizador.

Nombre	NIAP-20-01
Forma	anillo
Composición química, %	
NiO	11
CaO	8 - 10
Densidad bulk, g/cm ³	1,2
Tamaño (H x D x Di), mm	14,5*12*6,5

Tabla 8.3: Especificaciones del catalizador [2]

Condiciones de operación [2]

- Presión: sobre 35 bar
- Temperatura de salida: 950 1000°C
- Velocidad espacial: 1000 1300 h⁻¹
- Razón aire/gas: 1,43 1,44

Caída de presión

Para el cálculo de la caída de presión fue necesario conocer las condiciones de entrada al lecho catalítico. Para ello se consideró que solo procede la reacción de combustión en la parte superior del reactor antes de entrar al lecho catalítico. Luego de haber considerado esto se obtuvieron los siguientes datos para calcular la caída de presión con la ecuación de Ergun (Ec. 8.4):

Presión de entrada [lb/pie ²]	79842,8
F másico [lb/h]	303969,5
ρ promedio [lb/pie³]	0,3456
Área transversal del tubo [pie ²]	113,1
G [lb/pie ² *h]	2687,8
L [pie]	10
μ promedio [lb _m /pie*h]	0,0959
Φ	0,51
V _p [pulg ³]	0,0707
S _p [pulg ²]	1,5539
D _P [pie]	0,0228

Tabla 8.4: Datos de operación del Reformador Secundario

Por lo tanto la presión de salida es de 79691,0 lb/pie² o 38,16 bar, lo que da una caída de presión a través del lecho de 0,07 bar.

8.3.- Diseño Convertidores de monóxido de carbono [3]

Para el diseño de los convertidores de monóxido de carbono se asumió una velocidad espacial dentro de los rangos de operación de cada catalizador. Así, conociendo los flujos de gas alimentados al sistema, es posible determinar el volumen total de catalizador requerido para cada uno de los convertidores.

Volumen total del catalizador

$$V_{cat} = \frac{F_{vol}}{V_{esp}}$$
 Ec. 8.5

Donde:

- V_{cat} : Volumen del catalizador en el equipo [m³]
- F_{vol} : Flujo volumétrico del gas [m³/h]
- V_{esp} : Velocidad espacial del gas al interior de la unidad [h⁻¹]

Volumen del equipo

$$V_{equipo} = \frac{V_{cat}}{(1-\phi)}$$
 Ec. 8.6

Donde:

 V_{equipo} : Volumen del equipo [m³]

- V_{cat} : Volumen del catalizador en el equipo [m³]
- ϕ : Fracción de huecos

Diámetro

Para el cálculo del diámetro se asume una relación H/D.

$$D_{equipo} = \sqrt[3]{\frac{4 \times V_{equipo}}{\frac{H}{D} \times \pi}}$$
Ec. 8.7

Donde:

 D_{equipo} : Diámetro del equipo [m] V_{equipo} : Volumen del equipo [m³]

Velocidad del gas

$$u = \frac{F_{vol}}{A_{trans}} \times \frac{1}{3600}$$
 Ec. 8.8

Donde:

u : Velocidad del gas [m/s]

 F_{vol} : Flujo volumétrico del gas [m³/h]

A_{trans} : Área transversal del equipo [m²]

8.3.1- Diseño Convertidor de alta temperatura HTS

Las consideraciones que se tuvieron son las siguientes:

•	Presión de entrada:	38,02 [bar]
•	Temperatura de entrada:	350,0 [°C]
•	F volumétrico (F _{vol}):	11991,8 [m³/h]
•	Velocidad espacial (V _{esp}) recomendada:	1175 [h⁻¹]
•	Catalizador:	SK-201
•	Fracción de huecos (Φ):	0,33
•	Razón H/D:	2

Volumen del catalizador

 $V_{cat} = 10,21 \, [m^3]$ (Ec. 8.5)

Volumen del convertidor HTS

 $V_{equipo} = 15,23 \text{ [m}^3 \text{]}$ (Ec. 8.6)

Diámetro del convertidor HTS

 $D_{equipo} = 2,13 \text{ [m]}$ (Ec. 8.7)

Altura del convertidor HTS

 $H_{equipo} = 4,26 \text{ [m]}$

Velocidad del gas

u = 0,93 [m/s] (Ec. 8.8)

Nombre	SK-201
Forma	tableta
Composición química, %	Fe ₂ O ₃
	Cr ₂ O ₃
	CuO
Densidad bulk, g/cm ³	1,2
Tamaño (D x H), mm	6*6

|--|

Condiciones de operación [2]

٠	Presión:	9,8 – 53,9 bar(g)

• Temperatura: 350 – 500°C

Caída de presión

Para obtener la caída de presión se utiliza la ecuación de Ergun (Ec. 8.4):

Presión de entrada [lb/pie ²]	79402,4
F másico [lb/h]	303969,9
ρ promedio [lb/pie³]	0,6755
Área transversal del tubo [pie ²]	38,45
G [lb/pie ² *h]	7904,7
L [pie]	13,99
μ promedio [lb _m /pie*h]	0,0559
Φ	0,33
V _p [pie ³]	0,000006
S _p [pie ²]	0,001826
D _P [pie]	0,019685

Tabla 8.6: Da	atos de opera	ación del Cor	vertidor HTS
---------------	---------------	---------------	--------------

Por lo tanto la presión de salida es de 74151,5 lb/pie² o 35,50 bar, lo que da una caída de presión a través del lecho de 2,51 bar.

8.3.2- Diseño Convertidor de baja temperatura LTS

Las consideraciones que se tuvieron son las siguientes:

•	Presión de entrada:	35,23 [bar]
•	Temperatura de entrada:	200,0 [°C]
•	F volumétrico (F _{vol}):	9782,5 [m³/h]
•	Velocidad espacial (V _{esp}) recomendada:	350 [h⁻¹]
•	Catalizador:	LK-821-2
•	Fracción de huecos (Φ):	0,33
•	Razón H/D:	1

Volumen del catalizador

 $V_{cat} = 27,95 \,[\text{m}^3]$ (Ec. 8.5)

Volumen del convertidor LTS

 $V_{equipo} = 41,72 \text{ [m}^3 \text{]}$ (Ec. 8.6)

Diámetro del convertidor LTS

 $D_{equipo} = 3,76 \text{ [m]}$ (Ec. 8.7)

Altura del convertidor LTS

 $H_{equipo} = 3,76 \text{ [m]}$

Velocidad del gas

u = 0,24 [m/s] (Ec. 8.8)

Nombre	SNK-2
Forma	tableta
	CuO
Composición química, %	ZnO
	AI_2O_3
Densidad bulk, g/cm ³	1,3
Tamaño (D x H), mm	6*4

Tabla 8.7: Especificaciones del catalizador [2]

Condiciones de operación [2]

٠	Presión:	9,8 – 53,9 bar(g)

• Temperatura: 185 - 275°C

Caída de presión

Para obtener la caída de presión se utiliza la ecuación de Ergun (Ec. 8.4):

Presión de entrada [lb/pie ²]	73575,5
F másico [lb/h]	303969,5
ρ promedio [lb/pie³]	0,8569
Área transversal del tubo [pie ²]	119,45
G [lb/pie ² *h]	2544,7
L [pie]	12,33
μ promedio [lb _m /pie*h]	0,0448
Φ	0,33
V _p [pie ³]	0,000004
S _p [pie ²]	0,001420
D _P [pie]	0,001406

Tabla 8.8:	Datos de	operación	del Convertidor	LTS
------------	----------	-----------	-----------------	-----

Por lo tanto la presión de salida es de 64657,5 lb/pie² o 30,96 bar, lo que da una caída de presión a través del lecho de 4,27 bar.

8.4.- Diseño Metanizador M-100 [3]

El método de diseño del Metanizador es el mismo que el utilizado para el diseño de los convertidores de monóxido de carbono.

Las consideraciones que se tuvieron son las siguientes:

•	Presión de entrada:	30,5 [bar]
•	Temperatura de entrada:	290,0 [°C]
•	F volumétrico (F _{vol}):	8584,3 [m³/h]
•	Velocidad espacial (V _{esp}) recomendada:	3000 [h⁻¹]
•	Catalizador:	NIAP-07-02
•	Fracción de huecos (Φ):	0,33
•	Razón H/D:	2

Volumen del catalizador

$V_{cat} =$	2,86 [m ³]	(Ec. 8.5)
cai	/ L J	`	

Volumen del Metanizador M-100

$$V_{equipo} = 4,27 \text{ [m}^3 \text{]}$$
 (Ec. 8.6)

Diámetro del Metanizador M-100

$$D_{equipo} = 1,40 \text{ [m]}$$
 (Ec. 8.7)

Altura del Metanizador M-100

$$H_{equipo} = 2,79 \, [m]$$

Velocidad del gas

$$u = 1,56 \text{ [m/s]}$$
 (Ec. 8.8)

Tabla 8.9: Especificaciones del catalizador [2]

Nombre	NIAP-07-02
Forma	tableta
Composición química, %	
NiO	32 - 38
Densidad bulk, g/cm ³	1,15
Tamaño, mm	5,5*5

Condiciones de operación [2]

- Presión: 20 300 bar
- Temperatura: 180 450°C
- Velocidad espacial: 3000 20000 h⁻¹

Caída de presión

Para obtener la caída de presión se utiliza la ecuación de Ergun (Ec. 8.4):

Presión de entrada [lb/pie ²]	63793,5
F másico [lb/h]	105930,1
ρ promedio [lb/pie³]	0,3302
Área transversal del tubo [pie ²]	16,5
G [lb/pie ² *h]	6432,4
L [pie]	9,2
μ promedio [lb _m /pie*h]	0,0492
Φ	0,33

Tabla 8.10: Datos de operación del Metanizador

V _p [pie]	0,000004
S _p [pie]	0,001441
D _P [pie]	0,017462

Por lo tanto la presión de salida es de 58522,3 lb/pie² o 28,02 bar, lo que da una caída de presión a través del lecho de 2,52 bar.

8.5.- Sistema de absorción de CO₂

8.5.1- Aspectos generales

El dióxido de carbono (CO₂) contenido en el gas de síntesis de amoniaco debe ser eliminado con el objeto de prevenir y evitar el envenenamiento del catalizador del convertidor de síntesis de amoniaco.

El sistema de absorción de CO_2 consiste en la absorción química del CO_2 con una solución de amina, en este caso MEA, en una columna de absorción de platos, seguido de la posterior regeneración de la amina utilizada en una columna de desorción. La unidad está localizada entre el convertidor de CO de baja temperatura y la unidad de metanización.

La selección de la solución de MEA es debido a que opera en forma óptima cuando se trata de condiciones de baja presión parcial de CO_2 (< 100 psia) y se requiere una alta captura de CO_2 . Otra de sus ventajas es su alta alcalinidad y su facilidad de descarga, lo que hace que pueda ser regenerado fácilmente.

8.5.2.- Consideraciones de diseño

La elección de la concentración de amina puede ser bastante arbitraria y normalmente se hace a partir de la experiencia en operación. Típicamente el rango de concentración de la solución de MEA varía del 12% en peso a un máximo del 32% en peso. Se ha de notar que para utilizar una solución con una concentración mayor del 32% se han de añadir inhibidores de la corrosión a ésta y el gas a tratar ha de ser únicamente CO_2 [4].

La tabla 8.11 muestra los rangos de temperaturas recomendados por el Simulador de Procesos Hysys para el absorbedor:

Corriente del absorbedor	Rango de temperatura
Gas de alimentación	65-130°F (18-55°C)
Solución de MEA pobre	100-120°F (37-50°C)
Solución de MEA rica	120-160°F (48-72°C)

 Tabla 8.11: Temperaturas recomendadas para el Absorbedor [5]

Las limitaciones de equilibrio de solubilidad indican que la presión parcial del gas ácido debe estar en el rango de 0,0001-300 psia [5].

El número de etapas para una columna de absorción se establece en base a la experiencia, siendo recomendadas entre 15 y 20 etapas reales [4].

En el absorbedor típico de 20 etapas, la mayoría del gas ácido es absorbido en la parte inferior de la columna mientras que la parte superior sirve para captar el poco ácido que llega a la parte superior.

La etapa de desorción consiste en una columna de destilación que trabaja con condensación parcial. La razón de reflujo suele estar en el rango de 3:1 hasta un mínimo de 1:1 [4].

Las columnas de desorción contienen de 12 a 20 etapas reales por debajo del punto de alimentación, y de 2 a 6 por encima, para capturar así la amina que se pueda evaporar. Para una amina mas volátil como la MEA es aconsejable que sean entre 4 y 6 [4].

La elección entre relleno o platos es arbitraria ya que ambas elecciones pueden ser diseñadas para hacer un trabajo adecuado y rara vez el factor económico es decisivo a favor de uno u otro.

Las columnas de platos perforados son probablemente las más utilizadas para absorbedores y desorbedores en grandes plantas convencionales de tratamiento de gases con aminas, mientras que las columnas de relleno son utilizadas para mejorar la capacidad o la eficiencia de aplicaciones especiales. Las columnas de platos son particularmente aplicables para procesos de alta presión donde las especificaciones de pureza del gas tratado pueden ser conseguidas con unos 20 platos.

La regeneración de la solución de amina es favorecida por bajas presiones y altas temperaturas. La temperatura de entrada de la amina rica al desorbedor es del orden de los 100°C, mientras que el agua de reflujo del condensador entrara por la parte superior a unos 55°C [4]. La mezcla resultante ira incrementando su temperatura hasta salir la amina pobre por la parte inferior de la columna a unos 115 – 120°C.

El calor suministrado por el reboiler debe ser suficiente para:

- Aumentar la temperatura de la solución de alimentación hasta la temperatura de la solución pobre que deja el reboiler.
- Suministrar la suficiente energía para hacer reversibles las reacciones de amina-gas ácido.
- Suministrar el calor latente y sensible necesario para convertir el agua de reflujo en vapor el cual servirá como vapor de extracción.

La temperatura del reboiler no debe exceder los 280°F para evitar la degradación física de las aminas en subproductos corrosivos [5]. La carga térmica del reboiler esta en el rango de 1000 – 1200 Btu/gal de solución de amina pobre [6].

La tabla 8.12 muestra las condiciones típicas en la operación con MEA en equipos de relleno y de platos, así como la aplicación de eficiencias típicas de platos y alturas equivalentes en relleno a los números teóricos de etapas, que se pueden obtener gráficamente.

	Tray Columns	Packed Columns (3)
MEA Solution Concentration, wt%	31.5	31.1
CO ₂ Removal, tons/day	1,018	1,124
Lean Loading, moles/mole	0.18	0.18
Rich Loading, moles/mole	0.51	0.53
MEA Circulation Rate, gpm	2,450	2,350
Regenerator Heat Duty, MMBtu/hr	123.7	131.1
CO ₂ Leakage, ppmv Absorber	502	27
Pressure drop, psi	19.3	5.4
Temp. rise, °F	53	50
Bottom temp.,°F	204	166
Active height, number of trays or feet of packing	20 trays	31.5 ft
No. of theoretical stages (1)	3.60	3.88
Tray efficiency, % or HETP, ft	18%	8.1 ft
Stripper		
Pressure drop, psi (2)	4.5	2.5
Bottom pressure, psig	12.0	10.0
Bottom temp.,°F	249	245
Reflux ratio, moles water vapor/mole CO2	1.5	1.2
Active height, number of trays, or feet of packing	17 trays	31.5 ft
No. of theoretical stages	12.8	15.0
Tray efficiency, % or HETP, ft	70%	2.1 ft

Tabla 8.12: Operación de un sistema de eliminación de CO₂ con MEA de un Planta de Amoniaco con columnas de platos y empacadas [4]

8.5.3.- Características del sistema de absorción de CO₂ con MEA.

Las siguientes tablas 8.13, 8.14 y 8.15 muestran las dimensiones de los equipos y resultados de la simulación del sistema de absorción de CO_2 con MEA.

Concentración solución MEA, % en peso	28,5
Remoción de CO ₂ , [Ton/día]	1318,5
Carga de amina pobre en CO ₂ , [mol CO ₂ /mol MEA]	0,22
Carga de amina rica en CO ₂ , [mol CO ₂ /mol MEA]	0,62
Circulación de MEA, [gpm]	2762,9
Carga calórica del regenerador, [MMBtu/h]	150
CO ₂ no absorbido, ppmv	484,3

Tabla 8.13: Características generales del sistema de Absorción de CO₂

Tabla 8.14: Características del Absorbedor

Temperatura gas alimentación, [ºC]	35,0
Presión gas alimentación, [bar]	30,7
Presión parcial CO ₂ , [bar]	5,5
Temperatura MEA pobre en CO ₂ , [ºC]	30,0
Temperatura MEA rica en CO ₂ , [ºC]	62,5
Número de platos	20
Espaciamiento de platos, [m]	0,61
Diámetro, [m]	1,90
Altura, [m]	15

Temperatura MEA rica en CO ₂ , [ºC]	100,0
Presión MEA rica en CO ₂ , [bar]	3,7
Temperatura del fondo, [ºC]	112,4
Número etapas reales (no incluye cond. y reboiler)	20
Etapa de alimentación	4
Razón de reflujo	1,1
Espaciamiento de platos, [m]	0,61
Diámetro, [m]	3,40
Altura, [m]	15

Tabla 8.15: Características del Desorbedor

Las ecuaciones y el detalle del diseño del absorbedor y el desorbedor se encuentran en el ANEXO B.

8.6.- Reactor de síntesis de amoniaco

8.6.1.- Aspectos generales [7]

La síntesis de amoniaco desde nitrógeno e hidrógeno es una reacción reversible y puede ser descrita por la reacción global siguiente:

$$\frac{1}{2}N_2 + \frac{3}{2}H_2 \Leftrightarrow NH_3 \qquad \Delta H_{298K} = -45.7 \left[\frac{KJ}{mol}\right]$$

y la constante de equilibrio está definida como:

$$K_{eq} = \frac{p_{NH_e}}{p_{N_2}^{1/2} p_{H_2}^{3/2}}$$
 Ec. 8.9

La formación de amoniaco es una reacción reversible exotérmica con una considerable liberación de calor. La reacción está acompañada por una disminución en el número de moles de gas de 2 a 1. Según el principio de Le Chatelier:

- i. Incrementando la presión causa que el equilibrio se desplace a la derecha resultando una mayor formación de amoniaco ya que hay una disminución en la presión.
- ii. Disminuyendo la temperatura también causa que el equilibrio se desplace a la derecha resultando una mayor formación de amoniaco ya que la reacción es exotérmica.

La figura 8.1 (A) y (B) muestran el efecto de la temperatura y la presión en la fracción molar de equilibrio de amoniaco. Se puede apreciar que la fracción molar de amoniaco disminuye cuando la temperatura aumenta (figura 8.1 (A)) mientras que aumenta cuando la presión se incrementa (figura 8.1 (B)).

Se puede concluir entonces que la síntesis de amoniaco es una reacción que es favorecida por bajas temperaturas y alta presión.

Usualmente, un sistema que tiene un calor de reacción exotérmico bajo condiciones de operación debería reaccionar espontáneamente. Sin embargo, para formar amoniaco desde moléculas de nitrógeno e hidrógeno, se requiere alta energía para conseguir que la molécula de nitrógeno alcance un estado activado. Esto es debido a su alta energía de disociación (941 kJ/mol) la cual es considerablemente mayor que la del hidrógeno. Para conseguir esto es necesario trabajar a altas temperaturas lo cual conduce a la reacción inversa, es decir, a la descomposición de amoniaco. Aquí es donde el catalizador de fierro cumple un rol importante.

Figura 8.1: Fracción molar de amoniaco al equilibrio desde una mezcla inicial de gas N₂/H₂ 1:3 a (A) diferentes temperaturas para un valor fijo de presión (B) a diferentes presiones a un valor fijo de temperatura.

La figura 8.2 muestra los perfiles de energía para la síntesis de amoniaco en ausencia y presencia de catalizador. Las moléculas de hidrógeno y nitrógeno pierden sus grados de libertad de translación cuando se fijan a la superficie del catalizador. Esto reduce dramáticamente la energía de activación y por lo tanto hace a la reacción de formación de amoniaco ir más rápido.

Figura 8.2: Efecto del catalizador en la energía de activación de la síntesis de amoniaco

8.6.2.- Expresión de la cinética de síntesis de amoniaco [8], [9], [10]

En 1940 Temkin y Pyzhev desarrollaron una ecuación de velocidad de reacción la cual ofrece una aproximación satisfactoria para la síntesis de amoniaco sobre un catalizador de fierro. Su ecuación esta basada en el supuesto de que la adsorción disociativa del nitrógeno es el paso determinante en la velocidad y que el hidrógeno y el amoniaco no tienen influencia significativa en la adsorción del nitrógeno. El modelo cinético esta dado por:

$$r = k_1 p_{N_2} \left[\frac{p_{H_2}^{3}}{p_{NH_3}^{2}} \right]^{\alpha} - k_{-1} \left[\frac{p_{NH_3}^{2}}{p_{H_2}^{3}} \right]^{1-\alpha} \left[\frac{Kmol}{m_{cat}^{3} \times h} \right]$$
 Ec. 8.10

Donde r es la velocidad de reacción, p_i denota la presión parcial del componente i en bar, k₁y k₋₁son coeficientes de velocidad dependientes de la temperatura para la síntesis y descomposición respectivamente y α es una constante. Temkin especificó que α es constante y le asignó un valor de 0,5 para todo catalizador de Fe.

Las expresiones para los coeficientes $k_1 y k_{-1}$ son las siguientes:

$$k_1 = k_{1o} \times \exp\left[\frac{-E_1}{R \times T}\right]$$
 $\left[\frac{Kmol}{m_{cat}^3 \times bar^{1.5} \times h}\right]$ Ec. 8.11

Donde:

$$\begin{aligned} k_{1o} &= 17900 \Biggl[\frac{Kmol}{m_{cat}^3 \times bar^{1.5} \times h} \Biggr] \\ E_1 &= \text{Energía de activación} = 20815 \Biggl[\frac{Kcal}{Kmol} \Biggr] \\ R &= \text{Constante universal de los gases} = 1,987 \Biggl[\frac{Kcal}{Kmol \times K} \Biggr] \\ T &= \text{Temperatura, [K]} \end{aligned}$$

$$k_{-1} = k_{-1o} \times \exp\left[\frac{-E_2}{R \times T}\right] \qquad \left[\frac{Kmol \times bar^{0.5}}{m_{cat}^3 \times h}\right]$$
 Ec. 8.12

Donde:

$$k_{-lo} = 2,57 \times 10^{16} \left[\frac{Kmol \times bar^{0.5}}{m_{cat}^3 \times h} \right]$$

$$E_2 = \text{Energía de activación} = 47434 \left[\frac{Kcal}{Kmol} \right]$$

$$R = \text{Constante universal de los gases} = 1,987 \left[\frac{Kcal}{Kmol \times K} \right]$$

$$T = \text{Temperatura, [K]}$$

8.6.3.- Formación de amoniaco en el convertidor [11]

La parte central del proceso de síntesis es el convertidor, en donde la conversión de gas de síntesis a amoniaco toma lugar. El rendimiento del convertidor esta determinado por la velocidad de reacción la cual depende de las variables de operación. Los efectos de estos parámetros son discutidos a continuación.

Aumentando la presión, se incrementa la formación de amoniaco. Esto no solo resulta en una situación más favorable de equilibrio de reacción, sino también favorece la velocidad de reacción. En la práctica industrial, hay plantas que operan alrededor de 80 bar, pero también hay otras que operan a mas de 400 bar. Hoy en día las plantas son construidas para presiones de síntesis de 150 a 250 bar.

El rendimiento del convertidor disminuye con el incremento del contenido de gases inertes. El rango usual es de 0 a 15% en volumen.

El rendimiento del convertidor también disminuye con el incremento del contenido de oxígeno del gas de síntesis. Hoy en día, un nivel de 10 ppm en la alimentación fresca,

correspondiente a alrededor de 3 ppm en el gas de entrada al convertidor, generalmente no es excedido.

La óptima conversión a altas velocidades espaciales esta alrededor de una razón de H_2/N_2 de 2 y se aproxima a 3 a bajas velocidades espaciales. Usualmente, la razón es ajustada a 3, porque muchas plantas, trabajan a conversiones cercanas al equilibrio.

En la práctica las velocidades espaciales varían desde 12000 h⁻¹ a alrededor de 150 bar a 35000 h⁻¹ a alrededor de 800 bar.

8.6.4.- Convertidores de amoniaco comerciales [11]

Los convertidores comerciales pueden ser clasificados en dos principales grupos:

- Enfriados internamente con tubos de enfriamiento ubicados a lo largo del lecho catalítico o con el catalizador dentro de los tubos y el medio enfriante en el lado de la carcasa. El medio enfriante es generalmente gas de alimentación al reactor, el cual puede fluir en contracorriente o cocorriente al flujo de gas en el volumen de catalizador de síntesis (Tube-cooled converters).
- El volumen de catalizador esta dividido en varios lechos en los cuales la reacción procede adiabáticamente. Entre cada lecho catalítico el calor es removido por inyección de gas de síntesis frío (Quench-converters) o por enfriamiento indirecto con gas de síntesis, agua de alimentación a calderas o vapor (Indirectly cooled multibed converters).

8.6.5.- Efecto de la temperatura en el Convertidor [12]

El perfil de temperatura de reacción es de particular importancia debido a que la velocidad de reacción responde a los cambios de temperatura. La figura 8.3 muestra la dependencia de las curvas de velocidad con la temperatura y la concentración de amoniaco. La curva de velocidad r =0 corresponde a la relación entre la temperatura y concentración de amoniaco en equilibrio. En la figura 8.3 se aprecia que hay una temperatura a la cual la velocidad de reacción llega a un máximo para distintas concentración de amoniaco. La curva CD representa el lugar geométrico de temperatura-concentración de máxima velocidad de reacción. Para mantener máxima la velocidad, la temperatura debe disminuir conforme la concentración de amoniaco aumenta.

Figura 8.3: Efecto de la temperatura y concentración de amoniaco en la velocidad de

reacción

Para conseguir la utilización óptima del catalizador, la figura 8.3 muestra que el convertidor debiera seguir la curva CD, que corresponde al lugar geométrico de máxima velocidad de reacción para cada punto. Este perfil de temperatura-concentración no puede ser conseguido debido a la alta temperatura requerida para el ingreso del gas de síntesis al convertidor. Para alcanzar esta temperatura ideal, los lechos catalíticos deben trabajar adiabáticamente. Consideraciones del servicio de vida del catalizador requiere que la temperatura del catalizador no exceda la recomendada por el fabricante, usualmente 530-550°C [13]. Para el diseño de convertidores de varios lechos catalíticos con enfriamiento intermedio, luego del aumento de temperatura adiabático, el gas es enfriado antes del ingreso al próximo lecho catalítico. El proceso es repetido para los siguientes lechos catalíticos. De esta manera el perfil de reacción describe un zig-zag alrededor de la curva de máxima velocidad de reacción.

8.6.6.- Perfil óptimo de temperaturas

Para encontrar el perfil óptimo de temperatura del convertidor, se calcularán varias curvas de velocidad utilizando la ecuación cinética de síntesis de amoniaco Temkin-Pyzhev.

Aplicando el valor de α =0,5 a la ecuación, esta queda de la siguiente forma:

$$r = k_1 p_{N_2} \frac{p_{H_2}^{1,5}}{p_{NH_3}} - k_{-1} \frac{p_{NH_3}}{p_{H_2}^{1,5}}$$
 Ec. 8.13

Se asumirá que:

$$p_i = Y_i \times P_T$$
 Ec. 8.14

Donde:

- $p_i =$ Presión parcial del compuesto i, [bar]
- $Y_i =$ Fracción molar del compuesto i
- P_T = Presión total del sistema, [bar]

Reemplazando la expresión de presión parcial de cada compuesto en la ecuación de velocidad, esta nos queda:

$$r = k_1 \frac{Y_{N_2} Y_{H_2}^{1,5}}{Y_{NH_3}} P_T^{1,5} - k_{-1} \frac{Y_{NH_3}}{Y_{H_2}^{1,5}} P_T^{-0,5}$$
 Ec. 8.15

Las fracciones molares estan definidas como:

$$Y_{N_2} = \frac{n_{N_2(0)} - n_{N_2(0)} \times X}{n_{T(0)} - 2 \times n_{N_2(0)} \times X}$$
 Ec. 8.16

$$Y_{H_2} = \frac{n_{H_2(0)} - 3 \times n_{N_2(0)} \times X}{n_{T(0)} - 2 \times n_{N_2(0)} \times X}$$
 Ec. 8.17

$$Y_{NH_3} = \frac{n_{NH_3(0)} + 2 \times n_{N_2(0)} \times X}{n_{T(0)} - 2 \times n_{N_2(0)} \times X}$$
 Ec. 8.18

Donde:

 $n_{i(0)}$ = Moles iniciales del compuesto i, [Kmol/h] $n_{T(0)}$ = Moles iniciales totales, [Kmol/h] X = Conversión de la reacción

Para el cálculo se utilizará el método de Newton-Rapson de resolución de ecuaciones. La incógnita será el valor de la conversión, dados la velocidad de reacción, la temperatura y la presión. La presión se considerará constante en el intervalo de temperatura.

De acuerdo a lo especificado por el Simulador de Procesos Hysys, para el diseño del convertidor, las unidades en que se debe expresar la velocidad de reacción es Kmol por metro cúbico de gas y por hora. Por lo tanto para coincidir con esto, la ecuación de velocidad de reacción debe multiplicarse por el siguiente factor [5]:

Factor =
$$\frac{(1-\phi)}{\phi}$$
 [m_{cat}³/m_{gas}³] Ec. 8.19

Donde:

 $\phi =$ Factor de huecos del catalizador, $[m_{gas}^{3}/m_{reactor}^{3}]$

Para el diseño del convertidor se consideró un factor de huecos $\phi = 0.5$.

La tabla 8.16 muestra los resultados de conversión-temperatura para distintas velocidades de reacción.

			Conversión, X			
Temp.	Temp.	Presión	r = 0	r = 2	r = 5	r = 15
[°C]	[K]	[bar]	[Kmol/m ³ *h]	[Kmol/m ³ *h]	[Kmol/m ³ *h]	[Kmol/m ³ *h]
400	673,15	220	0,5685413	0,4082937	0,2758435	0,1248033
420	693,15	220	0,5151797	0,4296138	0,3325352	0,1788783
440	713,15	220	0,4626773	0,4186791	0,3600352	0,2319618
460	733,15	220	0,4120585	0,3894296	0,3572556	0,2699867
480	753,15	220	0,3641855	0,3524032	0,3352149	0,2832884
500	773,15	220	0,3197046	0,3134765	0,3042836	0,2751618
520	793,15	220	0,2790265	0,2756825	0,2707157	0,2546338
540	813,15	220	0,2423356	0,2405116	0,2377925	0,2288888
560	833,15	220	0,2096236	0,2086128	0,2071025	0,2021253
580	853,15	220	0,1807340	0,1801648	0,1793130	0,1764952
600	873,15	220	0,1554090	0,1550833	0,1545953	0,1529772

Tabla 8.16: Conversión del N2 en función de la temperatura para velocidades dereacción constantes

Continuación Tabla 8.16

_			Conversión, X			
Temp.	Temp.	Presión	r = 50	r = 100	r = 140	r = 230
[°C]	[K]	[bar]	[Kmol/m ³ *h]	[Kmol/m ³ *h]	[Kmol/m ³ *h]	[Kmol/m ³ *h]
400	673,15	220	0,0304253	0,0047674	-	-
420	693,15	220	0,0567064	0,0195811	0,0079394	-
440	713,15	220	0,0903029	0,0397550	0,0231592	0,0058344
460	733,15	220	0,1292633	0,0657023	0,0433207	0,0191759
480	753,15	220	0,1674567	0,0964123	0,0684255	0,0365946
500	773,15	220	0,1949263	0,1279045	0,0967433	0,0580113
520	793,15	220	0,2050596	0,1528019	0,1235022	0,0818597
540	813,15	220	0,1998727	0,1647749	0,1419257	0,1041026
560	833,15	220	0,1854352	0,1637358	0,1482680	0,1193086
580	853,15	220	0,1668955	0,1539339	0,1442333	0,1246164
600	873,15	220	0,1474125	0,1397404	0,1338466	0,1214025

Con estos datos es posible construir la grafica temperatura-concentración.

Figura 8.4: Gráfica de temperatura-conversión a velocidades de reacción constantes

Observando la figura 8.4 se pueden obtener los puntos de máxima conversión para cada curva de velocidad. Con estos puntos se puede dibujar el perfil óptimo de temperaturas que corresponde al lugar geométrico de máxima velocidad de reacción (figura 8.5).

Figura 8.5: Perfil óptimo de temperaturas

8.6.7.- Diseño del convertidor de síntesis de amoniaco [12]

El convertidor a diseñar consiste en tres lechos catalíticos de flujo pistón adiabáticos con enfriamiento intermedio usando vapor.

Para flujo pistón la temperatura del fluido en el reactor se desplaza a lo largo de la línea de operación adiabática. La línea de operación adiabática corresponde a la relación entre la temperatura y la conversión dada por el balance de energía. Este balance está dado por la siguiente ecuación.

$$X = \frac{Cp \times \Delta T}{-\Delta H_r}$$
 Ec. 8.20

Donde:

X =Conversión

 $Cp \times \Delta T$ = Calor necesario para elevar hasta T₂ la corriente de alimentación.

 $-\Delta H_r$ = Calor desprendido por la reacción a T₂.

La temperatura de entrada al primer lecho catalítico es de 400,9 °C y la temperatura de salida de este es de 549,9 °C. Esto cumple con el intervalo normal de operación del catalizador de óxido de fierro que es de 400 a 550 °C. La corriente de salida del primer lecho es enfriada hasta cumplir con la condición de que la velocidad de reacción que sale del lecho catalítico sea igual a la velocidad de reacción que entra en el siguiente lecho catalítico. Por lo tanto se enfría hasta la misma curva de velocidad de reacción. Este método también es utilizado para los siguientes lechos catalíticos teniendo en cuenta las siguientes consideraciones:

- Trabajar a lo largo del perfil óptimo de temperaturas.
- Intervalo de temperatura de operación del catalizador (400-550°C).
- Alejarse de condiciones de velocidad baja.
- Obtener la conversión global deseada.

8.6.8.- Especificaciones del reactor

	Lecho Nº1	Lecho Nº2	Lecho Nº3	Total
Volumen, [m ³]	20,03	8,63	19,58	48,23
Diámetro, [m]	2,40	2,40	2,40	2,40
Largo, [m]	4,43	1,91	4,33	10,67
Conversión	19,51	4,79	5,72	27,75
Caída de presión, [bar]	0,46	0,20	0,43	1,36

Tabla 8.17: Características del reactor

8.6.9.- Especificaciones del catalizador

- Diámetro de partícula: **3,1 [mm]**
- Densidad bulk: 2225,5 [Kg/m³]
- Capacidad calorífica: 1100 [KJ/Kg*°C]

El detalle de los resultados de la simulación se encuentra en el ANEXO C.

8.6.10.- Representación gráfica del diseño del Convertidor de Síntesis de Amoniaco

Figura 8.6: Gráfico de diseño del Convertidor de síntesis de Amoniaco

8.7.- Deshidratador

8.7.1.- Características Deshidratador S-100

Tino de disecante	Molecular Sieve 4A 1/8" beads
	(4x8 mesh)
Diámetro interno estanque	8 [pie]
Altura del estanque	26,1 [pie]
Número de estanques	2
Periodo de secado	12 horas
Periodo de desorción	12 horas
Largo zona de saturación, L _s	21,06 [pie]
Largo zona de transferencia de masa, L _{MTZ}	2,03 [pie]
Largo total del lecho, L _T	23,09 [pie]
Masa total de tamiz, S _⊤	52221,96 [Lb]
Calor de regeneración, Q _{tr}	49550943,8 [Btu]

 Tabla 8.18: Características Deshidratador S-100

El detalle del diseño del deshidratador se encuentra en ANEXO D.

8.8.- Intercambiadores de Calor

8.8.1.- Características Intercambiador de calor E-100

	Tubos	Carcaza
Тіро	13 BWG	
Largo	24 [pie]	
Diámetro externo	0,75 [pulg]	
Diámetro interno	0,56 [pulg]	35 [pulg]
Número de pasos	8	1
Pitch	1 [pulg]	
Arreglo	Triangular	
Número de tubos	848	
Caída de presión		

Tabla 8.19: Características del Intercambiador E-100

Flujo de Calor, Q	7389628,1 [Btu/h]	
Área de Transferencia, A	3995,10 [pie ²]	
Coeficiente diseño, U _D	34,36 [Btu/h*pie ² *°F]	
Factor de obstrucción, R _d	0,0033 [h*pie ² *ºF/Btu]	

8.8.2.- Características Intercambiador de calor E-101

Tabla 8.20: Características del Intercambiador E-101

	Tubos	Carcaza
Тіро	16 BWG	
Largo	16 [pie]	
Diámetro externo	0,75 [pulg]	
Diámetro interno	0,62 [pulg]	33 [pulg]
Número de pasos	8	2
Pitch	1 [pulg]	
Arreglo	Triangular	
Número de tubos	732	
Caída de presión	10 [psi]	2 [psi]

Flujo de Calor, Q	8203092,5 [Btu/h]	
Área de Transferencia, A	2299,07 [pie ²]	
Coeficiente diseño, U _D	50,56 [Btu/h*pie ² *ºF]	
Factor de obstrucción, R _d	0,0033 [h*pie ² *ºF/Btu]	

8.8.3.- Características Intercambiador de calor E-104

	Tubos	Carcaza
Тіро	11 BWG	
Largo	16 [pie]	
Diámetro externo	1 [pulg]	
Diámetro interno	0,76 [pulg]	78 [pulg]
Número de pasos	1	1
Pitch	1,25 [pulg]	
Arreglo	Triangular	
Número de tubos	3368	
Caída de presión	2 [psi]	0 [psi]

	Tabla 8.21:	Características	del Intercambiador	E-104
--	-------------	-----------------	--------------------	-------

Flujo de Calor, Q	187467032,6 [Btu/h]	
Área de Transferencia, A	17634,85 [pie ²]	
Coeficiente diseño, U _D	40,22 [Btu/h*pie ² *°F]	
Factor de obstrucción, R _d	0,0025 [h*pie ² *°F/Btu]	

8.8.4.- Características Intercambiador de calor E-106

Tabla 8.22: Características del Intercambiador E-106

	Tubos	Carcaza
Тіро	12 BWG	
Largo	12 [pie]	
Diámetro externo	1,25 [pulg]	
Diámetro interno	1,03 [pulg]	60 [pulg]
Número de pasos	1	1
Pitch	1,5625 [pulg]	
Arreglo	Triangular	
Número de tubos	1237	
Caída de presión	2 [psi]	2 [psi]

Flujo de Calor, Q	39907132,9 [Btu/h]	
Área de Transferencia, A	4855,47 [pie ²]	
Coeficiente diseño, U _D	45,82 [Btu/h*pie ² *°F]	
Factor de obstrucción, R _d	0,0031 [h*pie ² *ºF/Btu]	

8.8.5.- Características Intercambiador de calor E-110

	Tubos	Carcaza
Тіро	12 BWG	
Largo	30 [pie]	
Diámetro externo	0,75 [pulg]	
Diámetro interno	0,532 [pulg]	84 [pulg]
Número de pasos	6	3
Pitch	0,9375 [pulg]	
Arreglo	Tringular	
Número de tubos	6680	
Caída de presión	10 [psi]	2 [psi]

Tabla 8.23:	Características	del Intercambiador	E-110

Flujo de Calor, Q	80215595,6 [Btu/h]	
Área de Transferencia, A	39338,52 [pie ²]	
Coeficiente diseño, U _D	134,98 [Btu/h*pie ² *°F]	
Factor de obstrucción, R _d	0,0050 [h*pie ² *ºF/Btu]	

8.8.6.- Características Intercambiador de calor E-112

Tabla 8.24: Características	del Intercambiador E-112
-----------------------------	--------------------------

	Tubos	Carcaza
Тіро	16 BWG	
Largo	16 [pie]	
Diámetro externo	0,75 [pulg]	
Diámetro interno	0,62 [pulg]	29 [pulg]
Número de pasos	2	1
Pitch	1 [pulg]	
Arreglo	Triangular	
Número de tubos	668	
Caída de presión	10 [psi]	2 [psi]

Flujo de Calor, Q	21452536,3 [Btu/h]	
Área de Transferencia, A	2098,05 [pie ²]	
Coeficiente diseño, U _D	143,42 [Btu/h*pie ² *°F]	
Factor de obstrucción, R _d	0,0028 [h*pie ² *ºF/Btu]	

8.8.7.- Características Intercambiador de calor E-113

	Tubos	Carcaza
Тіро	8 BWG	
Largo	10 [pie]	
Diámetro externo	1 [pulg]	
Diámetro interno	0,67 [pulg]	84 [pulg]
Número de pasos	1	1
Pitch	1,25 [pulg]	
Arreglo	Triangular	
Número de tubos	3920	
Caída de presión	0 [psi]	2 [psi]

Tabla 8.25:	Características	del Intercambiador	E-113

Flujo de Calor, Q	105483725,7 [Btu/h]	
Área de Transferencia, A	10262,56 [pie ²]	
Coeficiente diseño, U _D	59,18 [Btu/h*pie ² *ºF]	
Factor de obstrucción, R _d	0,0027 [h*pie ² *ºF/Btu]	

8.8.8.- Características Intercambiador de calor E-116

Tabla 8.26: Características del Intercambiador E-116

	Tubos	Carcaza
Тіро	8 BWG	
Largo	10 [pie]	
Diámetro externo	1,25 [pulg]	
Diámetro interno	0,92 [pulg]	42 [pulg]
Número de pasos	1	1
Pitch	1,5625 [pulg]	
Arreglo	Triangular	
Número de tubos	592	
Caída de presión	2 [psi]	2 [psi]

Flujo de Calor, Q	94567761,15 [Btu/h]	
Área de Transferencia, A	1936,43 [pie ²]	
Coeficiente diseño, U _D	91,97 [Btu/h*pie ² *ºF]	
Factor de obstrucción, R _d	0,0042 [h*pie ² *ºF/Btu]	

8.8.9.- Características Intercambiador de calor E-111a

	Tubos	Carcaza
Тіро	12 BWG	
Largo	12 [pie]	
Diámetro externo	0,75 [pulg]	
Diámetro interno	0,532 [pulg]	45 [pulg]
Número de pasos	1	1
Pitch	0,9375 [pulg]	
Arreglo	Triangular	
Número de tubos	1960	
Caída de presión	1 [psi]	10 [psi]

Tabla 8.27:	Características	del Intercambiador	E-111a
	U al a U U U U U U U U U U U U U U U U U U		— · · · · •

Flujo de Calor, Q	19499635,84 [Btu/h]	
Área de Transferencia, A	4616,98 [pie ²]	
Coeficiente diseño, U _D	84,22 [Btu/h*pie ^{2*o} F]	
Factor de obstrucción, R _d	R _d 0,0029 [h*pie ^{2*o} F/Btu]	

Las ecuaciones y el detalle del diseño de los intercambiadores de calor se encuentran en el ANEXO E.

8.9.- Condensadores

8.9.1.- Características Condensador de Columna T-101

Tabla 8.28: Características Condensador de Columna T-101

Flujo de calo, Q:	63922127,42 [Btu/h]	
Lugar de condensación:	Carcasa (sin desobrecalentamiento	
Área de transferencia de calor, A:	5997,19 [pie ²]	
Coeficiente de diseño (estimado), U _{Dc} :	120 [Btu/h*pie ² *°F]	
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]	
Caída de presión en tubos:	10 [psi]	
Caída de presión en carcaza:	0 [psi]	

8.9.2.- Características Condensador E-107

Tabla 8.29: Car	racterísticas Co	ondensador E-107
-----------------	------------------	------------------

Flujo de calo, Q:	46564402,8 [Btu/h]	
Lugar de condensación:	Carcasa (con desobrecalentamiento)	
Área de transferencia de calor, A:	4284,97 [pie ²]	
Coeficiente de diseño (estimado), U _{Dc} :	104,73 [Btu/h*pie ² *ºF]	
Factor de obstrucción, R _d :	0,003 [h*pie ^{2*o} F/Btu]	
Caída de presión en tubos:	10 [psi]	
Caída de presión en carcaza:	2 [psi]	

8.9.3.- Características Condensador E-108

Flujo de calo, Q:	81483270,98 [Btu/h]
Lugar de condensación:	Carcasa (sin desobrecalentamiento)
Área de transferencia de calor, A:	7345,20 [pie ²]
Coeficiente de diseño (estimado), U_{Dc} :	110 [Btu/h*pie ² *ºF]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	10 [psi]
Caída de presión en carcaza:	2 [psi]

Tabla 8.30: Características Condensador

8.9.4.- Características Condensador E-111b

Flujo de calo, Q:	23934804,14 [Btu/h]
Lugar de condensación:	Carcasa (con desobrecalentamiento)
Área de transferencia de calor, A:	2730,77 [pie ²]
Coeficiente de diseño (estimado), U_{Dc} :	103,72 [Btu/h*pie ² *ºF]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	10 [psi]
Caída de presión en carcaza:	1 [psi]

Tabla 8.31: Características Condensador E-111b

8.9.5.- Características Condensador E-117b

Tabla 8.32: Características	Condensador E-117b
-----------------------------	--------------------

Flujo de calo, Q:	133471868,32 [Btu/h]
Lugar de condensación:	Carcasa (con desobrecalentamiento)
Área de transferencia de calor, A:	12034,28 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	103,46 [Btu/h*pie ^{2*o} F]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	10 [psi]
Caída de presión en carcaza:	1 [psi]

2 [psi]

2 [psi]

8.9.6.- Características Condensador E-118

Flujo de calo, Q:	24125009,30 [Btu/h]
Lugar de condensación:	Carcasa (sin desobrecalentamiento)
Área de transferencia de calor, A:	7109,78 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	65 [Btu/h*pie ² *°F]
Factor de obstrucción, R _d :	0,003 [h*pie ^{2*o} F/Btu]

Tabla 8.33: Características Condensador E-118

8.9.7.- Características Condensador E-119

Caída de presión en tubos:

Caída de presión en carcaza:

Flujo de calo, Q:	44283255,7 [Btu/h]	
Lugar de condensación:	Carcasa (sin desobrecalentamiento)	
Área de transferencia de calor, A:	12458,51 [pie ²]	
Coeficiente de diseño (estimado), U _{Dc} :	80 [Btu/h*pie ² *ºF]	
Factor de obstrucción, R _d :	0,003 [h*pie ² *°F/Btu]	
Caída de presión en tubos:	0 [psi]	
Caída de presión en carcaza:	2 [psi]	

Tabla 8.34: Características Condensador E-119

Las ecuaciones y el detalle de las ecuaciones de los condensadores se encuentran en el ANEXO E.

8.10.- Vaporizadores

8.10.1.- Características Vaporizador E-105

Flujo de calo, Q:	24721628,3 [Btu/h]
Área de transferencia de calor, A:	1535,27 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	70 [Btu/h*pie ² *ºF]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	2 [psi]
Caída de presión en carcaza:	0 [psi]

Tabla 8.35: Características Vaporizador E-105

8.10.2.- Características Vaporizador E-117a

Flujo de calo, Q:	53231017,5 [Btu/h]
Área de transferencia de calor, A:	13888,80 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	70 [Btu/h*pie ² *ºF]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	1 [psi]
Caída de presión en carcaza:	0 [psi]

8.10.3.- Características Vaporizador E-502

Tabla 8.37: Características Va	porizador E-502
--------------------------------	-----------------

Flujo de calo, Q:	32749496,2 [Btu/h]
Área de transferencia de calor, A:	3530,60 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	70 [Btu/h*pie ² *ºF]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	2 [psi]
Caída de presión en carcaza:	0 [psi]

8.10.4.- Características Vaporizador E-109

Tabla 8.38: Características	Vaporizador E-109
-----------------------------	-------------------

Flujo de calo, Q:	113533126,0 [Btu/h]
Área de transferencia de calor, A:	95705,27 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	100 [Btu/h*pie ^{2*o} F]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	10 [psi]
Caída de presión en carcaza:	3 [psi]

8.10.5.- Características Reboiler

Flujo de calo, Q:	150000503,1 [Btu/h]
Área de transferencia de calor, A:	2871,56 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	100 [Btu/h*pie ² *ºF]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	0 [psi]
Caída de presión en carcaza:	0 [psi]

Tabla 8.39: Características Reboiler

Las ecuaciones y el detalle del diseño de los vaporizadores se encuentran en el ANEXO E.

8.11.- Intercambiadores de Calor de Flujo Cruzado

8.11.1.- Características Intercambiador de Flujo Cruzado E-102

 Tabla 8.40: Características Intercambiador de Flujo Cruzado E-102

Flujo de calo, Q:	76810297,9 [Btu/h]
Área de transferencia de calor, A:	16929,61 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	10 [Btu/h*pie ² *ºF]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	2 [psi]
Caída de presión en carcaza:	2 [psi]

8.11.2.- Características Intercambiador de Flujo Cruzado E-103

Tabla 8.41: Características Intercambiador de Flujo Cruzado E-	·103
--	------

Flujo de calo, Q:	20870809,6 [Btu/h]
Área de transferencia de calor, A:	2170,85 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	10 [Btu/h*pie ² *ºF]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	2 [psi]
Caída de presión en carcaza:	2 [psi]

8.11.3.- Características Intercambiador de Flujo Cruzado E-114

Tabla 8.42: Características Intercambiador de Flujo Cruzado E-1	14
---	----

Flujo de calo, Q:	32101583,6 [Btu/h]
Área de transferencia de calor, A:	3799,89 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	30 [Btu/h*pie ² *ºF]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	2 [psi]
Caída de presión en carcaza:	0 [psi]

8.11.4.- Características Intercambiador de Flujo Cruzado E-115

Flujo de calo, Q:	31958475,6 [Btu/h]
Área de transferencia de calor, A:	10800,96 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	30 [Btu/h*pie ² *ºF]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	2 [psi]
Caída de presión en carcaza:	0 [psi]

 Tabla 8.43: Características Intercambiador de Flujo Cruzado E-115

8.11.5.- Características Intercambiador de Flujo Cruzado E-501

Tabla 8.44:	Características	Intercambiador	de Fluid	o Cruzado	E-501
	ouraotoriotiouo	monoundidadi			

Flujo de calo, Q:	10078206,6 [Btu/h]
Área de transferencia de calor, A:	5934,68 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	5 [Btu/h*pie ² *ºF]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	0 [psi]
Caída de presión en carcaza:	2 [psi]

8.11.6.- Características Intercambiador de Flujo Cruzado E-503

Tabla 8.45: Características Intercambiador de Flujo Cruzado E-	503
--	-----

Flujo de calo, Q:	3933809,7 [Btu/h]
Área de transferencia de calor, A:	818,41 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	5 [Btu/h*pie ² *ºF]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	0 [psi]
Caída de presión en carcaza:	2 [psi]

8.11.7.- Características Intercambiador de Flujo Cruzado E-504

Flujo de calo, Q:	3864374,5 [Btu/h]
Área de transferencia de calor, A:	25663,02 [pie ²]
Coeficiente de diseño (estimado), U _{Dc} :	10 [Btu/h*pie ² *ºF]
Factor de obstrucción, R _d :	0,003 [h*pie ² *ºF/Btu]
Caída de presión en tubos:	10 [psi]
Caída de presión en carcaza:	2 [psi]

 Tabla 8.46: Características Intercambiador de Flujo Cruzado E-504

Las ecuaciones y el detalle del diseño de los intercambiadores de calor de flujo cruzado se encuentran en el ANEXO E.

8.12.- Separadores líquido-vapor

8.12.1.- Características Separador V-100

Disposición	Vertical
Diámetro separador	6,5 [pie]
Altura zona de separación, H_V	5,08 [pie]
Distancia al nozzle entrada, H _{LIN}	1,67 [pie]
Altura de líquido, H _L	1,30 [pie]
Altura total separador, H_T	19,64 [pie]

Tabla 8.47: Características Separador V-100

8.12.2.- Características Separador V-101

Disposición	Vertical
Diámetro separador	5,0 [pie]
Altura zona de separación, H_{ν}	9,93 [pie]
Distancia al nozzle entrada, H _{LIN}	1,53 [pie]
Altura de líquido, H _L	3,55 [pie]
Altura total separador, H_T	15,01 [pie]

8.12.3.- Características Separador V-102

	-
Disposición	Horizontal
Diámetro separador	9,00 [pie]
Altura zona de separación, H_{ν}	1,44 [pie]
Altura de líquido, H _L	7,56 [pie]
Largo separador, L	33,39 [pie]

Tabla 8.49:	Características	Separador V-102
-------------	-----------------	-----------------

8.12.4.- Características Separador V-103

Disposición	Vertical
Diámetro separador	5,5 [pie]
Altura zona de separación, H_{ν}	8,88 [pie]
Distancia al nozzle entrada, H _{LIN}	1,58 [pie]
Altura de líquido, H _L	1,00 [pie]
Altura total separador, H_T	16,77 [pie]

Tabla 8.50: Características Separador V-103

8.12.5.- Características Separador V-104

Disposición	Vertical
Diámetro separador	5,5 [pie]
Altura zona de separación, H_{ν}	10,23 [pie]
Distancia al nozzle entrada, H _{LIN}	1,23 [pie]
Altura de líquido, H∟	5,36 [pie]
Altura total separador, H_T	16,83 [pie]

Tabla 8.51: Características Separador V-104

8.12.6.- Características Separador V-105

Tabla 8.52:	Características	Separador	V-105
-------------	-----------------	-----------	-------

Disposición	Vertical
Diámetro separador	4,5 [pie]
Altura zona de separación, H_{ν}	7,43 [pie]
Distancia al nozzle entrada, H _{LIN}	1,23 [pie]
Altura de líquido, H _L	4,90 [pie]
Altura total separador, H_T	13,57 [pie]

8.12.7.- Características Separador V-106

Tabla	8.53:	Características	Separador	V-106
-------	-------	-----------------	-----------	-------

Disposición	Horizontal
Diámetro separador	4,5 [pie]
Altura zona de separación, H_{v}	1,51 [pie]
Altura de líquido, H _L	2,99 [pie]
Largo separador, L	17,24 [pie]

Las ecuaciones y el detalle del diseño de los separadores líquido-vapor se encuentran en el ANEXO F.

8.13.- Referencias

- Strait, Allum, Gidwani. 2005. Synthesis Gas Reformer. Department of Chemical Engineering. Rice University. http:// www.owlnet.rice.edu/chbe403/nh3ref97.html
- [2] ALVIGO-MATROS CATALYSTS http://www.matrostech.com
- [3] Cabrera, Cid, Fredes, Gallardo, Rios, Sanches. 2007. Estudio de Prefactibilidad Técnico y Económica de una Planta de Amoniaco. Pontificia Universidad Católica de Valparaíso.
- [4] Kohl, Nielsen. Gas Purification, 5^a Edición. Gulf Publishing Company. Houston, Texas
- [5] Manual HYSYS 3.2. 2003. Hyprotech
- [6] Endulzamiento con Aminas. Repsol YPF. Universidad Politécnica de Madrid. http://www.minas.upm.es/gaviota/apuntes/rtorra/endulzamiento_aminas.ppt

- Jayana M. Modak. 2002. Haber Process for Ammonia Síntesis. Resonance. 7, pp 69-77. http://www.ias.ac.in/resonance/sept2002/pdf/sept20002p69-77.pdf
- [8] Mansson, Andresen. 1986. Optimal Temperature Profiles for an Ammonia Reactor.
 Industrial and Engineering Chemistry Process Design and Development. AIChe
 journal. 25, pp. 59-65
- [9] Morud, Skogestad. 1998. Analysis of Instability in an Industrial Ammonia Reactor.AIChe Journal. 44, pp. 888-895
- [10] Ammonia Case Study. DRE & FUS Case Studies. North Carolina State University http://www.ncsu.edu/checs/amcs/am_prob2.htm
- [11] Ullmanns Encyclopedia of Industrial Chemistry. 2002. 6ª Edición. CD-ROM
- [12] Octave Levenspiel, 1986, Ingeniería de las Reacciones Químicas, 2º edición, Editorial Reverté, Barcelona, España.
- [13] J.M. Smith, 1991, Ingeniería de la Cinética Química, 6º edición, Editorial McGraw-Hill

Capítulo 9

EVALUACION ECONOMICA

9.- Evaluación Económica

9.1.- Inversión Total.

El capital necesario para la instalación de una planta, desde la iniciación del proyecto hasta su puesta en marcha, esta compuesto de los siguientes ítems:

- Capital Fijo
- Capital De Trabajo

En la tabla 9.1, se muestra el resumen de la Inversión Total.

Capital Fijo (TCF)	214.267.118
Gastos Puesta en Marcha (10% del TCF)	21.426.712
Capital Trabajo	42.060.000
Inversión Total	277.753.830

Tabla 9.1: Detalle Inversión Total, en USD.

9.1.1.- Capital Fijo.

Esta constituido por el capital necesario para la adquisición de todos los equipos involucrados en el proceso, cubriendo gastos de accesorios e instalación , terrenos, edificios industriales y oficinas , bodegas , comedores, baños, gastos de transporte, mano de obra de instalación y en general todos aquellos gastos necesarios para que la planta quede en condiciones de operar.

En la tabla 9.2, se muestra el detalle del Capital Fijo.

Tabla 9.2: Resumen Capital Fijo, en USD.

Total Capital Fijo	214.267.118
Capital Fijo Indirecto (CFI)	59.997.037
Capital Fijo Directo (CFD)	154.270.081

9.1.1.1.- Total Capital Fijo (TCF).

El Total Capital Fijo (TCF), esta constituido por Capital Fijo Directo y Capital Fijo Indirecto, se utilizarán factores de referencias [1], [2], [3].

Capital Fijo Directo:

- 1. Equipos de proceso
- 2. Instalación de equipos
- 3. Aislamiento térmico
- 4. Instrumentación y Control
- 5. Cañerías de proceso
- 6. Instalaciones eléctricas
- 7. Edificios de Planta
- 8. Servicios de Planta
- 9. Terrenos
- 10. Preparación de terrenos

Capital Fijo Indirecto

- 11. Ingeniería y Supervisión
- 12. Gastos de Construcción
- 13. Honorarios contratista
- 14. Gastos legales
- 15. Contingencias

Para el cálculo del Capital Fijo Directo (CFD) se utilizaron los factores presentados en la tabla 9.3, que son en base a los valores de los equipos requeridos.

	Capital Fijo Directo	Factor Utilizado	Rango Bibliografía
CFD1	Equipos de proceso		
CFD2	Instalación de Equipos	40%	20%-60%
CFD3	Aislamiento Térmico	10%	8%-10%
CFD4	Instrumentación y Control	20%	8%-50%
CFD5	Cañerías de proceso	60%	Hasta 80%
CFD6	Instalaciones Eléctricas	30%	Hasta 40%
CFD7	Edificios de Planta	30%	30%-40%
CFD8	Servicios de Planta	55%	30%-80%
CFD9	Terrenos	8%	8%
CFD10	Preparación de Terreno	10%	10%-20%

Tabla 9.3: Factores Capital Fijo Directo.

En la tabla 9.4, se presenta el resumen del Capital Fijo Directo. Para el cálculo de los costos de los equipos se utilizaron las referencias [3], [4], [5], [6] y fueron actualizados al 2007 con los índices de Marshall & Swift

Nombre equipo	CFD1	CFD2	CFD3	CFD4	CFD5	CFD6	CFD7	CFD8	CFD9	CFD10
Reformador R-1	6.218.529	2.487.412	621.853	1.243.706	3.731.118	1.865.559	1.865.559	3.420.191	497.482	621.853
Reformador R-2	1.243.706	497.482	124.371	248.741	746.224	373.112	373.112	684.038	99.496	124.371
Convertidor HTS	296.563	118.625	29.656	59.313	177.938	88.969	88.969	163.110	23.725	29.656
Convertidor LTS	591.562	236.625	59.156	118.312	354.937	177.469	177.469	325.359	47.325	59.156
Metanizador	117.513	47.005	11.751	23.503	70.508	35.254	35.254	64.632	9.401	11.751
Convertidor NH3	4.745.335	1.898.134	474.534	949.067	2.847.201	1.423.601	1.423.601	2.609.934	379.627	474.534
Torre T-100	364.973	145.989	36.497	72.995	218.984	109.492	109.492	200.735	29.198	36.497
Torre T-101	407.716	163.086	40.772	81.543	244.629	122.315	122.315	224.244	32.617	40.772
Condensador	267.672	107.069	26.767	53.534	160.603	80.302	80.302	147.220	21.414	26.767
Reboiler	962.120	384.848	96.212	192.424	577.272	288.636	288.636	529.166	76.970	96.212
Deshidratador 1	267.361	106.945	26.736	53.472	160.417	80.208	80.208	147.049	21.389	26.736
Deshidratador 2	267.361	106.945	26.736	53.472	160.417	80.208	80.208	147.049	21.389	26.736
Bomba P-100	208.839	83.535	20.884	41.768	125.303	62.652	62.652	114.861	16.707	20.884
Compresores:										
K-100	1.642.326	656.930	164.233	328.465	985.395	492.698	492.698	903.279	131.386	164.233
K-101	1.678.099	671.240	167.810	335.620	1.006.860	503.430	503.430	922.955	134.248	167.810
K-102	1.681.032	672.413	168.103	336.206	1.008.619	504.310	504.310	924.568	134.483	168.103
K-103	3.115.219	1.246.088	311.522	623.044	1.869.132	934.566	934.566	1.713.371	249.218	311.522
K-104	3.207.662	1.283.065	320.766	641.532	1.924.597	962.299	962.299	1.764.214	256.613	320.766
K-105	322.084	128.834	32.208	64.417	193.251	96.625	96.625	177.146	25.767	32.208
Intercambiadores:										
E-100	117.760	47.104	11.776	23.552	70.656	35.328	35.328	64.768	9.421	11.776
E-101	83.185	33.274	8.319	16.637	49.911	24.956	24.956	45.752	6.655	8.319
E-104	1.015.132	406.053	101.513	203.026	609.079	304.540	304.540	558.322	81.211	101.513
E-106	210.807	84.323	21.081	42.161	126.484	63.242	63.242	115.944	16.865	21.081
E-110	811.253	324.501	81.125	162.251	486.752	243.376	243.376	446.189	64.900	81.125
E-112	99.813	39.925	9.981	19.963	59.888	29.944	29.944	54.897	7.985	9.981
E-113	1.360.129	544.052	136.013	272.026	816.077	408.039	408.039	748.071	108.810	136.013
E-116	349.419	139.768	34.942	69.884	209.652	104.826	104.826	192.181	27.954	34.942
E-109	1.281.270	512.508	128.127	256.254	768.762	384.381	384.381	704.699	102.502	128.127
E-111a	156.377	62.551	15.638	31.275	93.826	46.913	46.913	86.007	12.510	15.638
Condensadores:										
E-107	255.689	102.275	25.569	51.138	153.413	76.707	76.707	140.629	20.455	25.569
E-111b	162.206	64.882	16.221	32.441	97.324	48.662	48.662	89.213	12.976	16.221
E-117b	1.216.848	486.739	121.685	243.370	730.109	365.054	365.054	669.266	97.348	121.685
E-108	456.090	182.436	45.609	91.218	273.654	136.827	136.827	250.850	36.487	45.609
E-118	869.177	347.671	86.918	173.835	521.506	260.753	260.753	478.047	69.534	86.918
E-119	1.390.684	556.273	139.068	278.137	834.410	417.205	417.205	764.876	111.255	139.068

Tabla 9.4: Resumen de Capital Fijo Directo en USD.

Vaporizadores:										
E-105	199.553	79.821	19.955	39.911	119.732	59.866	59.866	109.754	15.964	19.955
E-117a	3.038.274	1.215.310	303.827	607.655	1.822.965	911.482	911.482	1.671.051	243.062	303.827
E-502	411.879	164.751	41.188	82.376	247.127	123.564	123.564	226.533	32.950	41.188
Separadores L-V:										
V-100	206.100	82.440	20.610	41.220	123.660	61.830	61.830	113.355	16.488	20.610
V-101	111.292	44.517	11.129	22.258	66.775	33.388	33.388	61.210	8.903	11.129
V-102	95.505	38.202	9.551	19.101	57.303	28.652	28.652	52.528	7.640	9.551
V-103	125.349	50.140	12.535	25.070	75.209	37.605	37.605	68.942	10.028	12.535
V-104	497.055	198.822	49.706	99.411	298.233	149.117	149.117	273.380	39.764	49.706
V-105	314.166	125.667	31.417	62.833	188.500	94.250	94.250	172.791	25.133	31.417
V-106	57.959	23.183	5.796	11.592	34.775	17.388	17.388	31.877	4.637	5.796
Total	42498645	16999458	4249865	8499729	25499187	12749594	12749594	23374255	3399892	4249865
	Total Capital Fijo Directo CFD = 154.270.081									

Para el cálculo del Capital Fijo Indirecto (CFI) se utilizaron los factores que se muestran en la tabla 9.5.

	Capital Fijo Indirecto	Factor		
CFI 11	Ingeniería y supervisión	30%	del costo Equipos	12.749.594
CFI 12	Gastos de Construcción	10%	del CFD	15.427.008
CFI 13	Honorarios Contratista	5%	del CFD	7.713.504
CFI 14	Gastos Legales	3%	del CFD	4.628.102
CFI 15	Contingencias	10%	de CFD+CFI	19.478.829
	Total Capital	Fijo Indir	ecto CFI	59.997.037

Tabla 9.5: Factores Capital Fijo Indirecto, en USD.

9.1.2.- Capital de Trabajo.

El capital de trabajo incluye los siguientes ítems:

- Inventario materias primas
- Inventarios de productos
- Cuentas por cobrar

El capital de trabajo se calcula en base a una producción de 1.000 ton/día de amoniaco.

En la tabla 9.6, se muestra el detalle de los costos del capital de trabajo.

	•	•
Inventario Materias Primas	USD 3.96	000.00
Inventario Productos	USD 4.80	00.000
Cuentas por Cobrar	USD 33.30	00.000
Total Capital Trabajo	USD 42.06	60.000

Tabla 9.6: Detalle costos de Capital de Trabajo.

En la tabla 9.7, se muestra el costo de producción de una planta de amoniaco a distintos precios del gas natural. De acuerdo a esta tabla se calcularán los siguientes ítems.

Precio del GN	USD/Millón Btu	2	4	6
Uso de GN	Millón Btu/Ton NH ₃	33	33	33
Costo del GN	USD/Ton NH ₃	66	132	198
Costo de conversión	USD/Ton NH ₃	28	28	28
Costo Total	USD/Ton NH ₃	94	160	226

Tabla 9.7: Costo de Producción de Amoniaco [7].

9.1.2.1.- Inventario Materias Primas para 30 días producción.

Para 30 días de producción, se requieren 990.000 MMBtu de Gas Natural, a un precio de 4 USD el Millón de Btu, el costo en este ítem es igual a USD 3.960.000.

9.1.2.2.- Inventarios Productos.

En este ítem se considera un mes de producto terminado al costo, a un precio del gas natural de 4 USD/Millón de Btu, el valor de este ítem es igual a USD 4.800.000.

9.1.2.3.- Cuentas por cobrar.

Se toma el valor de tres meses de producto a un precio de venta del amoníaco igual a 370 USD/Ton.

En tres meses se producen 90.000 Ton de amoniaco, por lo tanto el total de este ítem es igual a USD 33.300.000.

9.2.- Costos de Producción.

Para esta planta, el costo para un año de producción a un precio del gas natural de 4 USD/Millón de Btu es igual a USD 48.000.000

9.3.- Flujo de Caja

En el estudio económico de un proyecto industrial, es de mucha utilidad conocer el flujo de dinero en el sistema operativo de la planta. Esta circulación de dinero es conocida con el nombre de Flujo de Caja.

El Flujo de Caja se calcula a partir de los ingresos netos. Los ingresos netos, son aquellos percibidos por efecto de las ventas del producto elaborado.

La diferencia de los ingresos netos y los gastos anuales de operación recibe el nombre de Ingreso o Margen Operacional, y está constituida por la suma de las depreciaciones y la utilidad bruta.

Por esta razón, para obtener la utilidad neta, debe descontarse de la utilidad bruta las depreciaciones y los intereses pagados por la deuda adquirida, para así obtener una utilidad afecta a impuestos. Al aplicar los correspondientes impuestos, queda un remanente denominada Utilidad Neta.

Para obtener el flujo de caja anual, a la utilidad neta debe sumarse las depreciaciones y el valor residual de las instalaciones, y restarse la amortización de la deuda. La razón de por qué la depreciación regresa a los fondos de la empresa y no sale al exterior acompañado a los otros gastos, es debido a que es un costo de tipo interno, y por tanto debe quedar dentro de la empresa para absorber el desgaste de los equipos.

La conveniencia de realizar el proyecto, desde le punto de vista económico, se determina por medio de los indicadores siguientes.

9.3.1.- Valor Actual Neto (VAN).

Corresponde a la suma de los beneficios netos actualizados que se obtienen durante la vida útil del proyecto.

$$VAN = \sum_{t=0}^{n} \frac{I_{T} - C_{T}}{(1+i)^{t}}$$

Donde:

 I_T : Ingreso total en el año t

 C_T : Costo total en el año t

- i: Tasa de descuento o actualización
- n: Vida útil del proyecto

9.3.2.- Tasa Interna de Retorno (TIR).

En la tasa de actualización para la cual el VAN es nulo. Se determina de la ecuación siguiente.

$$\sum_{t=0}^{n} \frac{I_T - C_T}{\left(1 + TIR\right)^t}$$

Generalmente un proyecto es conveniente de realizar si su VAN es mayor que cero y la TIR es mayor que el costo alternativo del capital (tasa de interés que entrega entidad financiera en la que invierte el capital).

9.3.3.- Naturaleza de la deuda.

La deuda se contrae con una entidad financiera para poder solventar los gastos de inversión inicial, compra de terreno y capital de trabajo necesario para el funcionamiento de la planta.

La deuda se paga en anualidades iguales, en un periodo de tiempo determinado, con un interés bancario del 10% anual.

Debido a que la rentabilidad de un proyecto se incrementa al disminuir la proporción de capitales propios en la inversión, se recomienda la utilización del máximo financiamiento posible (rango de 50 a 70% referencia [2]).

Así se estima viable que el proyecto tenga su inversión compuesta en un 30% de capitales propios y un 70% correspondiente a financiamiento

9.3.4.- Calculo del Flujo de Caja.

Teniendo en cuenta todo lo anterior, el flujo de caja del proyecto, considerando un 70% de financiamiento, un precio del gas natural de 4 USD/Millón de Btu y un precio de venta del amoniaco de 370 USD/Ton, se muestra en la tabla 9.8.

Utilizando una tasa de descuento del 10%, el valor del VAN es:

La tasa interna de retorno (TIR) para este proyecto es:

TIR = 19,5

Tabla 9.8: Flujo de Caja a 4 US/MMBtu de GN y 370 US/Ton NH_3

Inversion total	277753830
30% Recursos propios	83326149
70% Préstamo	194427681
Tasa de interés	10%
Tasa de impuestos	15%

Precio Venta NH3	370	US/Ton
Precio GN	4	US/Millón Btu
Costo Producción	160	US/Ton NH3

	Ton/dia	800	1000	1000	1000	1000	1000	1000	1000	1000	1000
	año 0	año 1	año 2	año 3	año 4	año 5	año 6	año 7	año 8	año 9	año 10
Inversion Inicial	83.326.149										
Ingresos		88.800.000	111.000.000	111.000.000	111.000.000	111.000.000	111.000.000	111.000.000	111.000.000	111.000.000	111.000.000
Egresos		38.400.000	48.000.000	48.000.000	48.000.000	48.000.000	48.000.000	48.000.000	48.000.000	48.000.000	48.000.000
Ingresos de Operación		50.400.000	63.000.000	63.000.000	63.000.000	63.000.000	63.000.000	63.000.000	63.000.000	63.000.000	63.000.000
Depreciacion		14.237.046	14.237.046	14.237.046	14.237.046	14.237.046	14.237.046	14.237.046	14.237.046	14.237.046	14.237.046
Interes		19.442.768	19.442.768	19.442.768	19.442.768	19.442.768	19.442.768	19.442.768	19.442.768	19.442.768	19.442.768
Renta Gravable		16.720.186	29.320.186	29.320.186	29.320.186	29.320.186	29.320.186	29.320.186	29.320.186	29.320.186	29.320.186
Impuestos		2.508.028	4.398.028	4.398.028	4.398.028	4.398.028	4.398.028	4.398.028	4.398.028	4.398.028	4.398.028
Utildad Neta		14.212.158	24.922.158	24.922.158	24.922.158	24.922.158	24.922.158	24.922.158	24.922.158	24.922.158	24.922.158
Amortizacion		19.442.768	19.442.768	19.442.768	19.442.768	19.442.768	19.442.768	19.442.768	19.442.768	19.442.768	19.442.768
Valor Salvamento											4.249.865
Capital de trabajo											42.060.000
Terreno											3.399.892
Flujo de caja	-83.326.149	9.006.436	19.716.436	19.716.436	19.716.436	19.716.436	19.716.436	19.716.436	19.716.436	19.716.436	69.426.192
VAN	47.251.713										
TIR	19,5										

9.4.- Análisis de Sensibilidad.

En la tabla 9.9, muestra la variación del VAN y el TIR, manteniendo el costo del gas natural a 4 USD/Millón de Btu y variando el precio de venta del amoníaco.

En las Figuras 9.1 y 9.2, se aprecia el comportamiento de la variación del VAN y el TIR en las condiciones de la tabla 9.9.

Costo Gas Natural	Precio venta NH ₃		
USD/Millón Btu	USD/ton	VAN	TIR
4	250	-133734734	-28,0
4	300	-54709232	-2,8
4	350	18120015	13,8
4	400	90949262	27,7
4	450	163778509	40,2
4	500	236607756	52,0

Tabla 9.9: Variación VAN y TIR a costo de gas constante.

Conto Con Notural Drania Vanto NUL

Figura 9.2: Gráfico TIR v/s Precio Venta NH₃

En la tabla 9.10, se muestra la variación del VAN y el TIR manteniendo el precio de venta a 350 USD/Ton y variando el costo del gas.

En las Figuras 9.3 y 9.4, se aprecia el comportamiento del VAN y el TIR en las condiciones de la tabla 9.10.

Costo Gas Natural	Precio Venta NH ₃		
USD/Millón Btu	USD/ton	VAN	TIR
2	350	121.285.385	34,3%
3	350	69.702.700	24,2%
4	350	18.120.015	13,8%
5	350	-33.462.670	2,8%
6	350	-85.600.494	-9,2%

Tabla 9.10: Variación VAN y TIR a costo de gas constante.

Figura 9.3: Gráfico VAN v/s Precio Venta Gas Natural a 350 USD/Ton NH₃

Figura 9.4: Gráfico Precio Venta Gas Natural a 350 USD/Ton NH₃

En la tabla 9.11, se muestra la variación del VAN y el TIR manteniendo el precio de venta a 400 USD/Ton y variando el costo del gas.

En las Figuras 9.5 y 9.6, se aprecia el comportamiento del VAN y el TIR en las condiciones de la tabla 9.11.

Costo Gas Natural	Precio Venta NH ₃		
USD/Millón Btu	USD/ton	VAN	TIR
2	400	194.114.632	46,9%
3	400	142.531.947	37,3%
4	400	90.949.262	27,7%
5	400	39.366.577	17,8%
6	400	-12.216.108	7,5%

Tabla 9.11: Variación VAN y TIR a costo de gas constante.

Figura 9.5: Gráfico VAN v/s Precio Venta Gas Natural a 400 USD/Ton NH₃

Figura 9.6: Gráfico Precio Venta Gas Natural a 400 USD/Ton NH₃

9.5.- Conclusión

De acuerdo al análisis de sensibilidad, el precio del gas natural es determinante en la viabilidad económica del proyecto, ya que este determina el precio de venta del amoniaco. El costo del gas natural corresponde a aproximadamente al 90% del costo de producción del amoniaco.

A un precio de venta de amoniaco de 350 USD/ton, el precio de costo del gas natural para obtener un TIR del 20% es de 3,4 USD/MMBtu, y para obtener un VAN = 0 el precio de costo del gas natural es de 4,4 USD/MMBtu. Por lo tanto, a este precio de venta, el precio del gas natural para que el proyecto sea rentable debe ser menor que 4,4 USD/MMBtu.

A un precio de venta de amoniaco de 400 USD/ton, el precio de costo del gas natural para obtener un TIR del 20% es de 4,7 USD/MMBtu, y para obtener un VAN = 0 el precio de costo del gas natural es de 5,8 USD/MMBtu. Por lo tanto, a este precio de venta, el precio del gas natural para que el proyecto sea rentable debe ser menor que 5,8 USD/MMBtu.

Considerando este análisis y tomando en cuenta de que el precio promedio CIF del amoniaco que se transa en la región llegó en el 2006 a 375 USD/Ton, se llega a la conclusión de que un precio conveniente de venta es de 370 USD/Ton. Para obtener un TIR del 20%, el precio del gas natural deberá ser de 4 USD/MMBtu, el cual es un precio razonable en la región (año 2006).

9.6.- Referencias

- [1] Max Peters and Klaus Timmerhaus. 1991. Plant Design and Economic for Chemical Engineers, 4^a Edition, Editorial Mac Graw - Hill
- [2] Apuntes Ingeniería Económica, profesor Luis Vega. Ingeniero Civil Químico Pontificia Universidad Católica de Valparaíso.
- [3] Cabrera, Cid, Fredes, Gallardo, Rios, Sanches. 2007. Estudio de Prefactibilidad Técnico y Económica de una Planta de Amoniaco. Pontificia Universidad Católica de Valparaíso.
- [4] Estimación de Costos para Intercambiadores de Casco y Tubos. Facultad de Ingeniería Universidad de Buenos Aires http://www.fi.uba.ar/materiales/7604/costos.pdf
- [5] Stanley M. Walas. 1990. Chemical Process Equipment. Butterworth-Heinemann, USA
- [6] Strait, Allum, Gidwani. 2005. Synthesis Gas Reformer. Department of Chemical Engineering. Rice University. http:// www.owlnet.rice.edu/chbe403/nh3ref97.html
- [7] Gary R. Maxwell. 2005. Synthetic Nitrogen Products. A Practical Guide to the Products and Processes. Memphis, Tennessee

Capítulo 10

CONCLUSIONES

10.- Conclusiones

- El principal uso del amoniaco en el mundo es para la fabricación de fertilizantes. En Chile en cambio, el mayor uso de este producto es para la fabricación de explosivos.
- En la actualidad no existen plantas de producción de amoniaco en Chile en operación.
- La tendencia mundial es la relocalización de la producción de amoniaco hacia países donde el precio del gas natural es menor como en Asia, Europa del este, Medio Oriente y Latino América. Esta transferencia viene a costa de Norte América y Europa del Oeste.
- El amoniaco se obtiene exclusivamente por el método denominado Haber-Bosh. El proceso consiste en la reacción catalítica directa entre el nitrógeno y el hidrogeno gaseoso. La fuente de nitrógeno es el aire atmosférico, el hidrógeno requerido puede ser producido de diferentes materias primas pero actualmente es producido principalmente por la reformación de metano con vapor.
- La capacidad de la planta se basa en los antecedentes de crecimiento de la minería en Chile, que está directamente relacionada con el uso de explosivos. La planta se proyecta a 10 años con una producción de 1000 Ton/día.
- La ubicación mas ventajosa es en Mejillones, región de Antofagasta, ya sea cercana o como parte de ENAEX.
- La inversión total del proyecto es de USD 277.753.830 compuesta de un 30% de capitales propios y un 70% de financiamiento.
- La tasa interna de retorno (TIR) que entrega el proyecto es del 20% y un valor actual neto (VAN) de 47,3 MMUSD considerando una tasa de descuento de 10%. El precio de venta del amoniaco producido es de 370 USD/ton y el costo de la materia prima, en este caso gas natural, es de 4 USD/MMBtu.

- El proyecto se considera factible técnica y económicamente, pero sin embargo muy sensible al valor de la materia prima y a los precios internacionales del amoniaco, y como en Chile se tiene un único gran comprador, ENAEX, existe demasiada dependencia de un solo cliente.
- Por el momento no se recomienda su implementación hasta tener una fuente estable, segura y económica de gas natural.