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1 Abstract.

The Set Covering Problem (SCP) is one of the most representative combinatorial optimization problems and it has
multiple applications in different situations of engineering, sciences and some other disciplines. It aims to find a set of
solutions that meet the needs defined in the constraints having lowest possible cost.

In this thesis we use an existing binary algorithm inspired by Binary Black Holes (BBH) to solve multiple instances
of the problem with known benchmarks obtained from the OR-library. The presented method emulates the behavior of
these celestial bodies using several operators, such as rotation and collapse, to bring good solutions. Additionally, we
implemented some improvements in certain operators, as well as added others also inspired by black holes physical

behavior, to optimize the exploration during the search to optimum values.

2 Resumen.

El Problema de Cobertura de Conjuntos (SCP por sus siglas en inglés) es uno de los problemas mas representativos
de la optimizacién combinatoria, con multiples aplicaciones en diferentes situaciones de la ingenierfa, ciencias y otras
disciplinas. Su objetivo es encontrar un conjunto de soluciones que satisfagan las necesidades definidas en las restric-
ciones del problema al menor costo posible.

En esta tesis se utiliza un algoritmo binario inspirado en los agujeros negros (BBH por sus siglas en inglés) para resolver
las instancias del problema definidas en la OR-Library. El método presentado emula el comportamiento de estos cuer-
pos celestes utilizando varios operadores, tales como la rotacidn y colapso, para encontrar buenas soluciones. Ademas,
se implementaron algunas mejoras en ciertos operadores, asi como también algiin otro nuevo operador inspirado en el
comportamiento fisico de los agujeros negros, con el objetivo de optimizar la exploracién durante la bisqueda de los

valores 6ptimos.



3 Introduction.

The Set Covering Problem is one of 21 NP-Hard problems [26], representing a variety of optimization strategies in
various fields and realities. Since its formulation in the 1970s has been used, for example, in minimization of loss of
materials for metallurgical industry [40], preparing crews for urban transportation planning [14], safety and robustness
of data networks [8], focus of public policies [18], construction structural calculations [4]. This problem was introduced
in 1972 by Karp [29] and it is used to optimize problems of elements locations that provide spatial coverage such as
community services [30], telecommunications antennas [15] and others.

The present work uses a strategy based on a binary algorithm inspired by black holes to solve the SCP, developing
some operators that allow to implement an analog version of some characteristics of these celestial bodies to support
the behavior of the algorithm and to improve the processes of searching for the optimum. This type of algorithm was
presented for the first time by Abdolreza Hatamlou in 2012 [22], registering some later publications dealing with some
applications and improvements. In this thesis it will be detailed the methodology, developed operators, experimental
results and execution parameters and handed out some conclusions about them, before and after implementing the
proposed improvements.

Considering a binary based matrix (zero-one) A = a;;, of m rows and n columns and a vector ¢ of n components

containing the costs assigned to each matrix column, then we can define the SCP such as:

n
Minimize Z CjT; 1
j=1
Where a:
Z?:l aijxj Z ].7 VZ € I = {1, ,m}

z; €{0,1},Vje J={1,..,n}

This ensures that each row is covered by at least one column and that there is a cost associated with it [36].

3.1 SCP Example.

Imagine a floor that is required to work on a series of pipes (represented in red) that are under 20 tiles, rising the least

amount possible of them. The diagram of the situation would be as follows.



‘™
2 . =i
e s
=
AT =

Fig. 1. SCP example

We define a variable X;; which represents each tile by its coordinates in row i and column j. It will store a 1 if it is

necessary to lift the back plate and a 0 if it is not. Then we will have:
iel ={1,2,3,4,5}, je J ={a,b,c,d}

We will define the “objective function” as:

Min z= Xla + Xga + Xga + X4a + X5a+ le + ng + ng + X4b + X5b+ ch + X2c + ch + X4c + X5c +
Xia + Xod + X3a + Xaa + Xs4

With z;; € {0,1},Vi € I,Vj € J. Then the following system of equations represent the constraints of the problem:

Table 1. Equations system

X1a+X2a Z 1
X2a+X3a Z 1
X3q + X3p + Xy + Xy > 1
X4a+X5a Z 1
Xip + Xie + Xop + Xoc > 1
X3p + X3¢0+ Xgp + Xye >1

Xog+ X3qg+ Xyqg+ Xse + X504 > 1

Then, each constrain corresponds to the tile on top of a main. It is only necessary to pick one per tube. One solution

for the system is:

Table 2. Solution

X1,=0, X1p=1, X1.=0, X14=0
Xog =1, X9y, =0, Xo.=0, Xoq=0
X3a=0’ X3b=3, X4b=0, X5b=0
X4a=0, X4,=0, Xy.=0, Xyq=0
Xsa=1, X5,=0, X5.=1, X54,=0



Finally, it is only necessary to lift 5 tiles:

]
e
it
o

Fig. 2. SCP example solution

This type of strategy has been widely used in aerospace turbine design [43], timetabling design [11], probabilistic
queuing [41], geographic analysis [13], services location [42], scheduling [10] and many others [39].
There are variety of algorithms “’bio-inspired” that mimic the behavior of some living beings [12] to solve problems,
as well as others who are inspired by elements of nature [39], cultural and other types.
In this thesis we apply a strategy based on a binary algorithm inspired by black holes to solve the SCP, developing
some operators that allow to implement an analog version of some characteristics of these celestial bodies to support

the behavior of the algorithm and to improve the processes of searching of the optimum.

4 Goals

The general objective is to solve the Set Covering Problem (SCP) using an algorithm inspired by black holes, validating

its effectiveness of this through the OR-library benchmarks resolutions. The specific objectives are the following:

— Apply different mechanisms of binarization and discretization and experimentally determine the best performance
of different instances of black holes.
— Try with unfesibility adding operators to repair.

— Compair the results with others metaheuristics.

5 Definitions.

Operator: Unitary procedure for transforming information or implement the behavior of the algorithm.
Solution: Array of n columns containing a solution to the equations system of the problem.
Constraints: Conditions to be met by a viable solution.

Benchmark: Optimal set of known problem instances to validate the algorithm.

Objective Function: Implements the mathematical expression representing the cost of a solution.



Fitness: Resulting target value by applying the objective function to a vector.

Matrix of Costs: n columns vector containing the cost associated with each problem variables or columns of vectors.
I-Case: Artificial intelligence software used to generate source code according to a central specification.

Parameter: Initial values for algorithm starts.

Optimal Value: Solution with the best value found for the objective function.

Domain: Set of possible values for the variables.

Transfer function or discretization function: Method for carrying a real number to interval [0,1].

Binarization: Method for converting a decimal number to a binary equivalent.

Matrix A: Matrix containing the constraints for problem.

RPD: Relative Percentage Deviation.

6 Theoretical framework.

6.1 Black holes.

Black holes are the result of the collapse of a big star’s mass that after passing through several intermediate stages is
transformed in a so massively dense body that manages to bend the surrounding space because of its immense gravity.
They are called “black holes” due to even light does not escape their attraction, and therefore is undetectable in the
visible spectrum. They are also known as ”singularities” because inside the traditional physics can not be applied. As
consequence of its immense gravity, they tend to be orbited by other stars in binary or multiple systems consuming
a little mass of bodies in its orbit [23]. When a star or any other body is approaching the black hole through what is
called “event horizon”, it collapses in its interior and it is completely absorbed without any possibility to escape, since
all its mass and energy become part of singularity (Fig.3). This is because at that point the exhaust speed is the light
one [23].

Fig. 3. Event horizon in a black hole

On the other hand, black holes also generate a type of radiation called “Hawking radiation”, in honor of its discov-

erer. This radiation have a quantum origin and it implies transfer of energy from the event horizon of the black hole to



its inmediate surroundings, causing a slight loss of mass of the dark body and an emission of additional energy to the

nearby objects [24].

6.2 State of the art.

Although the term “algorithm inspired by black hole” was used for the first time in 2008 by Zhang, Liu and Tan [28],
only in the 2012 year Abdolreza Hatamlou proposed a methodology and implementation specific of this [22], although
only tangentially in a paper of swarm optimization. There are some that use it for optimization of varied elements of
engineering, such as electrical circuits [9], problems in the aerospace industry [25] and for various other problems.
Moreover , the author has some relevant publications in various conferences and scientific journals [3] [20] [2]. On the
other hand, some authors have made some proposals for improvements to the algorithm. It is the case of Nemati et al.
presenting the inclusion of gravitational and electric forces as part of the rotation operator [32], the incorporation of
elements of fuzzy logic [34] and others suggest improvements in the calculation of distances [16]. It has also received

some critics questioning its novelty, rather considering that it is one variation of existing ones [35].

6.3 Original algorithm.

The original algorithm presented by Hatamlou [22] faces the problem of determination of solutions through the de-
velopment of a set of stars called “universe”, using an ”population” kind algorithm, similar to those used by genetic
techniques [21] or particles swarm [37]. It proposes the rotation of the universe around the star that has the best fitness,
i.e., which has the lowest value of a defined function, called “objective function”, in order to minimize results.

This rotation is applied by an operator of rotation that moves each one of the stars in each iteration of the algorithm
and determines in each cycle if there is a new black hole, that will replace the previous one. In case the vector is not
feasible, it is replaced by a new feasible one. The rotation operation is repeated until find the detention criteria, being
the last black hole founded the proposed solution and the last of the black holes found corresponds to the final solution
proposed.

Eventually, a star can ever exceed the defined by the radius of the event horizon [23]. In this case, the star collapses
into the black hole and is removed from the whole universe being taken instead by a new star. Thus, stimulating the
exploration of the space of solutions.

The following is the proposed flow chart and the corresponding operators according to the initial version of the method,

searching the fitness minimization, according the SCP definition:

10



Big Bang determi-

Colapsed
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Ty = T4
bh = Ves f(zpr,)?

optimus
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Fig. 4. Original black hole algorithm

6.3.1 Big bang. It consists of the creation of the initial random universe for the algorithm. The number of stars

generated will remain fixed during the iterations, although many vectors (or stars) are replaced. The mechanism of

creation of vectors is showed in algorithm 1 and also apply in the intermediate steps that require the generation of new

stars:

Algorithm 1 Random initial generation of stars

1: n + Cols quantity

2: for row = 1 to Stars quantity do
3:  Star,.. = StarGeneration(n)

4: end for

Where StarGeneration is the creation of a binary vector of n elements that comply with the constraints of A matrix.

6.3.2 Fitness evaluation. Each star x; fitness is calculated by evaluating the objective function, according to the

initial definition of the problem.

ZCJ'{,C]' (2)
j=1

11



The Algorithm 2 describes it:

Algorithm 2 Fitness evaluation
1: Fitness <0
2: for j=1 to Cols do
3:  Flitness < Fitness + xjc;
4: end for

It should be remembered that ¢; corresponds to the cost of j column in the vector of costs and x; is the jth column
of star. In other words, the fitness of a star is the evaluation or objective function for the star vector, considering the
vector cost in each column. The black hole will be those who have minor fitness among all existing stars at the time of

the evaluation.

6.3.3 Rotation operator. The rotation operation occurs above all the universe of N stars x;, with the exception of

the black hole, which is fixed in its position. The operation sets the new t+1 position as follows:

XAt +1) = X4(t) + random (X § — XA(t)), Vi € {1,2,..., N} 3)

Where X;(t) and X;(t+1) are the positions of the star X; at t and t+1 iterations respectively, d is the array dimension,
xpp is the black hole location in the search space, random is a aleatory number in the range [0,1] and N is the number
of stars that make up the universe (candidate solution). It should be noted that the only exception in the rotation is

designated as black hole star, which retains the position.

6.3.4 Collapse into the black hole. When a star is approaching to the black hole at a distance called event horizon
is captured and permanently absorbed by it, being replaced by a new randomly generated one. In other words, it is
considered when the collapse of a star exceeds the radius of Schawarzchild (R). In a 2015 publication, Farahmandian

and Hatamlouy [16] intend to determine the distance of a star x; to the radius R as:

R f(xon) @

N
ZZ‘:1 f(xi)
Where f(xpp,) is the fitness value of the black hole, N is the number of candidate solutions (stars) and f(z;) is the
fitness value of the ith star. L.e. a star x; will collapse when the star’s distance with black hole is less than a defined
radius [22].

Additionally, we incorporated an algorithm parameter s, where s € [0, 1] containing the minimum allowable proximity

12



to the black hole measured on a percentage of its fitness. This, with the aim of managing the tolerance threshold

calculating the event horizon. Finally, the star colapse into black hole if:

[ (zon) — fxi)| < sR )

7 Algorithm implementation.

The algorithm implementation was carried out with a I-CASE tool [5], generating Java programs and using a relational
database as a repository of the entry information and gathered one during executions. The parameters that will be
presented are the result both of the needs of the original design of the algorithm and improvements made product of
the tests performed. In particular, it was attempted to improve the capacity of exploration of the metaheuristic. It was
contrasted with tables of known optimal values [36], in order to quantitatively estimate the degree of effectiveness of
the presented metaheuristics.

The process begins with the random generation of a population of binaries vectors (Stars) in a step that we will call
”big bang”. With a universe of N stars formed by vectors of d binary digits, the algorithm must identify the star with
better fitness value , i.e., the which one the objective function obtains a lower result. The next step is to rotate the other
stars around the black hole detected until some other presents a better fitness and take its place.

The number of stars generated will remain fixed during the iterations, notwithstanding that many vectors (or star) will
be replaced by one of the operators. The creation mechanism of vectors is listed in algorithm 3 and shall apply also in

the intermediate steps that require the generation of new stars:

Algorithm 3 Star generation

1: m < Cols quantity
2: for j = 1tomdo
3:  ifrandom < 0.5 then

4 Col; =0
5 else

6: Col; =1
7 end if

8: end for

Where Col; is the ith column of the star vector.

13



7.1 Discretization and binarization.

As mentioned before, the stars are represented by binary vectors, so there is needed to migrate the real values generated
by some functions and operators to binary domain. For this purpose transfer and discretization or binarization functions
are used. The transfer function aims to take values from the domain of reals to interval [0,1]. Two representatives func-
tions of two different families was tested, the ”S-Shape” and ’V-Shape” ones [38]. The respective selected functions

are:

5 (e ) ©

10

Fig. 5. S-Shape function

(N

‘ x

V1422

-10
10

Fig. 6. V-Shape function

The following is a graph comparing both functions:

14



Fig. 7. Comparative graphic

The results using each of the functions can be reviewed in detail in the results section.
In addition, the binarization function is aimed at conveying the value obtained in the previous transformation in a binary
digit. Therefore, experiments were performed for the algorithm 4 , the algorithm 5 and the 6 one, where "random” is a

random value between 0 and 1 inclusive. (random € [0, 1]):

Algorithm 4 Standard binarization
1: if random < value then

2:  Digit=1
3: else

4:  Digit=0
5: end if

Algorithm 5 Reverse binarization
1: if random < value then

2:  Digit=0
3: else
4:  Digit=1
5: end if
The binarization best results have been achieved with standard binarization to be applied in the subsequent bench-
marks.

7.2 Feasibility.

The viability of a star is conditional on compliance with each one of the constraints defined in the matrix A. To

determine it was implemented the algorithm 7:

15



Algorithm 6 Complementary binarization

1: if random < value then
2 if z; =0 then
Digit =1
else
Digit=0
end if
else
Dlglt =X g
end if

D A A

Algorithm 7 Determining feasibility of a solution
1: Feasible =Yes
2: n < Matriz A rows quantity
3: ¢ < Star cols quantity
4: for: = 1tondo

50 Sum <« 0

6: forj=1tocdo

7 Sum <+ Sum + a;;x;
8:  end for

9: if Suma =0 then

10: Feasible = No

11:  else

12: Feasible = Yes

13:  endif

14: end for

7.3 Parameters.

For the purpose of implementing all the features and operators that are detailed in this document in multiple configu-
rations easily, a table of parameters was built for the algorithm.
The results tables presented in the following sections were obtained with equivalent parameter settings. The main ones

are:

— 31 experiments for each configuration. This number of iterations was selected because is the recommended amount
for the subsequent statistical analysis.

— 20,000 iterations for each experiment. It corresponds to an amount that keeps the execution times within an ac-
ceptable range, without degrading the quality of the results. It was estimated experimentally.

— Transfer function.

— Binarization function.

— R parameter for colapse. The factor was determinated experimentally. We started with a factor of 10% or tolerance

and was decreasing in steps of 1%. Finally, it was determined in 5% (0.05).

16



— Factor for Hawking radiation. The predefined range for the mutation probability is between 10% and 60%, increas-

ing as the iterations are progressing.

— Stars Quantity (size of universe). No improvements were achieved with a number greater than 50 stars, and less

than the amount stated causes degradation in the results. Therefore, we worked with a universe of size 50.

8 Proposed improvements.

From the analysis of the experimental results of the original algorithm, estimated that improvements in the performance
of the algorithm could be achieved making contributions and changes in some operators, maintaining the general

strategy of the algorithm for minimization. The flow chart will be modified to incorporate some of these proposals.

black hole
Big Bang determi-

nation

colapsed
in event
horizon?

replace z; x; rotation i=1

no no

——— < feasible?

, apply
repair ; Hawking
radiation

stop
criteria?

yes

optimum
= f(zn)

Fig. 8. Modified black hole algorithm
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8.1

Repair operator.

In those cases which unfeasibility was detected, we opted for repair of the vector to make it complies with the con-

straints. We implemented a repair function in two phases, ADD and DROP, as way to optimize the vector in terms

of coverage and costs. The first phase changes the vector in the column that provides the coverage at the lowest cost,

while the second one removes those columns which only added cost and do not provide coverage. The repair operator

was implemented as algorithm 8 [1], where:

I is the set of all rows

J is the set of all columns

J; 1s the set of columns that cover the row 1,1 € 1
1; is the set of rows covered by the column j,j €J
S is the set of columns associated to solution

U is the set of columns not covered

w; 1s the number of columns that cover the row 1, Vi€ lin S

Algorithm 8 Repair operator

1:

_— e e
Bl S T

U +—w;,=0,Viel
: fori € U do

// Find the first column j in J; that minimize W
S+~ SNJ

w; +—w; +1,Vi € Ij

U+U-— Ij

: end for
: for j € Sdo

if w; > 2,\7’6 € Ij then
S+ S—j
w; %wi—l,ViEIj
end if

: end for

8.2 Discretization functions.

A new S-Shape transfer function is proposed to give greater diversity to the process:

18
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Fig. 9. New suggested transfer functions graphic

On the other hand, remain binarization functions.

8.3 Hawking radiation.

According to the Stephen Hawking theory [24], due to the uncertainty principle it is possible the creation of an anti-
particle pair from the void in the exact location of the event horizon. These pairs disintegrate quickly each other
returning energy paid for their creation. However, as this takes place in the events of the black hole horizon, the
probability of one member of the pair is forming on the inside and the other outside is not null, so one of the components
of the pair could escape from the black hole. This will produce a very small and brief radiation, but it is recurrent enough
to be losing mass to the singularity. This radiation that affects the surrounding stars was taken as a model to produce
some mutations that enhance the exploration of the algorithm. As this physical effect also is probabilistic and more
affects some bodies that others due to its proximity, it was decided to implement the algorithm in a progressive roulette,
i.e., there is a lower probability of mutation in the first stars but in the final iteration (with better solutions closer to the
optimum) likely will be greater, according to a range defined in the parameters. For that, an increase is calculated by
iteration, accumulating it in each iteration and gradually increasing the probability of mutation.This improvement is
intended to prevent the algorithm locks in local optima. Is relevant notes that while the operator runs on all iterations,
only a few iterations mutation is applied, due to the progressive roulette. Then, is established in the algorithm 9 way

[31]:
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Algorithm 9 Hawking radiation

1:

Lower limit < parameter 1

2: Upper limit = parameter 2

10:
11:
12:
13:
14:
15:
16:

18:
19:
20:
21:

22

D AN A

Iterations max = parameter 3
. . limit—L limit
Increase by iteration : Yeper Limit—Lower limi

Iteration max
Actual <=0
Iteration begin
Actual < Actual 4+ Increase by iteration

if random < Actual then
for all z; of star do
if random > parameter then
if Bit = 1 then
Bit <0
end if
Feasible <= Feasibility evaluation

if Feasible = No then
Revert operation
end if
end if
end for
end if

. Iteration end
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9 Experimental results.

The algorithm was subjected to a test by running the benchmark 4, 5, 6, A, B, C, D, NRE, NRF, NRG and NRH from

OR library [6]. The RPD column provides a measure of deviation of a isolation to the optimus known, in order to have

an assessment of closeness to the best value. Its definition is:

9.1 Original algorithm.

RPD =100

(Z — Zozlt)

Zopt

©))

The first results table corresponds to the execution of the original algorithm using the ’S-Shape” transfer function (5):

Table 3. Experimental results for S-Shape (5)

Instance| Zp K 5| Zmin|Lmaz| Zavg |RPD ||Instance|Zpx 5| Zmin| Zmaz | Lavg | RPD
4.1 429 | 439 | 598 |518.50| 2.33 C.1 227 | 256 | 291 [273.50| 12.77
4.2 512 | 553 | 664 |608.50| 8.01 C2 219 | 250 | 291 {270.50| 14.15
4.3 516 | 566 | 698 632.00| 9.69 C3 243 | 259 | 298 |278.50| 6.58
4.4 494 | 527 | 777 651,00 6,28 C4 219 | 255 | 312 |283.50| 16.43
4.5 512 | 589 | 649 |619.00(15.04|| C.5 215 | 245 | 287 [266.00] 13.95
4.6 560 | 580 | 596 |588.00| 3.57 D.1 60 73 | 139 [106.00| 21.66
4.7 430 | 481 | 593 [537.00{11.86|| D.2 66 74 1110.00| 92.00 | 12.12
4.8 492 | 502 | 623 |562.50| 2.03 D.3 72 91 152 |121.50| 26.38
4.9 641 | 689 | 691 690.00| 7,49 D4 62 77 | 101 |89.00 | 24.19
4.10 | 514 | 565 | 655 |610.00| 9.92 D.5 61 79 | 122 |100.50{ 29.50
5.1 253 | 284 | 380 |332.00/12.25]| E.1 5 10 18 | 14.00 [100.00
5.2 302 | 342 | 358 |350.00(13.25|| E.2 5 15 21 | 18.00 {200.00
5.3 226 | 251 | 333 |292.00/11.06|| E.3 5 8 17 | 12.50 | 60.00
5.4 242 | 273 | 296 |284.50|12.81 EA4 5 8 21 | 14,50 | 60.00
5.5 211 | 232 | 271 |251.50| 9.95 E.5 5 9 21 | 15.00 | 80.00
5.6 213 | 249 | 366 |307,50{16.90|| NRE1 | 29 77 | 123 |100.00]165.51
5.7 293 | 339 | 368 |353.50/15.70|| NRE2 | 30 81 114 197.50 {170.00
5.8 288 | 313 | 421 |367.00| 8.68 || NRE3 | 27 82 99 191.00 [207.40
5.9 279 | 311 | 450 |380.50|11.47|| NRE4 | 28 39 74 |56.50 | 39.28
5.10 | 265 | 297 | 407 |352.00{12.08|| NRE5 | 28 37 69 |53.0032.14
6.1 138 | 151 | 218 |185.50/10.86|| NRF1 14 34 62 |48.00|142.85
6.2 146 | 159 | 278 |218.50| 8.90 || NRF2 | 15 23 77 150.00 | 53.33
6.3 145 | 163 | 239 [201.00(12.41|| NRF3 | 14 28 83 [55.50 [100.00
6.4 131 | 160 | 233 [196.50(22.13|| NRF4 | 14 39 56 | 47.50(178.57
6.5 161 | 187 | 261 |224.00/16.14|| NRF5 13 23 102 | 62.50 | 76.92
A.l 253 | 315 | 389 |352.00|24.50|| NRG1 | 176* | 220 | 290 {255.00| 25.00
A2 252 | 303 | 402 |352.50|20.23|| NRG2 | 154* | 233 | 281 |257.00| 54.30
A3 232 | 259 | 412 |335.50{11.63|| NRG3 | 166* | 318 | 422 |370.00| 91.56
A4 234 | 289 | 364 |326.50(|23.50|| NRG4 | 168* | 285 | 366 |325.50| 69.64
A5 236 | 271 | 384 |327.50|14.83|| NRG5 | 168* | 187 | 225 {206.00| 11.30
B.1 69 87 | 115 |101.00]26.08|| NRH1 | 63* | 98 | 155 [126.50] 55.55
B.2 76 | 101 | 107 [104.00{32.89|| NRH2 | 63* | 99 | 115 [107.00| 57.14
B.3 80 98 | 151 |124.50(22.50{| NRH3 | 59* | 96 | 111 |103.50| 62.71
B4 79 91 | 137 [114,00(15.18|| NRH4 | 58* | 99 | 130 |114.50| 67.79
B.5 72 92 | 117 |104,50|27.77|| NRH5 | 55* | 88 | 133 [108.50| 52.72
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With the transfer function ”V-Shape” (6) the following results were obtained:

Table 4. Experimental results for V-Shape (6)

Instance|ZB 5| Zmin|Zmax| Lavg | RPD ||Instance|Zprs|Zmin|Zmax| Lavg | RPD
4.1 429 | 435 | 489 | 462 | 1.40 C.1 227 | 251 | 287 |269.00| 10.57
4.2 512 | 547 | 601 [574.00| 6.84 C.2 219 | 248 | 289 |273.00| 13.24
4.3 516 | 561 | 677 [619.00| 8.72 C3 243 | 273 | 399 |336.00| 12.34
4.4 494 | 525 | 594 |559.50| 6.28 C4 219 | 248 | 301 |274.50| 13.24
4.5 512 | 522 | 635 |578.50| 1.95 C.S5 215 | 247 | 295 |271.00| 14.88
4.6 560 | 578 | 666 [622.00| 3.21 D.1 60 67 | 157 |112.00| 15.49
4.7 430 | 472 | 495 |483.50(9.77 D.2 66 75 | 177 |126.00| 13.63
4.8 492 | 534 | 615 |574.50| 8.54 D.3 72 81 | 120 |100.50| 12.50
4.9 641 | 688 | 767 |727.50| 7.33 D4 62 70 | 135 |102.50| 12.90
4.10 | 514 | 555 | 674 |614.50| 7.98 D.5 61 78 | 120 [99.00 | 27.86
5.1 253 | 290 | 388 [339.00/14.62|| E.1 5 7 18 |12.50 | 40.00

5.2 302 | 329 | 330 [329.50| 8.94 E.2 5 12 | 61 |36.50 [140.00

5.3 226 | 241 | 278 |259.00| 6.64 E.3 5 7 10 | 8.50 |40.00

5
5

5.4 242 | 261 | 287 |274.00| 7.85 E4 11 | 76 |43.50(120.00
5.5 211 | 222 | 270 |246.00| 5.21 E.5 6 10 | 8.00 |20.00
5.6 213 | 240 | 351 {294.50{ 7.98 || NRE1 | 29 | 74 | 169 |121.50|155.17
5.7 293 | 333 | 355 |344.00{13.65|| NRE2 | 30 | 97 | 156 |{126.50|233.33
5.8 288 | 310 | 400 |355.00| 7.64 || NRE3 | 27 | 74 | 152 |113.00{174.07
59 279 | 298 | 400 |349.00| 6.81 || NRE4 | 28 | 55 | 81 |68.00|96.42
5.10 | 265 | 291 | 399 [345.00] 9.81 || NRE5 | 28 | 39 | 56 |47.50]39.28
6.1 138 | 149 | 215 |182.00/9.42 || NRF1 | 14 | 21 | 38 |29.50|50.00
6.2 146 | 155 | 198 |175.00] 6.16 || NRF2 | 15 18 | 92 |55.00|20.00
6.3 145 | 160 | 222 |191.00{10.31|| NRF3 | 14 17 | 22 |19.50|21.42
6.4 131 | 156 | 228 |192.00{19.08|| NRF4 | 14 | 28 | 74 |51.00 [100.00
6.5 161 | 177 | 278 |227.50| 9.93 || NRF5 | 13 17 | 99 |58.00]|30.76
Al 253 | 301 | 444 |372.50{18.97|| NRG1 | 176* | 214 | 333 |273.50| 21.59
A2 252 | 301 | 412 |356.50({19.44|| NRG2 | 154* | 215 | 333 |274.00| 42.38
A3 232 | 254 | 378 |316.50| 9.48 || NRG3 | 166* | 312 | 413 |323.50| 87.95
A4 234 | 270 | 333 |301.50(15.38|| NRG4 | 168* | 289 | 398 |343,50| 72.02
AS 236 | 263 | 397 |330.00|11.44|| NRG5 | 168* | 211 | 569 |390.00| 25.59
B.1 69 | 93 | 162 |127,50|34.78|| NRH1 | 63* | 77 | 99 |88.00|22.22
B.2 76 | 95 | 151 |123.00|25.00{| NRH2 | 63* | 115 | 197 |156.00| 82.53
B3 80 | 99 | 146 |122,50(23.75|| NRH3 | 59* | 213 | 311 |262.00|261.01
B4 79 | 87 | 139 |113.00/10.12|| NRH4 | 58* | 88 | 122 |105.00| 49.15
B.5 72 | 84 | 124 |104.00({16.66|| NRHS5 | 55% | 78 | 119 |98.50 | 41.81

* = Best results found in literature [19]

Where Zp ks is the optimal for instance, Z,,;,, is the minimum value found, Z,,,,, is the maximum value found ,
Zavg 18 the average value and RPD is the percentage of deviation from the optimum.

The detailed results can be reviewed in the Appendices section.
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9.2 Proposed algorithm.

After implementing the proposed improvements and configure the algorithm to consider the new transfer function and

the parameterization of new operators, the following results were obtained:

Table 5. Experimental results for proposed function (9) and improvements

Instance|Zp K 5| Zmin|Zmaz| Lavg | RPD ||Instance| Zp i s|Zmin|Zmaz| Zavg | RPD
4.1 429 | 432 | 491 |461.50( 0.70 C.1 227 | 252 | 287 [269.50| 9.92
4.2 512 | 512 | 589 [550.50| 0.00 C.2 219 | 245 | 289 |267.00| 10.61
4.3 516 | 522 | 606 [564.00| 1.16 C3 243 | 266 | 399 |332.50| 8.65
4.4 494 | 514 | 609 |561.50| 4.05 C4 219 | 252 | 301 |276.50| 13.10
4.5 512 | 520 | 635 |577.50| 1.56 C.5 215 | 232 | 250 |241.00| 7.90
4.6 560 | 566 | 674 [620.00| 1.07 D.1 60 71 | 146 [108.50| 15.49
4.7 430 | 455 | 501 |478.00| 5.81 D.2 66 73 | 177 [125.00| 9.59
4.8 492 | 499 | 593 |546.00| 1.42 D.3 72 80 | 120 |100.00| 11.11
4.9 641 | 667 | 689 [678.00| 4.06 D4 62 70 | 135 |102.50| 11.43
410 | 514 | 529 | 612 |570.50( 2.92 D.5 61 72 | 208 |140.00| 15.28

5.1 253 | 257 | 273 |265.00| 1.58 E.1 5 6 10 | 8.00 |20.00

5.2 302 | 302 | 329 |315.50{ 0.00 E.2 5 8 12 | 10.00 | 60.00

5.3 226 | 231 | 288 |259.50| 2.21 E.3 5 9 20 | 14.50 | 80.00

5
5

5.4 242 | 249 | 261 |255.00{ 2.89 E4 7 18 | 12.50 | 40.00
55 211 | 225 | 258 |241.50| 6.64 E.5 13 | 71 |42.00|61.54
5.6 213 | 230 | 359 |294.50| 7.98 || NRE1 | 29 | 72 | 93 |82.50(148.27
5.7 293 | 314 | 372 |343.00| 7.17 || NRE2 | 30 | 64 | 88 |76.00 |113.33
5.8 288 | 308 | 383 [345.50( 6.94 || NRE3 | 27 | 59 | 77 |68.00 |118.51
59 279 1296 | 391 |343.50( 6.09 || NRE4 | 28 | 49 | 101 | 75.00 | 28.00
5.10 | 265 | 283 | 412 |347.50/ 6.79 || NRE5 | 28 | 33 | 65 [49.00 | 17.85
6.1 138 | 146 | 201 |173.50{ 5.80 || NRF1 | 14 | 37 | 87 |164.29(164.29
6.2 146 | 157 | 281 |219.00| 7.53 || NRF2 | 15 18 | 54 |36.00]|20.00
6.3 145 | 153 | 195 |175.50{ 7.59 || NRF3 | 14 | 27 | 73 | 82.86|92.86
6.4 131 | 144 | 233 |188.50/9.92 || NRF4 | 14 | 29 | 41 |35.00 [107.14
6.5 161 | 177 | 258 |217.50/9.94 || NRF5 | 13 | 22 | 32 |27.00 | 69.23
Al 253 | 298 | 414 |356.00{17.79|| NRG1 | 176* | 200 | 301 |257.50| 13.63
A2 252 | 301 | 430 |365.50{19.44|| NRG2 | 151* | 197 | 255 |226.00| 30.46
A3 232 | 256 | 316 |286.00|10.34|| NRG3 | 166* | 234 | 301 |267.50| 40.96
A4 | 234 | 268 | 316 |292.00|14.53|| NRG4 | 168* | 273 | 367 |328.00| 62.5
A5 236 | 266 | 369 |317.50{12.71|| NRGS5 | 168* | 202 | 302 |256.50| 20.23
B.1 69 | 82 | 149 |115.50(18.84|| NRH1 | 63* | 111 | 203 |157.00| 76.19
B.2 76 | 99 | 184 |133.50(30.26|| NRH2 | 63* | 97 | 168 [132.50| 53.97
B.3 80 | 89 | 145 |117.00|11.25|| NRH3 | 59* | 93 | 105 | 99.00 | 57.62
B4 79 | 88 | 104 |96.00 [11.39(| NRH4 | 59* | 96 | 176 [136.00| 65.52
B.5 72 | 88 | 119 | 99.50 |22.22|| NRHS5 | 55% | 89 | 182 |135.50| 61.82

* = Best results found in literature [19]

Where Zp ks is the optimal for instance, Z,,,;, is the minimum value found, Z,,, . is the maximum value found , Z,,,,

is the average value and RPD is the percentage of deviation from the optimum.
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10 Analisys and conclusions.

In the following appendix is detailed the comparative analysis of all results, in order to have a global view of the

performance for each algorithm settings.

10.1 Comparison of results.

For purposes of determining the effectiveness of the proposed improvements, the minimum obtained by each confi-
guration, for each set of instances of the benchmark, were compared the average deviations of each ones respect to
known optimals.

The following table presents the average RPD for each set of instances, in order to be able to determine easily
configurations closer to known optimum, as well the instances that the algorithm processed better. The last line shows
the average global RPD for all executions in order to assess the overall performance of each configuration relative to

each other.

Table 6. RPD comparison

Instance S-Shape (5) | V-Shape (6) |Proposed (10) Global
average RPD|average RPD| average RPD |average RPD
SCP 4 7,66 26,27 2,28 12,07
SP5 12,41 9,42 4,83 8,89
SP 6 13,80 10,70 7,74 10,75
A 18,94 14,94 14,96 16,28
B 24,89 22,07 18,79 21,92
C 12,78 12,86 11,07 12,23
D 22,78 15,72 14,20 17,56
E 100,00 72,00 72,00 81,33
NRE 122,13 137,66 94,60 118,13
NRF 110,34 44,44 90,70 81,83
NRG 49,76 49,35 33,05 44,06
NRH 61,22 91,86 63,02 72,04
TOTAL 46,39 42,26 35,60 41,42

Comparing the results of experiments with the best reported in the literature [7], we can see that results are accep-
tably closed to the best known fitness for 4 and 5 benchmarks, poor for 6, A, B, C and D ones and far away from them
in the case of final ones. It is relevant to the case of series 4 and 5, which reached the optimum in a couple of instances.
In the case of the first ones are deviations between 0% and 7,98%, while in the case of the last ones reach 118,51% of
deviation.

Additionally, it can be noted that the RPD average are low for the first two sets, indicating a relatively consistent behav-

ior in the search for the optimum. This occurs in the three configurations, so it can be inferred that the improvements in
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performance for improved algorithm is precisely because changes in operators and transfer function, since all the other

aspects are equal in all executions.

10.2 Statistical Analysis.

Lanza and Gomez [27] proposed a method to compare different algorithms from point of view of its results regularity
and consistency, we performed a statistical analysis to determine the quality of different versions of the algorithm.

In this case, the analysis was performed in two versions that showed the best results, ie, the second experiment (we’ll
call ’v-shape”) and the version with the proposed improvements (we’ll call ”proposed”). The previous thing to do is
to determine the outliers may exist in the results of the different instances. They are determined by calculating the
median for each 31 iterations, for each instance and for each version of the algorithm. Then, calculate the first and third
quartiles (Q1 and Q3) and the interquartile range (IQR). This was done with a spreadsheet, so to determine the outliers

according to the following conditions:

Mild outlier : value < Q1 — (1,5 IQR) or > Q3 + (1,5 IQR) (10)

Ezxtreme outlier : value < Q1 — (3IQR) or > Qs + (3 IQR) (11)

No extreme outliers were found, but only a few milds, which were removed from the list prior to the next analysis.

The following diagram represents the method to be followed, depending on the nature of obtained data:

Tests for normality
(Shapiro—Wilk and Kolm Torov—Smirnov—Liﬂiefors)

At least one of them is not The samples are

normally distributed normally distributed
[ ]

Dependent or Dependent or

independent samples independent samples
Dependent ones Independent ones Dependent ones J Independent ones
I | L |
Wilcoxon- ; Test for homoscedasticity
Wilcoxon M- Whkisney Paired t-test (1 evene)

Variances are not equal |  Variances are equal
| ]

Unpaired t-test ANOVA

Fig. 10. Statistical Methodology Chart
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Under the proposed method, the first thing is to determine the normality for each instance data. For this analysis
the Shapiro-Wilk and Kolmogorov-Smirnov-Lilliefors tests were applied to the data sets, using R software.

In order to determine if data follow a normal distribution, it was taken into account the following two hypothesis:

Hy: If p-value>0.05, then data follow a normal distribution.

H,: Otherwise; if p-value<0.05, so it cannot assume Hy.

The following table presents the results:

Table 7. Normality test results

Instance|V-Shape [Proposed Test li;?;ii?:;gﬂ' Instance|V-Shape [Proposed Test FS?;LE?:;EEI
4.1 NO NO  |Shapiro-Wilk YES D.1 NO NO  |Shapiro-Wilk YES
4.2 NO YES  |Shapiro-Wilk YES D.2 NO YES  |Shapiro-Wilk YES
43 NO YES  |Shapiro-Wilk YES D3 YES NO  |Shapiro-Wilk YES
4.4 YES YES ALL NO D4 YES YES ALL NO
4.5 YES YES ALL NO D.5 NO YES  |Shapiro-Wilk YES
4.6 YES NO  |Shapiro-Wilk YES E.l YES YES ALL NO
4.7 NO YES  |Shapiro-Wilk YES E.2 NO YES  |Shapiro-Wilk YES
4.8 YES YES ALL NO E3 YES YES ALL NO
4.9 YES YES ALL NO E4 YES YES ALL NO
4.10 NO YES  |Shapiro-Wilk YES E.S NO YES  |Shapiro-Wilk YES
5.1 YES NO  [Shapiro-Wilk YES NRE.1 NO YES  |Shapiro-Wilk YES
5.2 YES YES  |Shapiro-Wilk YES NRE.2 YES NO  [Shapiro-Wilk YES
53 YES NO  |Shapiro-Wilk YES NRE.3 YES YES ALL NO
54 NO YES  |Shapiro-Wilk YES NRE 4 YES NO  |Shapiro-Wilk YES
5.5 NO YES  [Shapiro-Wilk YES NRE.5 YES YES ALL NO
5.6 YES NO  |Shapiro-Wilk YES NRF.1 NO NO  |Shapiro-Wilk YES
5.7 YES NO  [Shapiro-Wilk YES NRE.2 YES NO  [Shapiro-Wilk YES
5.8 NO YES  [Shapiro-Wilk YES NRE3 NO YES  |Shapiro-Wilk YES
5.9 NO NO  |Shapiro-Wilk YES NRFE4 YES YES ALL NO
5.10 YES NO  |Shapiro-Wilk YES NRE.S5 NO YES  |Shapiro-Wilk YES
6.1 NO YES  [Shapiro-Wilk YES NRG.1 NO YES  |Shapiro-Wilk YES
6.2 YES YES ALL NO NRG.2 NO NO  |Shapiro-Wilk YES
6.3 NO NO  |Shapiro-Wilk YES NRG.3 NO YES  |Shapiro-Wilk YES
6.4 NO NO Lilliefors YES NRG.4 NO YES  [Shapiro-Wilk YES
6.5 NO NO  |Shapiro-Wilk YES NRG.5 YES YES  |Shapiro-Wilk YES
A.l YES NO  |Shapiro-Wilk YES NRH.1 YES YES ALL NO
A2 YES YES ALL NO NRH.2 YES YES ALL NO
A3 YES YES ALL NO NRH.3 YES YES ALL NO
A4 YES NO  |Shapiro-Wilk YES NRH.4 YES YES ALL NO
A5 NO NO  |Shapiro-Wilk YES NRH.5 YES NO  |Shapiro-Wilk YES
B.1 YES YES ALL NO

B.2 NO NO  |Shapiro-Wilk YES

B.3 YES YES ALL NO

B.4 YES YES ALL NO

B.5 YES YES ALL NO

C.1 YES NO  [Shapiro-Wilk YES

C.2 YES YES ALL NO

C3 NO YES  |Shapiro-Wilk YES

C4 NO NO  |Shapiro-Wilk YES

C5 YES YES ALL NO
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The above table shows the result of normality test for each instance, for both algorithm versions, type of test used
and the final result to decide on the way forward with the method. For methodological purposes, it is deemed to follow
normal distribution when both versions of the algorithm presented that distribution. Otherwise, the entire sample does
not.

Next according to the methodology, is validate if the data sets are matched. For this, the “runs.test” test in sofware R

was applied. The results obtained are as follows:

Table 8. Runs.test results for match test

Instance|V-Shape|Proposed IsII:/i[l:\?ci?d? Instance|V-Shape |Proposed Isllz/zl]:tlciitd?
4.1 NO NO NO D.1 NO NO NO
4.2 NO YES NO D.2 NO NO NO
4.3 NO NO NO D.3 NO NO NO
4.4 NO NO NO D.4 NO NO NO
4.5 NO NO NO D.5 NO YES NO
4.6 NO NO NO E.1 NO NO NO
4.7 YES NO NO E.2 NO NO NO
4.8 NO NO NO E.3 NO NO NO
4.9 YES NO NO E4 NO NO NO
4.10 NO NO NO E.5 NO NO NO
5.1 NO NO NO NRE.1 NO NO NO
5.2 NO NO NO NRE.2 NO NO NO
5.3 NO NO NO NRE.3 NO YES NO
5.4 YES NO NO NRE.4 NO NO NO
5.5 NO NO NO NRE.5 NO YES NO
5.6 NO NO NO NRF.1 NO NO NO
5.7 NO NO NO NREF.2 NO NO NO
5.8 NO NO NO NRE.3 NO NO NO
5.9 NO NO NO NRFE.4 NO NO NO
5.10 NO NO NO NRFE.5 NO NO NO
6.1 NO NO NO NRG.1 NO NO NO
6.2 NO NO NO NRG.2 NO NO NO
6.3 YES NO NO NRG.3 NO NO NO
6.4 NO YES NO NRG .4 NO NO NO
6.5 NO NO NO NRG.5 NO NO NO
Al NO NO NO NRH.1 NO NO NO
A2 NO NO NO NRH.2 NO NO NO
A3 NO NO NO NRH.3 NO NO NO
A4 NO NO NO NRH.4 NO NO NO
A5 NO NO NO NRH.5 NO NO NO
B.1 NO YES NO

B.2 NO NO NO

B.3 NO NO NO

B.4 NO NO NO

B.5 NO NO NO

C.1 NO NO NO

C2 NO NO NO

C3 YES NO NO

C4 NO NO NO

C.5 NO NO NO
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From the previous table we can infer that the data are not matched. So, in the following step will apply the

Wilcoxon-Mann-Whitney test or the Unpaired test, depending of kind of distribution, using R software. The following

table shows which test will be apply in each instance, according the previous results.

Table 9. Summary of results and test to apply
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Instance Dils\i:::lll ?ilon Matched Test to Apply Instance Dils\i:::lll ?ilon Matched Test to Apply

4.1 NO NO  |Wilcoxon-Mann-Whitney||D.1 NO NO |Wilcoxon-Mann-Whitney
4.2 NO NO  |Wilcoxon-Mann-Whitney||D.2 NO NO |Wilcoxon-Mann-Whitney
43 NO NO  |Wilcoxon-Mann-Whitney||D.3 NO NO  |Wilcoxon-Mann-Whitney
4.4 YES NO Unpaired t-test D4 YES NO Unpairedt-test

4.5 YES NO UnpairedUnpaired t-test ||D.5 NO NO  |Wilcoxon-Mann-Whitney
4.6 NO NO  |Wilcoxon-Mann-Whitney | |E.1 YES NO Unpairedt-test

4.7 NO NO |Wilcoxon-Mann-Whitney | |E.2 NO NO |Wilcoxon-Mann-Whitney
4.8 YES NO Unpairedt-test E3 YES NO Unpairedt-test

4.9 YES NO Unpaired t-test E.4 YES NO Unpairedt-test

4.10 NO NO |Wilcoxon-Mann-Whitney||E.5 NO NO |Wilcoxon-Mann-Whitney
5.1 NO NO  |Wilcoxon-Mann-Whitney| (NRE.1 NO NO  |Wilcoxon-Mann-Whitney
5.2 NO NO  |Wilcoxon-Mann-Whitney||NRE.2 NO NO  |Wilcoxon-Mann-Whitney
5.3 NO NO  |Wilcoxon-Mann-Whitney || NRE.3 YES NO Unpairedt-test

54 NO NO |Wilcoxon-Mann-Whitney||NRE.4 NO NO  |Wilcoxon-Mann-Whitney
5.5 NO NO  |Wilcoxon-Mann-Whitney || NRE.S YES NO Unpairedt-test

5.6 NO NO  |Wilcoxon-Mann-Whitney ||[NRF.1 NO NO |Wilcoxon-Mann-Whitney
5.7 NO NO  |Wilcoxon-Mann-Whitney| | NRFE.2 NO NO |Wilcoxon-Mann-Whitney
5.8 NO NO  |Wilcoxon-Mann-Whitney||NRF.3 NO NO  |Wilcoxon-Mann-Whitney
5.9 NO NO |Wilcoxon-Mann-Whitney || NRE.4 YES NO Unpairedt-test

5.10 NO NO |Wilcoxon-Mann-Whitney||NRE.5 NO NO |Wilcoxon-Mann-Whitney
6.1 NO NO  |Wilcoxon-Mann-Whitney||NRG.1 NO NO  |Wilcoxon-Mann-Whitney
6.2 YES NO Unpairedt-test NRG.2 YES NO Unpairedt-test

6.3 NO NO |Wilcoxon-Mann-Whitney|NRG.3 YES NO Unpairedt-test

6.4 NO NO  |Wilcoxon-Mann-Whitney ||NRG.4 YES NO Unpaired t-test

6.5 NO NO |Wilcoxon-Mann-Whitney ||[NRG.5 YES NO Unpaired t-test

Al NO NO  |Wilcoxon-Mann-Whitney||NRH. 1 NO NO |Wilcoxon-Mann-Whitney
A2 YES NO Unpaired t-test NRH.2 NO NO  |Wilcoxon-Mann-Whitney
A3 YES NO Unpaired t-test NRH.3 NO NO |Wilcoxon-Mann-Whitney
A4 NO NO  |Wilcoxon-Mann-Whitney| (NRH.4 NO NO  |Wilcoxon-Mann-Whitney
A5 NO NO  |Wilcoxon-Mann-Whitney ||[NRH.5 YES NO Unpaired t-test

B.1 YES NO Unpaired t-test

B.2 NO NO |Wilcoxon-Mann-Whitney

B.3 YES NO Unpaired t-test

B4 YES NO Unpaired t-test

B.5 YES NO Unpaired t-test

C.1 NO NO  |Wilcoxon-Mann-Whitney

C.2 YES NO Unpaired t-test

C3 NO NO |Wilcoxon-Mann-Whitney

C4 NO NO  |Wilcoxon-Mann-Whitney

C.5 YES NO Unpaired t-test




Next, to apply the final test we must consider two hypotheses:

Hy: If p-value > 0.05, then X v-shape version < X proposed version.

H;: If p-value < 0.05, X v-shape version > X proposed version. So, it cannot assume Hy.
And complementarily:

Hy: If p-value > 0.05, then X proposed version < X v-shape version.

H;: if p-value < 0.05, X proposed version > X v-shape version. So, it cannot assume H.

Where X is the arithmetic median of fitness values. If the p-value is less than 0.05 then the Hj is accepted and it is
assumed that the proposed version of the algorithm is better than the v-shape. Otherwise, it is assumed v-shape version
delivers better results. In the appendices section you can consult the detailed results of the tests. The following table

shows the version of algorithm selected as better for each instance:

Table 10. Selected versions

Instance| Selected ||Instance| Selected |/Instance| Selected
4.1 No diference||A.1 No diference||NRE.1 |No diference
4.2 V-shape A2 No diference||NRE.2 |Proposed

43 Proposed A3 No diference||NRE.3 |Proposed
4.4 Proposed A4 No diference||NRE.4 |Proposed
4.5 Proposed AS V-shape NRE.5 |No diference
4.6 Proposed B.1 Proposed NRF.1 |V-shape

4.7 Proposed B.2 No diference|[NRF.2 |No diference
4.8 Proposed B.3 V-shape NRFE.3 |V-shape

4.9 No diference||B.4 No diference|[NRF.4 |No diference
4.10 Proposed B.S No diference||NRE.S5 | V-shape

5.1 V-shape C.1 No diference||NRG.1 |Proposed
52 Proposed C2 No diference||NRG.2 |Proposed

5.3 Proposed C3 Proposed NRG.3 |Proposed
54 Proposed C4 No diference||NRG.4 |Proposed

5.5 No diference||C.5 Proposed NRG.5 |V-shape

5.6 Proposed D.1 No diference|[NRH.1 |Proposed
5.7 V-shape D.2 No diference|{NRH.2 |No diference
5.8 No diference||D.3 No diference|[NRH.3 |No diference
59 No diference||D.4 No diference|{[NRH.4 |No diference
5.10 Proposed D.5 No diference||NRH.5 |V-shape

6.1 No diference| |E.1 No diference

6.2 No diference| |E.2 No diference

6.3 Proposed E.3 No diference

6.4 Proposed E4 No diference

6.5 No diference||E.5 V-shape

The previous table shows the results for both algorithms, showing for most instances there are not difference
between the two versions of the algorithms (48%) and finding a better performance for the proposed 25% of the

proposed algorithm, as is showed in next chart:
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Distribution of results

= No diference

m V-shape

= Proposed

Fig. 11. Distribution of selected versions

In order to validate if there is any relationship between the results obtained by the algorithms and the algorithm

selected by the statistical analysis, Pearson correlation index was calculated for the difference between the found

minimums and selected algorithm. Thus, the difference was defined as:

Dif ference = v — shape version min — proposed version min

And the comparative table is:

Table 11. Comparative table

12)

Instance| Selected |Difference||Instance| Selected |Difference||Instance| Selected |Difference||Instance| Selected |Difference
4.1 No diference|0 6.1 No diference|3 D.1 No diference|-4 NRG.I |Proposed 14
4.2 V-shape 35 6.2 No diference|-2 D.2 No diference|2 NRG.2 |Proposed |18
43 Proposed |39 6.3 Proposed |7 D.3 No diference|1 NRG.3 [Proposed |78
4.4 Proposed 11 6.4 Proposed 12 D4 No diference|0 NRG.4 |Proposed 16
4.5 Proposed 2 6.5 No diference|0 D.5 No diference|6 NRG.5 |V-shape 9
4.6 Proposed 12 Al No diference|3 E.1 No diference|1 NRH.1 |Proposed -34
4.7 Proposed 17 A2 No diference |0 E.2 No diference |4 NRH.2 |No diference|18
4.8 Proposed 35 A3 No diference|-2 E3 No diference|-2 NRH.3 |No diference|120
49 No diference |21 A4 No diference |2 E4 No diference|4 NRH.4 |No diference |8
4.10 Proposed |26 A5 V-shape -3 ES5 V-shape -7 NRH.5 |V-shape -11
5.1 V-shape 33 B.1 Proposed 11 NRE.1 |No diference|2

52 Proposed 28 B.2 No diference|-4 NRE.2 |Proposed 33

53 Proposed 10 B.3 V-shape 10 NRE.3 |Proposed 15

54 Proposed 12 B4 No diference|-1 NRE.4 |Proposed 6

5.5 No diference|-3 B.5 No diference|-4 NRE.5 |No diference|6

5.6 Proposed 10 C.1 No diference|-1 NRF.1 |V-shape -16

5.7 V-shape 19 C2 No diference|3 NRE.2 |No diference|0

5.8 No diference|2 C3 Proposed |7 NRFE.3 |V-shape -10

59 No diference|2 C4 No diference|-4 NRF4 |No diference|-1

5.10 Proposed 8 C5 Proposed 15 NRES5  |V-shape -5

being the Pearson correlation coefficient 0.24, indicating there is no relevant correlation between the two columns.
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10.3 Conclusions.

Although local optima found in last benchmarks are not good, they still show a better performance in the case of the
improved algorithm, suggesting they can still achieve better results by additional debbuging and search for further
improvements in operators and functions, as well as their execution with a higher number of iterations.

In all cases 31 times algorithm is executed, considering 20.000 iterations in each one. The rapid initial convergence
is achieved reducing the value of the objective function significantly during early iterations, being much more gradual
in subsequent ones and requiring the execution of those operators that stimulate exploration, such as collapse and
Hawking radiation. This suggests that the algorithm has a tendency to fall in optimal locations, where cannot leave
without the help of scanning components. In order to illustrate these trends, some graphs are presented showing the
evolution of the algorithm during the iterations for different benchmarks, i.e., the successive fitness for “black holes”

in each of the 20,000 iterations:

SPC41 (4.1)

g 20.000
L
A
[«
K 15.000
H
o 10.000
L
E

5.000

—
_‘—\‘
5.000 10.000 15.000 20,000
ITERATION

Fig. 12. SCP41 iterations
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Fig. 13. NRH1 results

While the results for many of the benchmarks were poor due to have a high RPD, i.e., they are significant percentage
deviation from known optimum, in absolute terms, considering the starting values in the search, the differences between
the known global optimum and local optimum found are low. It is probably because these tests require a greater number
of iterations than those made to improve performance, since the values clearly indicate a consistent downward trend,
the number of variables is higher and the difference between the optimum and the start values is broader. An interesting
analysis element is that the gap between the best and the worst outcome is small and relatively constant in practically
all benchmarks, indicating the algorithm tends continuously towards an improvement of results, and the minimums are

not just a product of suitable random values. The following chart explains this element:

Maxs and Mins by Benchmarks

700
600
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300

200

[

xxxxxxxxxxxxxxx

——Min ——Max

Fig. 14. Evolution of maxs and mins
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On the other hand, the introduction of Hawking radiation increased the stochastic component of the algorithm
stimulating exploration, which was highlighted in the best results. Additionally, the repair unfeasible vectors means
a balance regarding the exploitation of the results, preventing the algorithm scroll through the results space without
control.

Other notorious element are the large differences in results obtained with different methods of transfer and binarization,
some ones simply conspired against acceptable results. Some future research could be related to better manage of
distance and also the implementation of differentiated configuration parameters for different benchmark instances,
ie, specific tunning according to process banchmark. Traditional methods work in the domain of real and are not
directly applicable to a binary algorithm, forcing perform transformations that could degrade the performance of this.
Techniques for binary distances, like Hamming [17] and others offer as an alternative, but can also distort the results
because it have a logic unrelated to the context in which it is used. It would also be interesting the introduction of
mutation operators to stimulate the elitist exploration or solutions.

Additionally, some authors [33] suggest implementing the rotation operator by adding elements such as mass and
electric charge of the black hole, items not considered in this work.

About results of statistical analysis, we can see that improvements in the results obtained do not regularly match the
improvements made in regularly, because instances in each ones are not always the same. Thus, we can conclude that
the proposed improved algorithm version has a regularly higher than the original algorithm, but such improvements do

not have a direct correlation with the closeness of the results obtained respect to known optimum.
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11 Comparative results.

The results obtained by the different configurations, on a comparative basis are presented in detail:

700

500

300

200

100

41
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Table 12. comparison for SCP4 instances

Instances| Optimum |Proposed|S-Shape (5)| V-Shape (6)
4.1 429 435 439 435
4.2 512 512 553 547
43 516 522 566 561
4.4 494 514 527 525
4.5 512 520 589 522
4.6 560 566 580 578
4.7 430 455 481 472
4.8 492 499 502 534
4.9 641 667 689 688
4.10 514 529 565 555
SPC4 Instances
43 44 45 46 47 48
= Proposed W S-Shape (S) e V-Shape (6) == Optimum

Fig. 15. SCP4 comparison
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Table 13. comparison for SCP5 instances

Instances| Optimum |Proposed|S-Shape (5)| V-Shape (6)
5.1 253 257 284 290
5.2 302 302 342 330
5.3 226 231 251 241
5.4 242 249 273 261
5.5 211 225 232 222
5.6 213 230 249 240
5.7 293 314 339 333
5.8 288 308 313 310
5.9 279 296 311 298
5.10 265 283 297 291
SPCS Instances
51 52 53 54 55 56 57 58 58 510
mmm Proposed e S-Shape (5) e V-Shape (6] =——COptimum

Fig. 16. SCP5 comparison

Table 14. comparison for SCP6 instances

Instances|Optimum |Proposed|S-Shape (5)| V-Shape (6)
6.1 138 146 151 149
6.2 146 157 159 155
6.3 145 153 163 160
6.4 131 144 160 156
6.5 161 177 187 177
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6.2

SPC6 Instances

6.3

6.4

wm Proposed W S-Shape (S) e V-Shape (6] =——=Optimum

Fig. 17. SCP6 comparison

Table 15. comparison for A instances

Instances| Optimum |Proposed |S-Shape (5)| V-Shape (6)
Al 253 298 315 301
A2 252 301 303 301
A3 232 256 259 254
A4 234 268 289 270
A5 236 266 271 263
A Instances
- —F-mpmed m— 5-Shape (5] -_VSIBDE(E] —Dpliml-ln
Fig. 18. SCP A comparison
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Table 16. comparison for B instances

Instances| Optimum |Proposed|S-Shape (5)| V-Shape (6)
B.1 69 82 87 93
B.2 76 99 101 95
B.3 80 89 98 99
B4 79 88 91 87
B.5 72 88 92 84

B.1

B2

B Instances

B3

B4

wm Proposed W S-Shape (S) e V-Shape (6] =——=Optimum

Fig. 19. SCP B comparison

Table 17. comparison for C instances

Instances|Optimum |Proposed|S-Shape (5)| V-Shape (6)
C.1 227 252 256 251
C.2 219 245 250 248
C3 243 266 259 273
C4 219 252 255 248
C5 215 232 245 247
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cz

C Instances

[o:}

c4

e Proposed W SShape (5) e VShape (6) == Optimum

Fig. 20. SCP C comparison

Table 18. comparison for D instances

Instances| Optimum |Proposed |S-Shape (5)| V-Shape (6)
D.1 60 71 73 67
D.2 66 73 74 75
D3 72 80 91 81
D4 62 70 77 70
D.5 61 72 79 78
D Instances
V | l;rcposed m 5-5hape (5) ;Vﬁhape (€) —Omim;lm
Fig. 21. SCP D comparison
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Table 19. comparison for E instances

Instance|Optimum |Proposed|S-Shape (5)| V-Shape (6)
E.1 5 6 10 7
E.2 5 8 15 12
E.3 5 9 8 7
E4 5 7 8 11
E.5 5 13 9 6
E Instances
_-Pmr.med = S-Shape (5) -_ V-Shape (§) === Optimum

Fig. 22. SCP E comparison

Table 20. comparison for NRE instances

Instance|Optimum |Proposed|S-Shape (5)| V-Shape (6)
NRE1 29 72 77 74
NRE2 30 64 81 97
NRE3 27 59 82 74
NRE4 28 49 39 55
NRES 28 33 37 39
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NRE1

NRE Instances

NREZ NRE3

NRE4

e Proposed W SShape (5) e VShape (6) == Optimum

Fig. 23. SCP NRE comparison

Table 21. comparison for NRF instances

Instance|Optimum |Proposed|S-Shape (5)| V-Shape (6)
NRF1 14 37 34 21
NRF2 15 18 23 18
NRF3 14 27 28 17
NRF4 14 29 39 28
NRF5 13 22 23 17

NRF Instances

NRF2 NRF3 NRF4
W Proposed W S-Shape (S) e V-Shape () == Optimum
Fig. 24. SCP NRF comparison
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Table 22. comparison for NRG instances

Instance|Optimum |Proposed|S-Shape (5)| V-Shape (6)
NRGI 176 200 220 214
NRG2 154 197 233 215
NRG3 166 234 318 312
NRG4 168 273 285 289
NRGS5 168 202 187 211

NRGZ

NRG Instances

NRG3

NRG4

e Proposed W S-Shape (5) W V-Shape (§) === Optimum

Fig. 25. SCP NRG comparison

Table 23. comparison for NRH instances

Instance|Optimum |Proposed|S-Shape (5)| V-Shape (6)
NRH1 63 111 98 77
NRH2 63 97 99 115
NRH3 59 93 96 213
NRH4 58 96 99 88
NRHS5 55 89 88 78
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Fig.26. SCP NRH comparison

45



Table 24. Wilcoxon-Mann-Whitney/Unpaired t-test part 1 results

Instance V-shape | Proposed | Instance V-shape |Proposed||Instance V-shape |Proposed
a1 V-shape - >0,05 6.1 V-Shape - >0,05 D1 V-Shape - >0,05
' Proposed| >0,05 -1 Proposed >0,05 - Proposed| >0,05 -
49 V-Shape - >0,05 6.2 V-Shape - >0,05 D2 V-Shape - >0,05
’ Proposed|6,80E-09 -1 Proposed >0,05 - Proposed| >0,05 -
43 V-Shape -| 6,82E-09 63 V-Shape -l 0,02768 D3 V-Shape - >0,05
’ Proposed| >0,05 -1 Proposed >0,05 -l Proposed| >0,05 -
44 V-Shape -| 6,33E-03 6.4 V-Shape -| 0,01671 D4 V-Shape - >0,05
’ Proposed| >0,05 -1 Proposed >0,05 - Proposed| >0,05 -
45 V-Shape -| 3,77E-02 65 V-Shape - >0,05 D5 V-Shape - >0,05
’ Proposed| >0,05 -1 Proposed >0,05 - Proposed| >0,05 -
46 V-Shape -10,0001595 Al V-Shape - >0,05 E1 V-Shape - >0,05
’ Proposed| >0,05 -l Proposed >0,05 -l Proposed| >0,05 -
47 V-Shape -| 6,14E-02 A2 V-Shape - >0,05 E2 V-Shape - >0,05
’ Proposed| >0,05 -1 Proposed >0,05 -1 Proposed| >0,05 -
48 V-Shape -| 2,20E-16 A3 V-Shape - >0,05 E3 V-Shape - >0,05
’ Proposed| >0,05 - Proposed >0,05 N Proposed| >0,05 -
49 V-Shape - >0,05 Ad V-Shape - >0,05 B4 V-Shape - >0,05
’ Proposed| >0,05 -l Proposed >0,05 -l Proposed| >0,05 -
410 V-Shape -| 3,20E-05 AS V-Shape - >0,05 ES5 V-Shape - >0,05
' Proposed| >0,05 -0 Proposed| 00,0496 -1 Proposed|1,67E-03 -
5 V-Shape - >0,05 B.1 V-Shape -1 9,73E-06 NRE. 1 V-Shape - >0,05
’ Proposed|7,18E-04 -l Proposed >0,05 - ’ Proposed| >0,05 -

V-Shape -| 3,31E-08 V-Shape - >0,05 V-Shape -| 1,48E-08
32 Proposed| >0,05 B2 Proposed >0,05 7| |NRE-2 Proposed| >0,05 -
53 V-Shape -10,0001507 B3 V-Shape - >0,05 NRE.3 V-Shape -| 5,74E-05
’ Proposed| >0,05 - Proposed|0,0007408 - " |Proposed| >0,05 -

V-Shape -| 2,70E-02 V-Shape - >0,05 V-Shape -10,009479
>4 Proposed| >0,05 - B4 Proposed >0,05 - NRE.4 Proposed| >0,05 -

V-Shape - >0,05 V-Shape - >0,05 V-Shape - >0,05
33 Proposed| >0,05 | Proposed >0,05 7| |NRES Proposed| >0,05 -
56 V-Shape -| 1,52E-02 c1 V-Shape - >0,05 NRE.1 V-Shape - >0,05
' Proposed| >0,05 -l Proposed >0,05 - ' Proposed|5,02E-06 -

V-Shape - >0,05 V-Shape - >0,05 V-Shape - >0,05
3.7 Proposed|6,85E-09 - C2 Proposed >0,05 - NRF.2 Proposed| >0,05 -
53 V-Shape - >0,05 c3 V-Shape -1 0,007696 NRE3 V-Shape - >0,05

Proposed| >0,05 - Proposed >0,05 - Proposed|3,69E-02 -

V-Shape - >0,05 V-Shape - >0,05 V-Shape - >0,05
29 Proposed| >0,05 ¢4 Proposed >0,05 | [NRE4 Proposed| >0,05 -

V-Shape - 0,00154 V-Shape - 1,83E-04 V-Shape - >0,05
310 Proposed| >0,05 1|63 Proposed >0,05 | |NRES Proposed|7,11E-03 -
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Table 25. Wilcoxon-Mann-Whitney/Unpaired t-test part 2 results

Instance V-shape |Proposed
NRG1 ool S0
NRG3 fpoponedlS005T
NRGA g omoved| SO0
NRG.S ELSSSEQ 1,74E-05_ >0’05—
NRHL (ool 500
NRH2 o
NRHA (g oved| 00—
NRHS g o SHTEGS -
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