
PONTIFICIA UNIVERSIDAD CATÓLICA DE VALPARAÍSO
FACULTAD DE INGENIERÍA

ESCUELA DE INGENIERÍA INFORMÁTICA

AN IMPROVED MONKEY ALGORITHM FOR
THE SET COVERING PROBLEM

Gabriel Francisco Luis Embry Calderon
Diego Esteban Flores Castillo

Profesor Guía: Dr. Broderick Crawford Labrín
Profesor Co-referente: Dr. Ricardo Soto de Giorgis

INFORME FINAL PROYECTO DE TITULO
PARA OPTAR AL TÍTULO PROFESIONAL DE

INGENIERO CIVIL EN INFORMÁTICA

October 2017

PONTIFICIA UNIVERSIDAD CATÓLICA DE VALPARAÍSO
FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA

INFORMÁTICA

AN IMPROVED MONKEY ALGORITHM FOR
THE SET COVERING PROBLEM

Gabriel Francisco Luis Embry Calderon
Diego Esteban Flores Castillo

Profesor Guía: Dr. Broderick Crawford Labrín
Profesor Co-referente: Dr. Ricardo Soto de Giorgis

October 2017

Acknowledgements

Gabriel Embry: This project is dedicated to my family and friends, who
supported me, economically and emotionally, during this first big step neces-
sary to fulfill my dreams and goals. It is also dedicated to all my teachers,
especially to our guide teacher and co-referent, who gave me the necessary
knowledge to finish this process.

Diego Flores: This research is dedicated to my family for providing me
with unconditional support in all my years of studies, as well as the friend-
ships I have formed inside and outside the university, who have made this
process even more pleasing.

Abstract

Abstract. The Set Covering Problem (SCP) is a well-known NP-hard
problem of combinatorial analytic. This problem consists in to find solu-
tions covering the needs at lower cost. Those needs can be services to cities,
load balancing in production lines or data-banks selections. In this work,
we study the resolution of the SCP through the Improved Binary Monkey
Algorithm (IBMA), and a new variation of its. This algorithm is based in
swarm intelligence inspired from the mountain-climbing behavior of mon-
keys. We also will be realize comparatives test between the IBMA, the
IBMAV and the Binary Cat Swarm Optimization (BCSO).

Keywords:Combinatorial Optimization, Binary Monkey algorithm, Meta-
heuristic, Set Covering Problem.

i

Contents

1 Introduction 1

2 Objectives 2
2.1 General Objectives . 2
2.2 Specific Objectives . 2

3 Set covering problem 3

4 Previous work 6

5 Pre-Processing 7

6 Description of the Improved Monkey Algorithm 8
6.1 Coding Method . 8
6.2 Initial Population . 10
6.3 Climb Process . 10
6.4 Watch Jump Process . 11
6.5 Greedy Strategy: Reparation Process. 12
6.6 Redundancy Reduction Process 13
6.7 Cooperation Process . 14
6.8 Somersault Process . 14
6.9 Termination Condition . 15

7 Experimentation and Implementation details 16

8 Conclusion 24

ii

1 Introduction

Over the years, many companies have seen the need to use their resources to
meet the needs of a sector, so that, these companies try to always use their
capital efficiently as possible, in other words, trying to minimize the costs.
Such situations can be represented by the Set Covering Problem (SCP),
which is a classic problem in combinatorics, computer science and compu-
tational complexity theory. Because the characteristics of this problem, the
complexity of this begins to increase with the increasing number of restric-
tions (needs), so the number of solutions increase and the time needed to
check those solutions also does [5], which is why it is not feasible to fix it
in manually and have had to investigate new ways to solve it, which led to
the use of metaheuristics in order to solve the problem, who are algorithms
generally based on neural networks, animal behavior or genetic algorithms.

In this research, it was decided that the Improved Binary Monkey Al-
gorithm [20] (IBMA) is going to be used for solving the SCP. This metaheur-
istic consists of four steps: Climb Process, Watch-Jump Process, somersault
Process and Cooperation Process. These steps aim to find the local optimal
solution, find better solutions than the previous step, find a new solution
domain and ultimately improve the local solution finding and accelerate the
convergence order.

This research aims to understand the SCP and propose a solution based
on a metaheuristic. First the Set Covering Problem with its mathematical
model will be explained in depth and also an graphic example will be ex-
plained. Subsequently it will be discussed the related work, i.e. what kind of
research has been done on the SCP, and the metaheuristic chosen. Finally
it will explain the IBMA, in which each of its steps will be explained, along
with mathematical models that support them, and its pseudo code in order
to implement the algorithm.

1

2 Objectives

2.1 General Objectives

Solve the Set Covering problem using an improved monkey algorithm

2.2 Specific Objectives

• Fully understand the Set Covering Problem

• Fully understand the Improved Monkey Algorithm

• Implement the algorithm and achieve the solution of the SCP

• Perform an experimental evaluation

• Compare the performance between the MA and the IBMA

2

3 Set covering problem

The allocation Set Covering Problem (SCP) consists in a set of values that
have a relationship together, and thanks an objective function, it is possible
to maximize or minimize the allocation cost of those values. It is a classic
combinatorial problem that belongs to the category NP-Hard [11]. The SCP
in specific seeks to find the lowest possible allocation cost. That is, given
a set of numbers, called universe (U), and a collection (S) of n sets whose
union equals the universe, the Set Covering seeks to identify the smallest
sub-collection of S whose union equals the universe, in other words, it seeks
to cover all needs (rows) with the lowest cost (columns). That said, we
can mention that the best way to represent this problem, is in the form
of an assignment matrix (M x N). Where M represent the needs that are
to covering and N columns variables to assign. The assignment matrix is
based on a series of restrictions that must be cover to be considered a viable
solution [8]. Along with the already mentioned in the above paragraph, it
should be take into consideration that the Set Covering Problem is a problem
of binary domain, i.e. ones (1) and zeros (0).

The Set Covering Problem has many application in real life and industry,
for example, the allocation of services by municipalities or cities, load bal-
ancing production lines [15], selection of files in a database [6], among many
others. As shown in the application examples mentioned above, the prob-
lem can be applied in different circumstances of decision making. As said,
the SCP can be used in different contexts of decision making, moreover, the
more information these decision have, it will help to improve the quantit-
ative and qualitative performance of the assets of the entity in charge (i.e.
a company) that could be used in a better way, thus improving the per-
formance and quality of service. In order to better understanding of this
problem is necessary to explain the mathematical formulation. This will be
explained using formulas and mathematical notation that help to expose in
a didactic way the complexity and the characteristics of the problem, achiev-
ing a greater understanding of the problem. Following, will be exposed the
domain; objective function and restrictions of the problem:

3

Then, will be exposed the domain; objective function and restrictions of the
problem:

minZ =

n∑
j=1

cjxj

Subject to:
n∑

j=1

aijxj ≥ 1 ∀i ∈ {1, 2, 3, ..., n},

xj ∈ {0, 1}

In order to better understand the problem, let’s suppose we have a mine
divided in the following way:

Figure 1: Example

Currently the cost of transporting the mineral is too high, so we must in-
stall storage facilities at certain points, which should satisfy all the needs
of the mine. Such plants may store the mineral obtained from its quad-
rant and surrounding area. In other words, it seeks to minimize the cost of
transportation of minerals.

4

Assuming the cost of transportation as one (1) in all quadrants, restric-
tions for this problem can be expressed mathematically as:

MinimizeX1 +X2 +X3 +X4 +X5 +X6 +X7 +X8 +X9 +X10 +X11

subject to
X1 +X2 +X3 +X4 ≥ 1

X1 +X2 +X3 +X5 ≥ 1

X1 +X2 +X3 +X4 +X5 +X6 ≥ 1

X1 +X3 +X4 +X6 +X7 ≥ 1

X2 +X3 +X5 +X6 +X8 +X9 ≥ 1

X3 +X4 +X5 +X6 +X7 +X8 ≥ 1

X4 +X6 +X7 +X8 ≥ 1

X5 +X6 +X7 +X8 +X9 +X10 ≥ 1

X5 +X8 +X9 +X10 +X11 ≥ 1

X8 +X9 +X10 +X11 ≥ 1

X9 +X10 +X11 ≥ 1

Given these conditions, one of the best solutions for this typical Set Covering
Problem would build a distribution plant in quadrants 3, 7 and 9, thus all
the above-defined constraints are satisfied.

5

4 Previous work

The Set Covering Problem is a problem that has been under investigation for
many years by the computer science and complexity theory. It is an interest-
ing problem to investigate due many real world problems [8] can be modeled
by the SCP, such as production planning in industry [18], facility location
problem [17] and crew scheduling in airlines [12]. During years many al-
gorithms have been developed to solve it. Exact algorithms are mostly based
on brand-and-bound and branch-and-cut [1] [9], however, these algorithms
are inefficient because are time-consuming and can only solve instances of a
very limited size. For this reason many research efforts have been focused on
the development of heuristics to find good or near-optimal solution within a
reasonable period of time. Classical greedy algorithms are very simple, fast,
and easy to code in practice, but they rarely produce high quality solutions
for their myopic and deterministic nature [3], due that most of researchers,
uses meta-heuristics in order to solve the SCP, such as genetic algorithms
inspired by biological evolution and molecular genetic base, simulated an-
nealing algorithm inspired by the metallurgy, animal based meta-heuristics
inspired by animal behavior, such as Ant Colony Optimization [4] and the
Monkey Algorithm [19], among many others.

The Monkey Algorithm(MA) [19] was proposed to solve global numerical
optimization problem with continuous variables in 2007. It is a swarm in-
telligence based algorithm derived from simulation of the mountain-climbing
processes of the monkeys when they look for food. The MA consist in four
process, initialization, climb process, watch-jump process and somersault
process. Later in 2016 this algorithm was improved by implementing the co-
operation process in order to speed up the convergence rate of the algorithm
and the greedy strategy repair process, used to correct the infeasible solu-
tions and improve the quality of the feasibility, this new algorithm was called
improved monkey algorithm(IMA) [21].

The MA is relatively new, it has been used to solve the Renewable Energy
Integration Problem [13], who is solved as a Multi-Objective Optimization
Problem where the objectives take in account are the minimization of the
total life-cycle cost of the system, involving the capital, replacement, oper-
ation, maintenance and the minimization of greenhouse gas emissions. In
the other hand, the IMA have only been used for the knapsack problem [21].
The knapsack problem can be explained as follows, we have a backpack and
objects that carry it with different weights, the total of these items exceeds
the maximum that can carry the backpack so you need to maximize the total
value without exceeding the limit.

6

5 Pre-Processing

To accelerate the speed with which the algorithm finds solutions, we intro-
duce to Pre-Processing phase before the meta-heuristic, which will reduce
the size of the instances and improve the performance, in other words, it will
generate a equivalent smaller problem. In this work, we will use two methods
that have proven to be effective: Column Domination [2] and Column Inclu-
sion [10]. Column Domination consists of deleting the redundant columns
without affecting the final solution. In other words, if the rows belonging
to the column j are covered by another column with a lower cost than Cj ,
then the column is "dominated" and it can be removed. The pseudo-code of
Column Domination is given as follows:

1 : Order a l l columns by cost , ascending .
2 : i f Two or more columns have the same co s t then .
3 : Order those columns by the amount o f rows I j

covered by column j , descending .
4 : Check i f rows I j can be covered by a s e t o f

other columns with a co s t lower than Cj .
5 : i f Cost i s lower
6 : The column j i s dominated and i t can be

removed .
7 : end i f
8 : end i f

After performing the above algorithm, we perform the Column Inclusion
method. It consists in include in the final solutions the columns that cover
a row that is only covered for that column. That is, if a row is covered by
only one column after the above domination, that column must be included
in the optimal solution, and there is no need to evaluate its feasibility.

7

6 Description of the Improved Monkey Algorithm

The Monkey Algorithm (MA) was proposed in 2007 to solve numerical op-
timization problems as a new swarm intelligence based algorithm inspired
from the mountain-climbing behavior of monkey when they look for new
food sources [21]. This algorithm, consist in the following steps: the Climb
Process, the Watch-Jump Process and the Somersault Process. Assume that
there are many mountains in a certain terrain. At the beginning, the mon-
keys will climb up the nearest mountain from their initial positions, in order
to find the mountaintops (Climb Process). When the monkey gets to the top
of its mountain, it will find a higher one within a certain range (called the
monkey sight) and it jumps from his current position to the new mountain
(Watch-Jump Process), and then repeat the Climb Process. After repeat-
ing the processes mentioned above a certain number of times, each monkey
will somersault to a new search domain to find a much higher mountain
(Somersault Process).

In 2015 a variation of the MA was proposed to solve the 0-1 Knapsack
Problem, the Improved Binary Monkey Algorithm (IBMA) [19], it include
the same three steps that it have its predecessor, but also includes two new
steps: the Greedy Strategy and the Cooperation Process. The greedy al-
gorithm is used to correct the infeasible solutions and to improve the quality
of feasibility, in other words, is a reparation algorithm. The Somersault
Process is modified to avoid falling into local search; the Cooperation Pro-
cess is implemented to speed up the convergence rate. Also we implement
a redundancy reduction process which helps to improve the quality of the
solutions.

In this work, we will present a new variation of the IBMA. This new
algorithm have the same steps as the former, but the Climb Process and the
Cooperation process have been modified in order to improve the solutions.

6.1 Coding Method

The parameter M is defined as the population size of monkeys. For a certain
monkey i, its position is denoted as a vector Xi = (xi1, xi2, . . . , xin), and this
position will be employed to express a solution of the set covering problem,
where xij ∈ {0, 1} and j ∈ 1, 2, . . . , n, represent the number of decision
variables xij = 1 indicates the item jis included in the solution, and xij = 0
indicates it is not.

8

Figure 2: Improved Binary Monkey Algorithm
9

6.2 Initial Population

In Improved Binary Monkey Algorithm, and in our variation, the initial
population is randomly generated. The random initialization process of M
solutions (monkeys) and n decision variables (items) is defined as follows:

for i = 1 to M do
for j = 1 to N do

Randomly generate rand;
If rand < 0.5 then

Xij = 0 ;
else

Xij = 1 ;
endif

endfor
endfor

where Xij represents the jth component in the vector Xi

6.3 Climb Process

According to the idea of pseudo-gradient based simultaneous perturbation
stochastic approximation (SPSA) [16], this process is a step-by-step pro-
cedure to improve the objective function value by choosing the best between
two positions that are generated around the current one. For the monkey i,
Xij , and f(Xi) the objective function value. The Climb Process used in the
IBMA is given as follows:

1. Randomly generate two vectors �xi
′ and �xi

′′ , where
�xi

′
= (�xi1

′
,�xi2

′
, . . . ,�xin

′
) and

�xi
′′
= (�xi1

′′ , �xi2
′′
, . . . ,�xin

′′
), where

�xij
′
,�xij

′′
=

{
a with probability 1/2

−a with probability 1/2

j ∈ 1, 2, . . . , n, respectively. The parameter a, is called step of the
Climb Process. This parameter can be determined depending the situ-
ation but always had to be greater than zero (a > 0). Here A is set to
1 for the SCP.

10

2. Set x
′
ij = |xij − �x

′
ij | and x

′′
ij = |xij − �x

′′
ij |, j ∈ 1, 2, . . . , n, re-

spectively, where |x| represents the absolute value of x. Set X
′
i =

(x
′
i1, x

′
i2, . . . , x

′
in), X

′′
i = (x

′′
i1, x

′′
i2, . . . , x

′′
in). If �xi

′ or �xi
′′ is unfeas-

ible, keep Xi unchanged.

3. Calculate f(X
′
i) and f(X

′′
i), i ∈ 1, 2, . . . ,M , respectively.

4. If f(X ′
i) < f(X

′′
i) and f(X

′
i) < f(Xi), set Xi = X

′
i . If f(X ′′

i) < f(X
′
i)

and f(X
′′
i) < f(Xi), Xi = X

′′
i .

5. Repeat steps (1) to (4) until the maximum allowable number of itera-
tions has been reached. This limit is denoted by Nc.

In the IBMA variation proposed in this work, only the step (2) is modified,
instead of keep Xi unchanged if the generated solution is inviable, we “fix"
those solutions.

(2) Set x′
ij = |xij −�x

′
ij | and x

′′
ij = |xij −�x

′′
ij |, j ∈ 1, 2, . . . , n, respect-

ively, where |x| represents the absolute value of x. Set X ′
i = (x

′
i1, x

′
i2, . . . , x

′
in)and

X
′′
i = (x

′′
i1, x

′′
i2, . . . , x

′′
in). If �xi

′ or �xi
′′ is out of domain (unfeasible), gen-

erate a random number between 0 and 1, if random < 0.5 set Xij to 0,
otherwise 1.

6.4 Watch Jump Process

When the monkey reach the top of the mountains, each monkey will try to
find a higher point than his current position within its sight. If find one,
it will jump somewhere of the new mountain from his current position, and
then it will be start the Climb Process again. For the monkey i, its position
is Xi = (xi1, xi2, . . . , xin), i ∈ 1, 2, . . . , M. The Watch-Jump Process is given
as follows:

1. Randomly generate a real yj in the interval [xij − b, xij + b], j ∈ 1, 2, . . . , n
respectively, where b is the monkey’s sight and it can be determined
depending of the situation. Set Y = (y1, y2, . . . , yn).

11

2. Because of the real yj ∈ [−1, 2], if yj < 0.5, set yj to 0; otherwise, set
yj to 1.

3. Calculate f(Yi), i ∈ 1, 2, . . . ,M , respectively.

4. If f(Yi) < f(Xi), then Xi = Yi.

5. Repeat steps (1) to (4) until the maximum allowable number of itera-
tions has been reached. This limit is denoted by Nw.

6.5 Greedy Strategy: Reparation Process.

Solving the SCP, some monkeys may have an abnormal encode (that does
not meet the constraints), for this reason, the local search strategy-greedy
algorithm is implemented to repair the infeasible solutions and to improve
the quality of feasibility. Assuming the monkey Xi, is not a feasible solution,
there Xi = (xi1, xi2, . . . , xin), i ∈ 1, 2, . . . ,M , And A represent the constraint
matrix. The greedy Algorithm is given as follows:

1. Search for an uncovered row according to the constraint matrix A

2. Create a vector with the possible candidates to cover the row previously

3. For each candidates calculate his weight (W): W= (number of rows
covered by the candidate (not yet covered at the moment))/Cost of
the candidate)

4. Select the candidate with the highest W , and put it in the monkey Xi.

5. Repeat step (1) to (4) until the monkey Xi becomes feasible

12

6.6 Redundancy Reduction Process

Once the monkeys have gone through the Reparation Process, the Redund-
ancy Reduction Process is initiated [14] to reduce the overall cost of the
monkey. For each monkey i, Xi = (xi1, xi2, . . . , xin), i ∈ 1, 2, . . . ,M , the
redundancy reduction process is given as follows:

1. Set the vector Y = (Y1, Y2, . . . , Yn) equal to Xi (Y = Xi)

2. Starting from Yk, k ∈ N,N − 1, . . . , 0, do Y k = 0

3. Then, check the feasibility of the vector Y , if Y is still feasible, it
means that column is redundant, then set Xik to 0 and decrease k in
1. Otherwise (Y is not feasible) do Yk = 1, and decrease k in 1.

4. Repeat step (1) to (3), until there is no redundancy in the monkey Xi

13

6.7 Cooperation Process

After the Climb and Watch-Jump Process, each monkey will arrive at the
highest mountain in his neighborhood, however, they will differ among all
the monkeys. The purpose of the cooperation process is to improve the mon-
key’s solution by cooperating with the monkey that has the higher moun-
tain (best position), in other words, they will move along the direction of
the best monkey. This process can speed up the convergence rate. As-
sume that the optimal position is X∗ = (x∗1, x∗2, . . . , x∗n). For the monkey i,
Xi = (xi1, xi2, . . . , xin), i ∈ 1, 2, . . . ,M . The cooperation process is given as
follows:

1. Randomly generate a real number α from the interval [0, 1].

2. If α < 0.5, then yj = xj , otherwise, yj = x∗j , j ∈ 1, 2, . . . , n, respect-
ively.

3. Update the monkey’s position Xi with Y

In the IBMA variation proposed in this work, a new step to the Coopera-
tion Process is added. This new step check if f(Y) have less cost than f(X)
before replacing the values. Otherwise, the process is repeated, if after L
iterations (in this work, L is set to 3) the algorithm cannot find a better
f(Y), xi is maintained.

(3) Calculate f(Y) and f(Xi), if f(Y) < f(Xi) updates monkey Xi with
Y , otherwise do nothing.

(4) Repeat steps (1) to (3) until Xi is updated or the limit L is meet.

6.8 Somersault Process

Monkeys will reach their highest mountaintops around their initial positions
after repetitions of the Climb, Watch-Jump and Cooperation Process. To
find a higher mountain, each monkey will somersault to a new search do-
main. The new position is not arbitrary, is limited within a certain region,
which is limited by the pivot and the somersault interval. This process can
effectively prevent monkeys falling into local search, however, after many
iterations, the somersault process may lose efficacy, resulting in monkeys

14

falling into the local optimal domain, decreasing the population diversity. In
the original MA, the monkeys will somersault along the direction pointing to
the barycenter of all monkeys’ current positions. Here, we randomly choose
a monkey’s position as the pivot replacing the one proposed by the original
algorithm. For each monkey i, Xi = (xi1, xi2, . . . , xin), i ∈ 1, 2, . . . ,M , the
Somersault Process is given as follows:

1. Randomly generate a real number (θ) from the interval [c, d] (this in-
terval governs the maximum distance that monkeys can somersault, is
called the somersault interval)

2. Randomly generate an integer k, k ∈ 1, 2, . . . ,M , respectively. The
monkey k(Xk) will be the somersault pivot

3. Calculate yj = xkj + θ(xkj − xij)

4. If Yj < 0.5, set Yj to 0, otherwise, set Yj to 1. Update the monkeys
positions Xi with Y

After repetitions of the somersault process, monkeys may reach the same
domain to make the somersault process lose efficacy. In case of this problem,
we set a parameter called "limit" to control monkeys running into the local
optima solution. If the global optimal solution is not improved by a predeter-
mined number of trials, the monkeys are abandoned and then reinitialized.

6.9 Termination Condition

Following the six steps of this algorithm, all monkeys will be ready for their
next action. The condition for terminating the IBMA and our variation, is
when the maximum number of iterations its meet.

15

7 Experimentation and Implementation details

The executions of both algorithms, the IBMAV and IBMAV, presented in
this work where done for the purpose to compare thems. The input files used
for this test were all SCP files available in OR-library [7] aside from the files
SCPNRG and SCPNRH. Both algorithms were coded in Java, using eclipse
neon IDE 1.8, and executed on 5 desktops, one with 3.1GHz Intel Pentium
I5-4440 processor with 8 GB Ram under Windows 10, and four with 3.3GHz
Intel Pentium I3-2100 processor with 16 GB ram under Windows 7. The
results will be shown in the following tables, and the configuration used was
the following: Iterations = 10,Monkeys = 10, A = 1, b = 1, c = −1, d =
1, Nc = 2, Nw = 2.

16

Table 1: Results table
Inst. Type Zopt Zbest Zavg rpd rpd(avg)

SCP41 IBMAV. 429 432 441.87 0.70 3.00
SCP42 IBMAV. 512 518 543.67 1.17 6.19
SCP43 IBMAV. 516 520 537.87 0.78 4.24
SCP44 IBMAV. 494 496 523.45 0.40 5.96
SCP45 IBMAV. 512 518 536.29 1.17 4.74
SCP46 IBMAV. 560 564 582.16 0.71 3.96
SCP47 IBMAV. 430 432 442.16 0.47 2.83
SCP48 IBMAV. 492 495 512.12 0.61 4.09
SCP49 IBMAV. 641 662 683.41 3.28 6.62
SCP410 IBMAV. 514 520 541.16 1.17 5.28
SCP51 IBMAV. 253 258 269.22 1.98 6.41
SCP52 IBMAV. 302 316 325.06 4.64 7.64
SCP53 IBMAV. 226 229 236.19 1.33 4.51
SCP54 IBMAV. 242 242 248.80 0.00 2.81
SCP55 IBMAV. 211 212 219.06 0.47 3.82
SCP56 IBMAV. 213 213 226.09 0.00 6.15
SCP57 IBMAV. 293 295 309.45 0.68 5.61
SCP58 IBMAV. 288 289 300.45 0.35 4.32
SCP59 IBMAV. 279 281 289.87 0.72 3.90
SCP510 IBMAV. 265 267 273.38 0.75 3.16
SCP61 IBMAV. 138 141 146.80 2.17 6.38
SCP62 IBMAV. 146 149 157.12 2.05 7.62
SCP63 IBMAV. 145 148 154.74 2.07 6.72
SCP64 IBMAV. 131 133 137.77 1.53 5.17
SCP65 IBMAV. 161 165 173.48 2.48 7.75

17

Table 2: Results table
Inst. Type Zopt Zbest Zavg rpd rpd(avg)

SCPA1 IBMAV. 253 256 261.83 1.19 3.49
SCPA2 IBMAV. 252 256 269.16 1.59 6.81
SCPA3 IBMAV. 232 238 246.41 2.59 6.22
SCPA4 IBMAV. 234 237 250.12 1.28 6.89
SCPA5 IBMAV. 236 238 246.22 0.85 4.33
SCPB1 IBMAV. 69 69 74.74 0.00 8.32
SCPB2 IBMAV. 76 76 82.09 0.00 8.02
SCPB3 IBMAV. 80 80 84.12 0.00 5.16
SCPB4 IBMAV. 79 81 84.70 2.53 7.23
SCPB5 IBMAV. 72 72 76.06 0.00 5.65
SCPC1 IBMAV. 227 231 243.16 1.76 7.12
SCPC2 IBMAV. 219 220 237.32 0.46 8.37
SCPC3 IBMAV. 243 251 260.83 3.29 7.34
SCPC4 IBMAV. 219 222 234.54 1.37 7.10
SCPC5 IBMAV. 215 219 228.38 1.86 6.23
SCPD1 IBMAV. 60 61 64.74 1.67 7.90
SCPD2 IBMAV. 66 67 70.16 1.52 6.30
SCPD3 IBMAV. 72 72 77.38 0.00 7.48
SCPD4 IBMAV. 62 63 66.35 1.61 7.02
SCPD5 IBMAV. 61 61 66.03 0.00 8.25
SCPNRE1 IBMAV. 29 29 30.64 0.00 5.67
SCPNRE2 IBMAV. 30 31 32.74 3.33 9.14
SCPNRE3 IBMAV. 27 28 29.74 3.70 10.16
SCPNRE4 IBMAV. 28 28 30.58 0.00 9.22
SCPNRE5 IBMAV. 28 28 29.83 0.00 6.57
SCPNRF1 IBMAV. 14 14 14.93 0.00 6.68
SCPNRF2 IBMAV. 15 15 15.64 0.00 4.30
SCPNRF3 IBMAV. 14 14 15.58 0.00 11.29
SCPNRF4 IBMAV. 14 14 15.06 0.00 7.60
SCPNRF5 IBMAV. 13 14 14.61 7.69 12.41

18

Table 3: Results table
Inst. Type Zopt Zbest Zavg rpd rpd(avg)

SCP41 IBMA 429 431 440.00 0.47 2.56
SCP42 IBMA 512 525 552.45 2.54 7.90
SCP43 IBMA 516 520 538.03 0.78 4.27
SCP44 IBMA 494 495 521.74 0.20 5.62
SCP45 IBMA 512 516 534.58 0.78 4.41
SCP46 IBMA 560 566 580.70 1.07 3.70
SCP47 IBMA 430 434 442.48 0.93 2.90
SCP48 IBMA 492 497 511.54 1.02 3.97
SCP49 IBMA 641 655 687.22 2.18 7.21
SCP410 IBMA 514 521 539.83 1.36 5.03
SCP51 IBMA 253 259 270.93 2.37 7.09
SCP52 IBMA 302 314 322.64 3.97 6.84
SCP53 IBMA 226 229 235.38 1.33 4.15
SCP54 IBMA 242 242 249.67 0.00 3.17
SCP55 IBMA 211 212 219.45 0.47 4.01
SCP56 IBMA 213 214 225.32 0.47 5.79
SCP57 IBMA 293 298 310.87 1.71 6.10
SCP58 IBMA 288 289 301.41 0.35 4.66
SCP59 IBMA 279 280 293.51 0.36 5.20
SCP510 IBMA 265 269 275.51 1.51 3.97
SCP61 IBMA 138 141 147.83 2.17 7.13
SCP62 IBMA 146 150 156.00 2.74 6.85
SCP63 IBMA 145 148 155.06 2.07 6.94
SCP64 IBMA 131 132 137.29 0.76 4.80
SCP65 IBMA 161 163 171.16 1.24 6.31

19

Table 4: Results table
Inst. Type Zopt Zbest Zavg rpd rpd(avg)

SCPA1 IBMA 253 255 263,25 0,79 4,05
SCPA2 IBMA 252 258 270,80 2,38 7,46
SCPA3 IBMA 232 238 246,32 2,59 6,17
SCPA4 IBMA 234 238 247,96 1,71 5,97
SCPA5 IBMA 236 236 246 0,00 4,24
SCPB1 IBMA 69 70 73,77 1,45 6,92
SCPB2 IBMA 76 76 82 0,00 7,89
SCPB3 IBMA 80 81 84,70 1,25 5,89
SCPB4 IBMA 79 80 84,67 1,27 7,19
SCPB5 IBMA 72 72 74,83 0,00 3,94
SCPC1 IBMA 227 235 242,77 3,52 6,95
SCPC2 IBMA 219 224 235,74 2,28 7,64
SCPC3 IBMA 243 247 259,45 1,65 6,77
SCPC4 IBMA 219 224 236,41 2,28 7,95
SCPC5 IBMA 215 217 227,93 0,93 6,02
SCPD1 IBMA 60 61 65,12 1,67 8,55
SCPD2 IBMA 66 66 69,74 0,00 5,67
SCPD3 IBMA 72 73 77,22 1,39 7,26
SCPD4 IBMA 62 62 65,32 0,00 5,36
SCPD5 IBMA 61 61 66,83 0,00 9,57
SCPNRE1 IBMA 29 29 30,45 0,00 5,01
SCPNRE2 IBMA 30 31 32,80 3,33 9,35
SCPNRE3 IBMA 27 28 29,58 3,70 9,56
SCPNRE4 IBMA 28 28 30,19 0,00 7,83
SCPNRE5 IBMA 28 28 29,96 0,00 7,03
SCPNRF1 IBMA 14 14 14,96 0,00 6,91
SCPNRF2 IBMA 15 15 15,58 0,00 3,87
SCPNRF3 IBMA 14 14 15,48 0,00 10,60
SCPNRF4 IBMA 14 14 15,06 0,00 7,60
SCPNRF5 IBMA 13 14 14,77 7,69 13,65

20

In the following tables, the IBMAV results will be compared with the
Binary Swarm Cat Optimization results [14].

Table 5: Results table
SCP IBMAV BCSO

Inst. Zopt Zbest rpd(avg) Zbest rpd(avg)

41 429 432 3.00 432 2.58
42 512 518 6.19 517 3.49
43 516 520 4.24 531 7.13
44 494 496 5.96 496 3.29
45 512 518 4.74 514 2.19
46 560 564 3.96 560 1.09
47 430 432 2.83 434 1.75
48 492 495 4.09 494 3.88
49 641 662 6.62 660 5.21
410 514 520 5.28 518 2.13
51 253 258 6.41 258 3.37
52 302 316 7.64 306 3.74
53 226 229 4.51 229 2.98
54 242 242 2.81 242 1.29
55 211 212 3.82 216 4.00
56 213 213 6.15 217 4.89
57 293 295 5.61 294 3.55
58 288 289 4.32 294 6.15
59 279 281 3.90 280 0.51
510 265 267 3.16 271 3.70
61 138 141 6.38 143 5.94
62 146 149 7.62 146 2.15
63 145 148 6.72 148 4.67
64 131 133 5.17 133 2.60
65 161 165 7.75 165 4.39

21

Table 6: Results table
SCP IBMAV BCSO

Inst. Zopt Zbest rpd(avg) Zbest rpd(avg)

A1 253 256 3.49 271 8.56
A2 252 256 6.81 259 4.87
A3 232 238 6.22 238 4.54
A4 234 237 6.89 241 4.66
A5 236 238 4.33 237 1.05
B1 69 69 8.32 70 6.81
B2 76 76 8.02 80 10.26
B3 80 80 5.16 80 2.83
B4 79 81 7.23 81 5.86
B5 72 72 5.65 73 1.39
C1 227 231 7.12 232 3.22
C2 219 220 8.37 225 4.60
C3 243 251 7.34 251 8.67
C4 219 222 7.10 231 8.54
C5 215 219 6.23 222 6.33
D1 60 61 7.90 60 6.72
D2 66 67 6.30 69 5.61
D3 72 72 7.48 76 9.03
D4 62 63 7.02 63 5.43
D5 61 61 8.25 64 6.28
NRE1 29 29 5.67 30 3.45
NRE2 30 31 9.14 34 13.33
NRE3 27 28 10.16 29 18.02
NRE4 28 28 9.22 32 16.90
NRE5 28 28 6.57 30 7.14
NRF1 14 14 6.68 17 21.43
NRF2 15 15 4.30 16 18.00
NRF3 14 14 11.29 17 21.43
NRF4 14 14 7.60 15 20.48
NRF5 13 14 12.41 16 23.08

22

As we can see, both algorithms are fairly similar, but the IBMAV as
shown to be better, because it got a lower RPD than the IBMA, and also,
got a lower RPD average. When the IBMAV is compared with the BCSO
[14], we can see that they are fairly similar, but the IBMAV is better if we
only take in consideration the best value obtained, but when comparing the
RPD(avg) the BCSO is better, in other words, his range of solutions were
smaller than the IBMAV. Because of this facts, it can be safely stated that
the changes made in the variation of the Improved Binary Monkey Algorithm
where done for the better, because it gives good results overall.

23

8 Conclusion

The Set Covering Problem (SCP) is a well-known NP-hard problem of com-
binatorial analytic. This problem consists in to find solutions covering the
needs at lower cost. Those needs can be services to cities, load balancing in
production lines or data-banks selections. In this work, we study the resol-
ution of the SCP through an algorithm based in swarm intelligence inspired
from the mountain-climbing behavior of monkeys, the so called Improved
Binary Monkey Algorithm (IBMA), wich was proposed, in 2016, as a vari-
ation of the Monkey Algorithm (MA). Also in this work a new IBMA varation
is proposed by us (IBMAV) wich implements changes in some steps of the
algorithm, in order to reduce the execution times and improve the solutions.
Finally an experimental comparative test was perform in both algorithms, to
compare theyr performance solving the Set Covering Problem, and at last,
we compare those results, with the Binary Cat Swarm Optimization (BCSO)
ones [14].

From the comparative experiments, we can conclude the following: The
IBMAV, in the 72.72% of the tests, got better values (optimal or near-optimal
values) than the IBMA algorithm, but in the other hand, the Improved Bin-
ary Monkey Algorithm got better average RPD than his variation (in the
56.37% of the tests), wich means, that the said algorithm gives a smaller
range of solutions than the IBMAV. Given those facts we can say without a
doub that the variation of the Improved Binary Monkey Algorithm, it will
give better results when solving the SCP. Finally, when comparing the the
performance between the IBMAV and the BCSO, we can see that the vari-
ation of the IBMAV it gives better results in the 80% of the test, but again,
the IBMAV fails at give a small range of solutions (average RPD) when com-
pared with the Binary Cat Swarm Optimization wich gives a lower average
RPD in the 65.46% of the tests. Based on the results we strongly believe that
the changes to the IBMA (IBMAV) where for the better (comparing the per-
formance with the original IBMA) and it is on par with other metaheuristics
of the same characteristics.

24

References

[1] E. Balas and M. Carrera. A dynamic subgradient-based branch-and-
bound procedure for set covering. Operations Research, 44(6):875–890,
1996.

[2] J.E. Beasley. An algorithm for set covering problem. European Journal
of Operational Research, 31(1):85 – 93, 1987.

[3] V. Chvatal. A greedy heuristic for the set-covering problem. Math.
Oper. Res., 4(3):233–235, 1979.

[4] B. Crawford and C. Castro. Integrating lookahead and post processing
procedures with ACO for solving set partitioning and covering problems.
In ICAISC, volume 4029 of Lecture Notes in Computer Science, pages
1082–1090. Springer, 2006.

[5] B. Crawford, R. Soto, I. Fuenzalida, and E. Olguín. A binary invasive
weed optimization algorithm for the set covering problem. In Artificial
Intelligence Perspectives in Intelligent Systems - Proceedings of the 5th
Computer Science On-line Conference 2016 (CSOC2016), Vol 1, pages
459–468, 2016.

[6] R. Day. Letter to the editorâon optimal extracting from a multiple file
data storage system: An application of integer programming. Opera-
tions Research, 13(3):482–494, 1965.

[7] J. E. Or-library. urlhttp://people.brunel.ac.uk/ mastjjb/je-
b/orlib/scpinfo.html.

[8] T. Feo and M. Resende. A probabilistic heuristic for a computationally
difficult set covering problem. Oper. Res. Lett., 8(2):67–71, April 1989.

[9] M. Fisher and P. Kedia. Optimal solution of set covering/partitioning
problems using dual heuristics. Management Science, 36(6):674–688,
1990.

[10] M. Fisher and P. Kedia. Optimal solution of set covering/partitioning
problems using dual heuristics. Manage. Sci., 36(6):674–688, June 1990.

[11] M. Garey and D. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

25

[12] E. Housos and T. Elmoth. Automatic optimization of subproblems in
scheduling airlines crews. Interfaces, 1997.

[13] C. Ituarte-Villarreal, N. Lopez, and J. Espiritu. Using the monkey al-
gorithm for hybrid power systems optimization. In Complex Adaptive
Systems, volume 12 of Procedia Computer Science, pages 344–349. El-
sevier, 2012.

[14] J. Lanza-Gutierrez, B. Crawford, R. Soto, N. Berrios, J. Gomez-Pulido,
and F. Paredes. Analyzing the effects of binarization techniques when
solving the set covering problem through swarm optimization. Expert
Systems with Applications, 70:67 – 82, 2017.

[15] M. Salveson. The assembly line balancing problem. Journal of Industrial
Engineering, 6:18–25, 1955.

[16] J. Spall. Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation. IEEE Transactions on Automatic
Control, 37(3):332–341, Mar 1992.

[17] F. Vasko and G. Wilson. Using a facility location algorithm to solve
large set covering problems. Operations Research Letters, 3(2):85 – 90,
1984.

[18] F. Vasko, F. Wolf, and K. Stott Jr. Optimal selection of ingot sizes via
set covering. Operations Research, 35(3):346–353, 1987.

[19] R. Zhao and W. Tang. Monkey algorithm for global numerical optim-
ization. J. Uncertain Syst, 2007.

[20] Y. Zhou, X. Chen, and G. Zhou. An improved monkey algorithm for a
0-1 knapsack problem. Appl. Soft Comput., 38:817–830, 2016.

[21] Y. Zhou, X. Chen, and G. Zhou. An improved monkey algorithm for
a 0-1 knapsack problem. Appl. Soft Comput., 38(C):817–830, January
2016.

26

