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Abstract

In this work, we present a binary cat swarm optimization for solving the
set covering problem. The Cat Swarm Optimization is a recent swarm meta-
heuristic technique based on the behavior of cats. Domestic cats show the
ability to hunt and are curious about objects in motion. Based on this, the
cats have two modes of behavior: seeking mode and tracing mode. More-
over, eight different transfer functions and five discretization techniques are
considered for solving the set covering problem. Finally, we illustrate this
approach with 65 instances of the problem, we make a comparison between
the different binarization techniques and we choose the best of them through
Relative Percentage Deviation and Wilcoxon-Mann-Whitney’s.

Keywords: the set covering problem, metaheuristic, binary cat swarm op-
timization.

Resumen

En este trabajo se presenta el Binary Cat Swarm Optimization para
resolver el Set Covering Problem. Cat Swarm Optimization es una meta-
heuristica reciente, técnica basada en el comportamiento de los gatos. Los
gatos domésticos muestran su habilidad para cazar y su curiosidad por los
objetos en movimiento. Basado en esto, los gatos tienen dos comportamien-
tos: modo de busqueda y modo de rastreo. Ademads, ocho funciones de
transferencia y cinco técnicas de discretizacién son utilizadas para resolver
el problema binario. Finalmente, se ilustra este enfoque con 65 instancias
del problema, se hace una comparaciéon entre las diferentes técnicas de bi-
narizacion y se escoge la mejor de ellas a través de la Desviacién Porcentual
Relativa y Wilcoxon-Mann-Whitney’s.

Palabras Clave: problema de cobertura de conjuntos, metaheuristica, op-
timizacién por colonia de gatos binaria.
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1 Glossary

C : Population size, that is, number of cats

CDC : Counts of Dimensions to Change, it indicates how many of the
dimensions varied

PMO : Probability of Mutation Operation.

SMP : Seeking Memory Pool, it is used to define the size of seeking
memory for each cat

MR : Mixture ratio, percentage of cats that undertake the tracing
mode.

c1 : Constant that is defined by the user

r1 : Random value in the interval of [0,1]

trq : Probability of mutation in each dimension of the cat
Vkld : Probability of d-dimension of catj, changes to one
Vkod : Probability of d-dimension of caty changes to zero

w : Inertia weight

Xpest,a : d-dimension of best cat



2 Introduction

The Set Covering Problem (SCP) is one of the classical 21 problems shown
to be NP-complete [58] and whose optimization version is NP-hard [52].
Although the SCP is a traditional optimization problem, it is widely con-
sidered in the current literature for designing expert systems, which emulate
the decision-making ability of human experts in a given field [67]. For ex-
ample, we find works considering the SCP crew scheduling [4] [8] [46] [70],
location of emergency facilities [85] [81], production planning in industry [82]
[83] [84], vehicle routing |7] [50], ship scheduling [49] [13], network attack or
defense |14, assembly line balancing [51] |72], traffic assignment in satellite
communication systems [69] [17], simplifying boolean expressions [15], the
calculation of bounds in integer programs [18], information retrieval [45],
political districting [53], stock cutting, crew scheduling problems in airlines
[56] and other important real life situations.

The SCP counsists in finding a set, of solutions which allow to cover a set of
needs at the lowest cost possible. Chvatal in [21] defined the SCP as follows:
given a set M of m objects and a collection S of n sets of these objects, each
set with a non-negative cost associated. The goals is to find a minimum cost
family of subsets C' C .5, such that each element ¢ € M belongs to at least
one subset of the family C.

Some authors solved the SCP by applying exact techniques, such as
branch-and-bound and branch-and-cut algorithms. However, such methods
are not recommended for solving this type of complex problems, because
computational times rise exponentially with the problem dimension. In the
field of optimization, approximate techniques should be considered, such as
metaheuristics. This type of techniques is successfully considered in the liter-
ature for solving NP-hard problems from different fields, including the SCP.
However, many algorithms have been developed for solving the SCP. Exam-
ples of these optimization algorithms include: Genetic Algorithm (GA), Ant
Colony Optimization (ACO) and Particle Swarm Optimization (PSO). In
this proposal, we consider swarm intelligence based on the behavior of cats:
Binary Cat Swarm Optimization (BCSO).

BCSO refers to a series of heuristic optimization methods and algorithms
based on cat behavior in nature. Cats behave in two ways: seeking mode and
tracing mode. BCSO is based in CSO algorithm, proposed by Chu and Tsai
recently [19]. The difference is that in BCSO the vector position consists of
ones and zeros, instead the real numbers of CSO.

Usually, the algorithms are adapted by following the two-step binariza-
tion method [59] in their approach of Binary Particle Swarm Optimization



(BPSO) for transforming real numbers into binary ones. In this case, the
authors explained how to get a new binary solution according to the parti-
cle velocity, which is a real number. The method followed by the authors
is as follows. Firstly, we map the real value to a number in the interval
[0,1] through a transfer function. Secondly, we transform the number in the
interval |0,1] into a binary value through a discretization function. In this
line, there are eight major transfer functions and five major discretization
functions in the current literature, denoted as Si,S9,...,54, V1, Vo,..., V4
and Dy, Dy ..., Dg, respectively.

The authors of BCSO counsidered a transfer and discretization function,
without performing any formal study to this task. We change the orig-
inal formulation of BCSO by combining the eight transfer functions and
the five discretization functions introduced before, i.e., we get forty BCSO
approaches. We apply the forty BCSO approaches for solving a freely avail-
able SCP benchmark proposed by Beasley. We study the results obtained
through an accepted statistical methodology to analyze if selecting a bina-
rization technique influences the behavior of the metaheuristic.

The remainder of this work is structured as follows. In Section 3, we
include the definition of objectives. In Section 4, we discuss the state of the
art, including the major motivations for performing this work. In Section 5,
we give a formal SCP definition, including a problem example. In Section
6, we explain the BCSO metaheuristic. In Section 7, we describe how the
problem is solved and we explain the transfer and discretization functions. In
Section 8, we discuss the experimental method followed. In Section 9, we give
some implementation details and the results obtained. Finally, conclusions
are left for Section 10.



3 Definition of Objectives

3.1 Main Objective

The resolution of the Set Covering Problem using a Binary Cat Swarm Op-
timization.

3.2 Specific Objective
e Understand the Set Covering Problem.

e Understand the metaheuristic Binary Cat Swarm Optimization.

e Implement the Binary Cat Swarm Optimization to solve the Set Cov-
ering Problem.

e Change the binarization technique usually proposed for this algorithm
in order to discover if a different one could help to improve results.

e Use eight transfer functions.

e Use five discretization techniques.

e Test the algorithm using the OR-Library problems.
e Analyze the results with a statistical methodology.
e Improve the results if necessary.

e Publish results.



4 State of the Art

4.1 The Set Covering Problem

Different solving methods have been proposed in the literature for the Set
Covering Problem. Exact algorithms are mostly based on branch-and-bound
and branch-and-cut techniques [6] [48] [12], linear programing, and heuristic
methods [16]. However, these algorithms are rather time consuming and can
only solve instances of very limited size. For this reason, many research ef-
forts have been focused on the development of heuristics to find a good result
or near-optimal solutions within a reasonable period of time. Metaheuristics
were also applied to the SCP as top-level general search strategies.

First we described some of the techniques developed by Crawford and
Soto et al. Of the techniques we can mention the latest on Shuffled Frog
Leaping Algorithm (SFLA) [37] designed in 2006 by Eusuff et al. [47]. The
SFLA is a novel metaheuristic inspired by natural memetics, in which the
authors, Crawford and Soto et al., assumed all the transfer and discretization
function.

Another metaheuristic used by Crawford and Soto et al. is Artificial Bee
Colony (ABC) Algorithm [43] [29] [28], published in 2014. The ABC algo-
rithm is a recent metaheuristic technique based on the intelligent foraging
behavior of honey bee swarm. ABC was proposed by Karaboga & Basturk
in 2007 |57].

Firefly Optimization is another proposal to solve the SCP by Crawford
and Soto et al. [35] [33] [34]. The Firefly Algorithm (FA) designed by Yang
in 2010 [89]. This proposal is inspired by the flashing behaviour of fireflies.
In their works, they changed the original proposal by incorporing transfer
and discretization functions. Thus, in citecrawford2015modified, Crawford
et al. assumed all the transfer and discretization functions; and in [32] they
applied the eight transfer functions and the discretization functions Do, D3,
and Dy.

In 2015, Crawford et al. [38] assumed the Teaching-Learning-Based Op-
timization (TLBO) algorithm proposed by Rao et al. in 2011 [66]. Crawford
et al. applied all the transfer and discretization functions in this paper.

Frui Fly Optimization Algorithm (FFOA) [41] was applied by Crawford
et al. in 2015, algorithm designed by Pan in 2012 [64]. The authors assumed
all the transfer and discretization functions.

Furthermore, the authors propose a novel idea called a 2-level metaheuris-
tic approach where an Artificial Bee Colony Algorithm acts as a low-level
metaheuristic and its paremeters are set by a higher level Genetic Algorithm.



[80] [36].

Other important proposals by the same authors are: Cultural Algorithms
[22] [30], a Evolutionary Approach [23]|, Hybrid Ant Algorithm [31] and Two
Swarm Intelligence [27].

Finally, other authors have also made proposals to solve the SCP. We
found Beasley [10] [9] [11] [12]. In one of his most important works, “A genetic
algorithm for the set covering problem”, he presented a genetic algorithm-
based heuristic for non-unicost SCP, where proposed several modifications to
the basic genetic procedures including a new fitness-based crossover operator
(fusion), a variable mutation rate and a heuristic feasibility operator tailored
specifically for the set covering problem. Also, we find the following proposal
list that have solved the SCP: Genetic Algorithm [3], Evolutionary Search
Technique [54], Ant Colony Optimization|[60][68]. Standing out the latter
for proposing “New ideas for applying ant colony optimization to the set
covering problem”.

4.2 Cat Swarm Optimization

In the case of the metaheuristic used in this work, BCSO. This has been
applied to a lot of problems [20] [76] [19].

Shojaee et al. presents a new swarm intelligence technique based on
CSO algorithm to find near optimal solution. In this paper “A new cat
swarm optimization based algorithm for reliability-oriented task allocation
in distributed systems [77|” the nodes and links of a Distributed Systems
(DS) typically have different hazard rates; therefore, proper task allocation
can significantly improve system reliability. On the other hand, optimal task
allocation in DSs is an NP-hard problem, thus finding exact solutions are
limited to small-scale problems.

Saha et al. have a paper “Optimizing least-significant-bit substitution
using cat swarm optimization strategy” [86] to adopt the cat swarm opti-
mization (CSO) strategy to obtain the optimal or near optimal solution of
the stego-image quality problem. Embedding secret data into a cover image
using simple least-significant-bit substitution can degrade the image qual-
ity dramatically. The exhaustive least-significant-bit substitution method is
proposed to solve this problem.

Saha et al. in “Cat Swarm Optimization algorithm for optimal linear
phase FIR filter design” [71]. CSO algorithm is applied to determine the
best optimal impulse response coefficients of FIR low pass, high pass, band
pass and band stop filters, trying to meet the respective ideal frequency
response characteristics.



5 The Set Covering Problem

The SCP is formally defined by assuming a binary matrix A of m-rows and
n-columns, where a; j € 0,1 denotes the value of the cell (4, 7) of A, with i €
1,2,....mand j € 1,2,....n. Ais formally defined as

CL171 a172 e al,n
as 1 a2 2 c.. A2n

A — ) (1)
Gm,1 Gm2 ... Qmn

We say that a column j covers a row i if a;; equals 1 and 0 otherwise.
Each column j is associated with a non-negative real cost ¢; € C, where
C={ci,co,...,cn}. Let I ={1,2,...,m} and J ={1,2,...,n} be the row
and columns sets, respectively. The SCP calls for a minimum cost subset
S C J, such that each row i € I is covered by at least one column j € S.
Thus, the optimization problem is expressed as

min chxj , (2)

jeJ
subject to
Zaijmj >1, Viel, (3)
JjeJ
zj€{0,1}, VjelJ, 4)

where x; equals 1 if column j is in the solution S and 0 otherwise. From
this formulation, we reach that the goal is to minimize the sum of the costs
of the selected columnns. Note that the constraint in Equation (3) ensures
that each row i is covered by at least one column.



5.1 Problem Example

We propose a small location problem as an example of the SCP formulated
before. Suppose that we need to offer fire services at the lowest possible cost
in the city composed of six zones shown in Figure 1. In this case, we have
the following constraints:

e A fire station can only attend the zone in which it is located and
inmediately adjacent zones, e.g., a fire station in zone 1 can attend
zones 1, 2, 3, and 5.

e The fire services should attend all the zones.

e The greatest number of fire stations per zone is 1.

Py
e

Figure 1: Zones for the location problem example.

Let A be the binary matrix denoting which zones are covered by a hypo-
thetical fire station according to the zone in which it is placed, that is

, (5)
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O O = =
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= === 0O
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where a; ; is the value at the cell (7, j) of A, equaling 1 if the fire station
located at the j-th zone covers the ¢-th zone, with ¢ and 5 € 1,2,...,6. Let
x; be the indicator function equaling 1 if a fire station is built in the j-th
zone and 0 otherwise. Let C' be the set denoting the cost of building a fire
station according to the zone, that is



C=(3 5 6,4, 2 1), (6)

According to this notation, the optimization problem is defined as
min 3x1+5x0+6x3+4as+225+1 26 (7)
subject to

a1l r1+a12 To+a13 T3 +a1a Ta+a1s x5 +are e > 1

a1 T1+ a2 T2+ a3 T3+ agy T4+ azs x5+ aze 6 > 1

az1 r1+az2 r2 +az3z v3+azs r4+azs 5+ aze ve > 1 ®)
a41 1+ ag2 T2+ as3 v3+as4 T4+ ass T5+ase v > 1

as1 T1+as2 T2 +as3 r3+as4 T4+ ass 5+ ase re > 1

ag1 1+ a2 T+ as3 T3+ asa T4+ aps Ts + ase Te = 1

z;€{0,1}, Vjel,...,6. (9)

Equation (8) is simplifiable by replacing the values of a; ; in Equation (5)
based on the notation in Equation (1), that is

T1+xo+ w3 +w5 > 1

T+ 29+ 23 >1

1+ xo+r3+ratas+a6>1
T3+ x4+ x5+ 26 > 1 ’
1+ a3+ x4 +25+26>1

T3+ x4+ x5+ 26 > 1

The optimal solution to solve this problem is to build a fire station in zones
1 and 6, having a total cost of 4.



6 Binary Cat Swarm Optimization

There are about thirty different species of known felines, e.g., lion, tiger,
leopard, and cat, among others [5]. Although they have different living
environments, cats share similar behavior patterns [63].

For wild cats, the hunting skill ensures food supply and survival of the
species [44]. Feral cats are groups with a mission to hunt their food, are very
wild feline colonies, ranging from 2-15 individuals [88|.

Domestic cats also show the same ability to hunt, and are curious about
moving objects [42] [78] [87]. Analyzing the behavior of cats, you could think
that most of the time they are resting, even when awake [1] [2]. In this state
of alertness they do not never leave, they may be listening or with wide eyes
to look around [73]. Based on all these behaviors we formulate BCSO.

BCSO [76] is an optimization algorithm that imitates the natural behav-
ior of cats [19] [79] [65]. The authors identified two main modes of behavior
for simulating cats:

e Seeking mode: cats are attracted by objects in motion and have a great
hunting ability. It might be thought that cats spend most of the time
resting, but in fact they are constantly alert and moving slowly.

e Tracing mode: when cats detect a prey, they spend lots of energy
because of their fast movements.

In BCSO these two behaviors are modeled mathematically to solve com-
plex optimization problems.

In BCSO, the first decision is the number of cats needed for each itera-
tion. Each cat, represented by caty, where k € [1,C], has its own position
consisting of M dimensions, which are composed by ones and zeros. Besides,
they have speed for each dimension d, a flag for indicating if the cat is on
seeking mode or tracing mode and finally a fitness value that is calculated
based on the SCP. The BCSO keeps searching the best solution until the
end of iterations.

In BCSO the bits of the cat positions are x; = 1 if column j is in the
solution and 0 otherwise (Equation 2). Cat position represents the solution
of the SCP and the constraint matrix ensure that each row ¢ is covered by
at least one column.

Next we describe the BCSO general pseoudocode (Algorithm 1) in which
MR is a percentage which determines the number of cats that undertake the
seeking mode.

10



Algorithm 1 BCSO()

1
2
3:
4

(Al

: Create C cats;

: Initialize the cat positions randomly with values between 1 and 0;
Initialize velocities and flag of every cat;

: Set the cats into seeking mode according to MR, and the others set
into tracing mode;

Evaluate the cats according to the fitness function;

6: Keep the best cat which has the best fitness value into memory;
7: Move the cats according to their flags, if caty, is in seeking mode, apply

the cat to the seeking mode process, otherwise apply it to the tracing
mode process. The process steps are presented above;

Re-pick number of cats and set them into tracing mode according to
MR, then set the other cats into seeking mode;

Check the termination condition, if satisfied, terminate the program,
and otherwise repeat since step 5;

Next we describe the two sub-models of the BCSO: seeking mode and

tracing mode. Each sub-models contains a brief explanation of their behav-

10r

beh

6.1
Thi

and includes a detailed pseudocode and a figure with the flowchart of
avior.

Seeking mode

s sub-model is considered for modeling the state of the cat, which is

resting, looking around and seeking the next position to move to. Seeking
mode has essential factors:

F'S; is the fitness of i-th cat and F'S, = F Sy for finding the minimum

e PMO: Probability of Mutation Operation

e CDC: Counts of Dimensions to Change, it indicates how the dimensions
vary

e SMP: Seeking Memory Pool, it is used to define the size of seeking
memory for each cat. SMP indicates the points explored by the cat,
this parameter can be different for different cats.

The following pseudocode describes cat behavior seeking mode. In which

solution and F'S, = F'Sp;y, for finding the maximum solution. To solve the
SCP we use F'Sp, = FSpaz-

11



Stepl: Create SMP copies of caty,

Step2: Based on CDC update the position of each copy by randomly
according to PMO

Step3: Evaluate the fitness of all copies

Step4: Calculate the selecting probability of each copy according to

| FSi-FS,
B FSma:p - FSm'm

P, , (11)
Step5: Apply roulette wheel to the candidate points and select one of
them
Step6: replace the current position with the selected candidate

6.2 Tracing mode

Tracing mode is the sub-model for modeling the case of the cat in tracing
targets. In the tracing mode, cats are moving towards the best target. Once
a cat goes into tracing mode, it moves according to its own velocities for
each dimension. Every cat has two velocity vectors defined as Vkld and Vkod.
Where Vkod is the probability that bits of the cat change to zero and Vkld is
the probability the bits of cat change to one. The velocity vector changes
its meaning to the probability of mutation in each dimension of a cat. The
tracing mode action is described in the next pseudocode and diagram.

Stepl: Calculate d,ﬁd and dgd according to the expression, where Xy g
is the d-th dimension of the best cat, r; has a random values in the interval
of [0,1] and ¢; is a constant which is defined by the user

if Xpest,g = 1 then d}cd = r1c1 and d%d = —ricy

if Xpest.q = 0 then dllcd = —ryc; and d%d =ric (12)

Step2: Update process of Vkld and Vkod are as follows, where w is the
inertia weight and M is the column numbers.

Vg = wVily + diy

d=1,.M (13)
Vin = wViy +diy

Step3: Calculate the velocity of caty, Vk/ 4> according to

b Vi Xpg =0
Vha = { VO if Xpg = 1 (14)

Step4: Calculate the probability of mutation in each dimension, this is
defined by parameter tgq, trq takes a value in the inverval of [0,1]

12



1
1+ e_vkld
Step5: Based on the value of {4 the new value of each dimension of cat
is update as follows

ted = (15)

Xk;d _ { Xbest,d if rand < trd

Xig if tgg < rand d=1,..M (16)

The maximum velocity vector of Vk/ 4 Should be bounded to a value V,4,.
If the value of Vk/d becomes larger than Va2, Vinee should be selected for
velocity in the corresponding dimension.

13



7 Solving the Set Covering Problem

For solving the SCP we use the transfer and discretization functions, ex-
plained later, to replace those used in Tracing Mode and choose the one that
delivers better results. We also use a repair method for solutions that are
not feasible. Next is described the pseudocode, Algorithm 2, that we use for
solving the SCP:

Algorithm 2 Solving SCP()

1: Initialize parameters in cats;

2: Initialization of cat positions, randomly initialize cat positions with
values between 0 and 1;

3: Initialization of all parameter of BCSO;

4: Evaluation of the fitness of the population. In this case the fitness
function is equal to the objective function of the SCP;

5: Change of the position of the cat. A cat produces a modification
in the position based in one of the behaviors. i.e. seeking mode or
tracing mode;

6: If solution is not feasible then repaired;

7: Memorizes the best found solution. Increases the number of iterations;

8: Stop the process and show the result if the completion criteria are
met. Completion criteria used in this work are the number specified
maximum of iterations. Otherwise, go to step 3;

7.1 Improving Operator

Based on the SCP definition discussed in Section 5, it is possible that a
solution does not satisfy the constraints, resulting in an infeasible solution.
In this section, we describe an improving operator for transforming infeasible
solutions into feasible ones and removing redundant columns to reduce the
solution cost. Note that a column is redundant if after removing it, the
solution remains feasible.

Algorithm 3 shows a repair method where all rows not covered are iden-
tified and the columns required are added. So in this way all the constraints
will be covered. The search of these columns are based in the relationship
showed in the Equation 17.

cost of one column (17)

amount of columns not covered

e [ is the set of all rows

14



J is the set of all columns

J; is the set of columns that cover the row ¢, i € [

I; is the set of rows covered by the column j, j € J

S is the set of columns of the solution

e U, is the set of columns not covered

w; is the number of columns that cover the row i,Vi € I in S

Algorithm 3 Repair Operator()

wi<—|SﬂJi|ViEI;
U «+ {i|lw; = 0},Vi € I,
for i € U do
find the first column j in J; that minimize \UCTJIAS +— SnNy;
w; — w; +1,Vi € Ij;
U «+ U—Ij;
end for
for j € Sdo
if w; > 2,Vi € I; then
S+ S—7;
wikwi—l,ViEIj
end if
: end for

—_ = =
W N = O

In the next section we discuss the transfer and discretization functions
considered for addressing the step 4 and 5 of the tracing mode described in
Section 6.2.

7.2 Transfer Functions

Transfer functions define a probability to mutate an element, ¢4 in Tracing
Mode as given by Equation 15, that is the probability to change an element
of the solution from 1 to 0, or vice versa. As stated before, we propose to
consider several transfer functions, specifically the eight functions defined by
Mirjalili et al. in [62], which are in Table 1. These functions are divided in
two groups called S-shape and V-shape.

15



S-Shape V-Shape

S1 tkd = —12v' Vi tk,j = )erf (@Vkl )‘
1+e kd
S2 tra= —1, V2 by = )mnh(vk’d)
1+e Vhd
S3 tgg = —1 V3 tyy = /Y
1+eiv24 v l+(v’:d)2
S4 tyg = iv, V4 tyg = )%arct(m (%Vk/d)‘
.
1+e 3

Table 1: Transfer Functions [62].

Analyzing, functions having less smoothness have a smaller range of input
values Vk/d providing non-extreme values of the output interval [0,1] than
functions having more smoothness. For example, S7 is less smoothness than
So. Based on S; formulation, if we consider Vk;d equaling 2.3 and -2.3, we get
a trg value of 0.99 and 0.01, respectively. On the other hand and based on Ss
formulation, the same t;, values are obtained by assuming Vk/d equaling 4.6
and -4.6, respectively. Thus, the range of input values of Sy providing non-
extreme values is greater than the range of S7. The motivation of including
both groups of transfer functions is as follows. A high velocity implies that
the cat is away from the optimal solution and a low velocity implies that the
cat is close to the optimal solution. Based on this velocity, the strategy of
both groups of transfer function is different. S-shape functions cause that
cats with a low velocity have associated a low mutation probability, while
cats with a high velocity have associated a high mutation probability. On
the contrary, v-shape functions cause that the mutation probability be high
for cats with low and high velocities.

7.3 Discretization Techniques

Discretization functions transform real values into binary ones. Such func-
tions are needed because SCP is represented by assuming a binary scope,
while the BCSO algorithm considers movements in the set of real numbers.
As stated before, we consider five discretization functions, which were
introduced by Crawford et al. [40]. Such functions are in Table 2, where
(zF) is the logical complement of a proposition, « is a random number in the
interval [0,1], and zf__, is the value of the j-th cell of the best solution.
Finally, the motivation of including the five discretization functions is
because all they offer different capabilities to the search strategy. As a way
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D; : (Roulette)
p[Xkd] = E:kfi,f if a < f,kd(t + 1),

j=17i
Xpa(t+1) =

0 otherwise

D- : (Complement)

Xpa(t+1) = {

(Xka) if a < tra(t+1),
0 otherwise

D3 : (Set the best)
Xpest,a i a <tra(t+1),

Xpalt + 1) =
0 otherwise
D, : (Standard)
1 if()tgtkd(t+1),
Xkri<t + 1) =
{ 0 otherwise

Dj : (Static probability)
Xka if tra(t+1) <a,

Xpa(t+1) =< Xpesta if o <tra(t+1) < 3(1+a),

1 if 2(14 a) < tralt +1).

Table 2: Discretization functions.

of identifying such abilities and based on the concepts of explanation and ex-
ploitation, we could define the following indicative orders from best to worst:
D3, D1, Ds, D, 2, D4 according to exploitation ability and Dy, Dy, D5, D1, D3
according to exploration ability. Note that both rankings are reversed. Craw-
ford et al. [40] checked that the behavior of such discretization functions was
different. However, they did not perform any formal study of the difference
observed.
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8 Experimental methodology

We apply the CSO algorithm for solving 65 instances from the known bench-
mark proposed by Beasley in [10] and shown in Table 3. As stated before,
the CSO algorithm is a Swarm Intelligence Algorithm from continuous opti-
mization, which was adapted to discrete optimization. The original authors
considered a binarization technique, which assumed the discretization func-
tion SS9 and the transference function D3, both described in Section 7. Now,
we solve the instances by assuming 40 different binarization techniques, i.e.
five discretization functions and eight transference functions.

Instance Set Number of m n Cost range Density (%) Optimal
instances solution
4 10 200 1000 [1,100] 2 Known
5 10 200 2000 [1,100] 2 Known
6 5 200 1000 [1,100] 5 Known
A 5 300 3000 [1,100] 2 Known
B 5 300 3000 [1,100] 5 Known
C 5 400 4000 [1,100] 2 Known
D 5 400 4000 [1,100] 5 Known
NRE 5 500 5000 [1,100] 10 Unknown
NRF 5 500 5000 [1,100] 20 Unknown
NRG 5 1000 10000 [1,100] 2 Unknown
NRH 5 1000 10000 [1,100] 5 Unknown

Table 3: Description of the dataset.

We perform 30 independent runs for each instance and binarization tech-
nique, being 30 a widely accepted values for getting statistical conclusions
[55]. The stop condition considered is the same for all instances, being based
on the number of evaluations. This type of criterion is fairer than others,
such as elapsed time, which depends on the machine considered. The maxi-
mum number of evaluations assumed is 40000 for the instances having known
optimal solutions and 5000 for all other. These values were experimentally
obtained and are enough for analyzing the behavior of the algorithms.

As a quality metric, we consider the Relative Percentage Deviation (RPD),
quantifying how close a solution from the optimal one is. That is calculated
as

RPD = (Zas = 2ot 109 (18)
Zopt

where Zg,4 is the average value from the distribution of 30 samples and
Zopt 1s the optimal solution provided by the benchmark. The distribution of
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30 solutions for each instance and binarization technique is analyzed through
the widely accepted statistical methodology shown in Figure 2 [55] to con-
clude if the differences observed are significant.

Before running the experiments, the CSO algorithm was configured. To
this end and for each parameter of the algorithm described in Section 6
we define a range of values to study and a default configuration. Then,
10 independent runs are performed for each configuration of the parameter,
instance, and binarization technique, resulting 1200 run for each value of pa-
rameter. Then, the configuration providing the best performance on average
is selected. Next, another parameter is selected so long as all of them are
fixed. Table 4 shows for each parameter the range of values considered and
the configuration selected.

Tests for normality
(Shapiro—Wilk _and Kolmogorov—Smirnov-Lilliefors)

At least one of them is not The two samples are
normally distributed normally distributed
[ 1
| Samples are matched? | | Samples are matched? |
Yes No Yes No
Wilcoxon- . .
Wilcoxon X Paired t-test Unpaired t-test
Mann-Whitney

Figure 2: Statistical methodology.

Note that we configure the algorithm splitting the benchmark in five
groups according to the complexity of the instances. The idea is to con-
sider the best possible configuration for each case. As shown in Table 4 the
configurations are significantly different for each group.
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Name Parameter  Instance Set Selected Range

4,5 and 6 100
Number A and B 50
of Cats C Cand D 30 [10,20....,1000]

NRE and NRF 25
NRG and NRH 20

4 and 5 0.7
Mixture A and B 0.65
Ratio MR C and D 0.5 [0.1,0.2,..,0.9]

NRE and NRF 0.5
NRG and NRH 0.5

4 and 5 5
Seeking Aand B 5
Memory Pool ~ SMP C and D 10 [5.10....,100]

NRE and NRF 15
NRG and NRH 20

4 and 5 0,97
Probabily Aand B 0,93
of Mutation PMO C and D 0,9  [0.10,0.97,...,1.00]
Operation NRE and NRF 1
NRG and NRH 1
4and 5 0,001
Counts of A and B 0,001
Dimension to CDC C and D 0,002 10.001,0.01,..,0,9]
Change NRE and NRF 0,002
NRG and NRH 0,01
Weight w All 1 [0.1,0.25...,5]
Factor ¢; o All 1 [0.1,0.25....5]

Table 4: Parametric swap.
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9 Results

Tables 6 and 7 show the average RPD for each instance and binarization
technique, where lower (better) RPD values are shaded. Note that Table 6
includes s-shape transfer functions and Table 7 includes v-shape ones. In
these tables, some binarization techniques seem to offer better performance
than others for a given instance. However, we do not know if the differences
observed are significant.

To this end, we first study if the data follow a normal distribution through
Kolmogorov-Smirnov-Lilliefor’s [61] and Shapiro-Wilk’s [75] tests, assuming
the hypothesis Hy: data follow a normal distribution and Hi: otherwise.
We obtained p-values lower than 0.05 for all the cases. Hence, we cannot
assume that the data follow a normal distribution. Thus, we should consider
the median as the average value. Note that Tables 6 and 7 where generated
after performing this study and then the median was assumed.

Next, we study if there are significant differences among the binarization
techniques. As samples are independent and data do not follow a normal
distribution, we assume the Wilcoxon-Mann-Whitney’s [74] test with the
hypothesis. Hy : RPDyp < RPD.g4 Yo, € D1,Ds...,Ds (discretization
functions) and Vy 4 € S1,52,..., Vs (transfer functions), where RPD, de-
notes the median RPD for a given combination of a and b. The RPD.4
definition is similar.

We analyze the p-values obtained by considering a significance level of
0.05. Based on this analysis and for each instance set, Table 8 shows the
percentage of cases in which a binarization technique offers the best signif-
icant performance compared to all others. In this table, better values are
shaded from a darker to a lighter tone, i.e., from better to worse behavior.
Analyzing this table and starting with the instances with known optimal
solutions, we reach that for the instance.

Analyzing this table and starting with the instances with known optimal
solutions, we reach that for the instance set 4 the best combination is (D,
V3). For the set 5 are (D3, Sy), (D3, V3), and (D2, Vy). For the set 6 is (Ds,
Vi). For the set A is (D2, V3). For the set B is (D3, S2). For the set C is
(Dy, V4). For the set D is (Dq, S2). On average term, the best combination
is (D5, V3), followed by (D, V3) and (D3, V3).

Regarding instances with unknown optimal solutions, we reach that for
the set NRE the best combination is (D4, V4). For the set NRF is also (Dy,
Vi). For the set NRG is (D, S3). For the set NRH is also (Dp, S3). On
average term, the best combination is (D1, S3), followed by (Dy4, V) and
(D2, S3).
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As aresult, we note that v-shape transfer functions give a better behavior
for solving small and medium problems, i.e., the instance sets with known
optimal solutions and the two smaller sets with unknown optimal solutions.
On the other hand, s-shape transfer functions give a better behavior for the
two remaining sets with unknown optimal solutions, the largest ones.

Regarding discretization functions, we do not observe any relevant trend.
However, we note that it is crucial to select the adequate combination of both
transfer and discretization functions to ensure that the solving algorithm
reaches its full potential.

As a proof of this, we reach that v-shape transfer functions provide a
good behavior for solving small and medium instances, e.g., for the set NRE.
However, if we consider the combination (D5, Vy) instead of the before men-
tioned (Dy, Vy), the percentage of cases providing the best performance is
0.00% instead of 30.77%, meaning a bad behavior.

In terms of RPD, we study how affects using an adequate binarization
technique. Table 5 compares the results obtained through the original BCSO
to the binarization techniques analyzed in this work. In this table, dif f,p4
is the difference between the RPD value obtained from the best binarization
technique in this work, rpd field, and the original BCSO, rpd (original) field.
Analyzing this table, we note that the algorithm provides a clear better
behavior when an adequate binarization technique is assumed. This way,
the RPD value decreases up to 26.19% for the instance set 4, 16.18% for the
instance set 5, 10.23% for the instance set 6, 8.32% for the instance set A,
10.25% for the instance set B, 6.56% for the instance set C, 6.37% for the
instance set D, 12.43% for the instance set NRE, 5.90% for the instance set
NRF, 5.74% for the set instance NRG, and 4.55% for the instance set NRH.
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Inst. Trans. Discr. Zopt Zbest Zavg rpd rpd(default) diffrpfd Inst. Trans. DiSCr. Zopt Zbest Zavg rpd rpd(original) dinT

4.1 S Dy 429 432 44007  2.58 6.44 3.86 C.1 Vi Ds 227 232 23430 322 3.39 0.17
4.2 Vi Dy 512 517 529.87 3.49 6.22 2.73 C.2 Va Dy 219 225 22907 4.6 543 0.83
4.3 Vi Ds 516 531 F 7.13 7.93 0.80 C.3 S1 Dy 243 251 264.07 B.67 9.42 0.75
4.4 Sa Dy 494 496 51023 3.29 3.90 0.61 C4 S D3 219 231 237.70 8.54 8.86 0.32
4.5 Sy Ds 512 514 52323 219 2.75 0.56 C.5 Vi Dy 215 222 22860 6.33 6.47 0.14
4.6 Va Dy 560 560  566.10 1.09 124 0.15 Avg. 6.27 6.71 0.44
4.7 Vs Dy 430 434 43753 1.75 2.18 0.43 D.1 Sy Dy 60 60 64.03  6.72 7.33 0.61
4.8 Vi Ds 492 494 51107 3.88 4.98 1.10 D.2 Sy Ds 66 69 69.70  5.61 6.06 0.45
4.9 4 Ds 641 660 674.37 5.21 6.04 0.83 D.3 S Dy 72 76 78.50  9.03 9.44 0.41
4.10 V3 Dy 514 518 52493 213 2,63 0.50 D.4 S3 Dy 62 63 65.37  5.43 5.91 0.48
Avg. — — — — — 3.27 4.43 1.16 D.5 Sy Dy 61 64 64.83  6.28 6.56 0.28
5.1 Vi Dy 253 258 261.54  3.37 3.77 0.40 Avg. 6.61 7.06 0.45
5.2 V3 Dy 302 306 31330 3.74 5.11 1.37 NRE.1 S1 Dy 29 30 3.45 3.45 0.00
5.3 Sy Dy 226 229 23273 2.98 3.58 0.60 NRE.2 Va Dy 30 34 13.33 15.56 223
5.4 Vs Ds 242 242 24513 1.29 1.49 0.20 NRE.3 Vi Dy 27 29 18.02 23.21 5.19
5.5 S1 Dy 211 216 21943  4.00 431 0.31 NRE.4 Vi Dy 28 32 16.9 17.86 0.96
5.6 Vi Dy 213 217 22341 4.89 6.12 123 NRE.5 S D 28 30 7.14 7.14 0.00
5.7 Va Dy 293 294 30340 3.55 4.60 1.05 Avg. 11.77 13.44 1.68
5.8 Vi Dy 288 294 305.70 6.15 6.42 0.27 NRF.1 S1 Dy 14 17 17.00 2143 21.43 0.00
5.9 Sa Ds 279 280 28042  0.51 1.49 0.98 NRF.2 S D3 15 16 17.70 18.00 20.00 2.00
5.10 Sy D3 265 271 27480 3.7 3.92 0.22 NRF.3 S1 Dy 14 17 17.00 2143 21.43 0.00
Avg. — — — — — 3.42 4.08 0.66 NRF.4 Vi Dy 14 15 16.87 2048 25.00 4.52
6.1 Vo Dy 138 143 14620 5.94 6.57 0.63 NRF.5 S Dy 13 16 16.00  23.08 23.08 0.00
6.2 /3 Dy 146 146 14913 215 2.74 0.59 Avg. — — — — — 20.88 22.19 1.30
6.3 Vs Dy 145 148 15177  4.67 5.15 0.48 NRG.1 S1 Dy 176 191 193.10 9.72 10.3 0.58
6.4 Vi D3 131 133 13440 26 2.65 0.05 NRG.2 S3 Dy 154 165 166.43 8.07 8.79 0.72
6.5 i Ds 161 165 168.07 4.39 4.87 0.48 NRG.3 Sy Dy 166 182  182.00 9.64 9.92 0.28
Avg. 3.95 4.40 0.45 NRG.4 2 Dy 168 180 182.87 8.85 9.15 0.30
A1 Vi Dy 253 271 27467 8.56 9.16 0.60 NRG.5 S3 Dy 168 183  183.00 8.93 9.80 0.87
A.2 S3 Dy 252 250  264.27 4.87 5.16 0.29 Avg. — — — — — 9.04 9.59 0.55
A3 4 Dy 232 238 242.53 4.54 5.19 0.65 NRH.1 S3 Dy 63 69 71.00 12.7 15.19 2.49
A4 Sy Dy 234 241 24490 4.66 5.07 0.41 NRH.2 S1 Dy 63 67 67.00  6.35 6.35 0.00
A5 Vo Dy 236 237 23847 1.05 127 0.22 NRH.3 S1 Dy 59 69 69.00 16.95 16.95 0.00
Avg. 4.74 517 0.43 NRH.4 Sa Ds 58 64 66.73  15.06 15.52 0.46
B.1 S1 Ds 69 70 7370 6.81 8.79 1.98 NRH.5 S1 Dy 55 61 61.00 10.91 10.91 0.00
B.2 S Dy 76 80 83.80 10.26 10.26 0.00 Avg. — — — — — 12.39 12.98 0.59
B.3 S3 Ds 80 80 8227  2.83 3.50 0.67
B.4 V3 Dy 79 81 83.63 5.86 6.33 0.47
B.5 Si D, 2 73 73.00 139 1.39 0.00
Avg. 5.43 6.05 0.62

Table 5: Comparing results.
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Discr. D, D Dg Dy Dy | Dy D Dy Dy Dy | Dy Dy Dg Dy Ds | Dy Dy Dy Dy Ds

Trans. Sy | Sz | S | Sy

Instance

4.1 358 280 284 380 3.24 | 258 274 283 634 685 301 311 593 392 370

4.2 511 411 477 380 471 462 140 883 600 516 5.5 814 503 371

4.3 795 731 78 754 8.09 7.71 790 1152 7.95 741 828 1072 7.86 851

4.4 415 445 526 516 3.62 128 144 732 4.22 671 377 391

4.5 277 278 244 246 255 255 281 4.36 2.40 419 257 242

4.6 173 233 124 L 1.61 1.32 150 3.92 1.68 492 143 130

4.7 2.09 2.05 2.36 229 2.19 224 2.09 4.00 2.52 4.29 2.07 2.22

4.8 565 407 500 495 4.63 5.22 478 864 5.09 948 563 573

4.9 582 582 554 540 5.83 5.60 528 813 5.46 697 537 543

4.10 252 272 279 215 261 257 251 451 2.83 540 272 253

5.1 3.62 441 397 379 416 3.60 122 6.23 149 572 353 3.65

5.2 148 425 462 458 412 123 118 6.56 377 | 442 658 403 424

5.3 372 431 388 383 3.39 2.98 342 6.14 3.39 361 3.94

5.4 1.58 1.60 1.46 1.50 1.47 1.45 1.54 147 1.97 1.56 1.38 1.51

5.5 449 409 400 419 433 | 425 127 404 537 4.28 428 431

5.6 624 599 570 665 599 | 546 6.12 629 9.6 6.08 640 507 518
5.7 143 482 445 423 437 | 455 145 361 9.62 123 178 398 501
5.8 672 630 6.60 662 6.82 | 7.06 6.82 7.03 1104 6.69 640 730 682
5.9 0.61 1.18 1.46 0.56 0.62 0.58 0.62 0.72 1.95 1.18 0.61 0.62 1.15
5.10 405 411 392 400 436 | 3.90 123 405 558 3.95 370 423 4.09
6.1 710 708 700 715 7.00 | 6.67 6.81 645 1174 6.62 746 732 657
6.2 3.07 295 204 293 297 | 274 274 274 527 3.02 274 274 295
6.3 494 531 521 510 506 | 522 5.10 526 6.90 5.13 582 487 5.6
6.4 265 293 280 300 293 | 2.90 3.03 288 3.92 3.23 300 293 3.8
6.5 484 524 501 464 507 | 5.09 5.16 513 6.31 1.93 520 489 470
Al 887 885 885 000 9.14 | 9.16 9.18 945 | 874 10.67 9.16 9.10 888 9.8
A2 503 516 520 520 5.00 | 5.38 517 521 | 487 6.19 5.05 513 512 524
A3 513 547 486 468 547 | 517 501 501 | 5.46 7.82 5.26 170 477 529
A4 491 483 526 496 537 | 4.99 466 491 | 516  6.04 5.0 541 491 5.07
A5 1.27 1.26 1.12 113 117 1.26 1.27 1.12 1.21 1.36 1.23 1.16 1.19 1.26
B.1 841 884 758 821 | 6.8L 783 870 | 845 11.64 8.45 836 802 8.16
B.2 11.49 1149 12,02 11.71 11.93 | 12.46 1211 11.58 | 11.67 15.04 11.40 | 11.40 1421 1250 11.45 11.45
B.3 354 329 346 400 379 | 3.75 354 383 | 325 646 283 404 600 387 3.67

B.4 633 633 633 633 6.33 | 6.33 629 633 | 633 7.26 633 | 633 705 633 633

B.5 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139

c1 338 325 3.32 333 3.30 | 3.38 326 3.36 | 3.32 482 342 | 327 476 332 345

c.2 513 510 505 504 533 | 518 531 484 | 5.08 683 525 | 463 705 508 507

c.3 9.16 | 867 920 890 9.11 | 9.27 940 981 | 9.01 1217 947 900 894 | 879 1272 9.57 9049

C.4 887 881 | 854 001 919 | 9.2 886 939 886 [1L71 1105 933 927 871 | 921 1120 906 9.68

c5 696 718 T.I8 712 T2 | 6.79 647 688 707 | 957 949 749 716 688 | 7.09 856 681 7.07

D.1 833 864 704 767 864 | 9.01 733 897 767 | 914 778 833 877 833 | 756 767 833 672

D.2 6.06 6.06 6.06 606 6.06 | 571 6.06 6.06 6.06 | 6.06 571 606 571 6.06 | 6.06 606 6.06 6.06

D.3 9.26 9.03 9.31 9.21 9.07 9.12 9.44 9.12 9.72 | 10.09 9.72 9.72 9.72 9.72 9.40 9.21 9.35 9.26

D.4 613 624 631 651 6.13 | 581 591 597 597 | 737 640 | 543 613 586 | 6.08 618 559 6.02

D.5 6.99 6.67 699 661 6.83 | 6.50 6.56 | 628 650 | 770 7.05 716 645 672 | 672 716 689 639
NRE.l [345 | 345 | 345 | 345 | 345 | 345 3.45 345 345 345 345 345 345 345 345 345 345 345
NRE.2 14.56 15.00 14.67 15.11 15.00 | 14.89 15.56 15.33 15.00 | 15.89 15.00 14.56 15.22 14.78 | 15.11 14.78 15.00 15.11 15.56
NRE.3 2321 2358 21.36 22.96 | 23.95 2321 2420 2358 |23.95 21.85 2284 22.10 23.70 [ 2346 23.09 2321 2272 2272
NRE.4 1786 17.86 17.86 17.86 | 17.86 17.86 17.86 17.86 | 17.86 17.86 17.86 17.86 17.86 | 17.86 17.86 17.86 17.86 17.86
NRE.S |74 [ 714 | 7.4 714 714 714 714 704 714 714 714 (704 714 714 714 714 | 704 714
NRF.1 2143 2143 2143 2143 2143 2143 2143 2143 2143 2143 2143 2143 2143 2143 2143 2143 2143 2143
NRF.2  20.00 20.00 18.00 20.00 | 20.00 2000 1844 20.00 | 20.00 20.00 20.00 20.00 20.00 | 20.00 20.00 20.00 20.00 20.00
NRF.3 [21.43 2143 2143 2143 2143 2143 2143 2143 20143 2143 20143 2143 2143 20143 2143 2143 2143 2143
NRF.4 23.81 23.33 21.43 21.76‘25.[}0 25.00 21.43 2»1.29‘23.81 22.86 22.86 24.05 21.52‘2»(.52 24.05 22.62 24.05 23.10
NRF.5 [23.08 23.08  23.08 23.08 23.08 23.08 23.08 23.08 23.08 23.08 23.08 23.08 23.08 2308 23.08 2308 23.08 23.8
NRG.1 972 1036 10.28 1042 | 985 1030 1032 1052 | 9.79 10.00 10.30 1045 10.27 | 10.32 1051 10.35 1034 10.31
NRG.2 881 861 866 8.66 | 8.77 879 861 874 [ 807 816 881 879 861 | 879 848 864 887 864
NRG.3 994 1004 9.98 9.86 | 9.96 992 9.90 990 | 9.64 | 9.64 994 1006 10.00 | 10.00 994 992 9.90 9.94
NRG.4 915 925 913 9.09 | 9.01 915 927 911 | 889 915 952 901 907 | 913 921 917 952 9.1l
NRG.5 1008 9.88 0.92 9.84 | 9.04 9.80 9.76 10.06 [ 893 10.00 9.70 9.88 9.96 | 9.92 10.00 10.06 9.66 9.76
NRH.1 1519 1487 14.92 15.19 | 14.97 1519 1497 1587 [1270 1481 15.08 1481 1471|1534 1519 1471 1481 1534
NRH.2 [ 635 | 635 | 635 635 6.35 635 635 635 635 635 635 635 635 635 635 635 635 635
NRH.3 1695 16.95 16.95 16.95 16.95 1695 1695 16.95 1695 1695 16.95 1695 16.95 16.95 1695 16.95 16.95 16.95
NRH.4 1529 1575 1580 15.69 | 15.20 15.52 1552 15.06 1552 1575 1598 1552 15.46 | 15.81 15.63 1569 15.11
NRH.5 1091 1091 10.91 10.91  10.91 1091 1091 1091 1091 10.91 10.91 1091 10.91 10.91 1091 1091 10.91

Table 6: Average RPD for each instance and binarization technique: S-shape
transference functions.

24



Discr. D; D, Ds | Dy D D3y Dy Dy | Dy Dy Dy Dy Dy | Dy Dy Dy Dy Ds
Trans. ‘ Va ‘ Vs ‘ Vi

Instance

4.1 294 | 301 3.08 328 260 364 3.8 295 357

4.2 4.18 518  4.52 488 3.95 4.83 4.15 5.02 4.11

4.3 767 | 740 751 7.20 755 864 8.12 761 781

4.4 379 | 387 422 414 114 392 164 1410 370

4.5 232 | 249 2.42 291 258 2.81 325 273

4.6 123 | 157 1.09 155 140 1.39 170 132

4.7 244 | 242 2.27 1.75 218 2.47 2.50 211

4.8 515 | 562 156 528 419 5.35 561 ATL

4.9 5.61 | 5.62 5.60 581 565 5.93 540 5.52

4.10 282 | 3.05 2.85 244 213 2.92 281 238

5.1 457 | 3.99 3.72 3.63 387 3.47 386 3.83

5.2 119 | 4. 132 448 138 414 107 137 393

5.3 345 | 373 3.60 329 112 332 3.55 35 322

5.4 1.57 1.45 1.63 1.46 1.54 1.53 1.57 147 1.52

5.5 130 | 427 447 425 150 445 127 147 415

5.6 593 | 560 6.06 6.79 523 592 6.10 582 570

5.7 182 |[355 392 433 177 462 162 3.88 127

5.8 652 | 657 6.33 698 6.61 647 6.70 6.70 [v[5pt]6.15  6.68
5.9 055 | 058 072 123 072 066 1.31 058 108 038
5.10 142 | 426 394 420 100 391 116 104 410 396
6.1 6.76 | 7.03 594 6.79 647 652 7.39 705 695 749
6.2 295 | 274 3.03 310 215 274 2.94 274 306 274
6.3 526 | 522 476 4.99 517 487 5.20 474 508 543
6.4 3.05 | 305 321 310 305 275 3.05 260 272 290
6.5 439 470 507 511 193 5.00 1.99 145 501 501
Al 9.01 | 920 920 9.03 881  9.06 8.92 883 8885 888
A2 521 | 511 520 517 528  5.16 5.08 520 513 526
A3 524 | 513 510 516 191 [ 454 5.70 599 516 565
Ad 496 | 487 528 520 5.28 499 481 510 486 5l
A5 1.33 1.19 117 1.05 1.34 1.05 1.24 1.09 1.27 1.27
B.1 787 | 78T 826 816 855 807 836 855 ¥ 39 841 821 812
B.2 12.15 | 1211 10.83  11.40 12,50 11.71 10.83 11.93 11.18 | 10.75 11.54 11.40 11.62 10.79
B.3 133 | 350 296 3.71 396 338 350 375 408 375 308 | 283 346
B.4 633 | 633 662 633 6381 633 (586 633 633 633 658 633 633
B.5 139 139 139 139 139 139 139 139 139 139 139 139 139
c1 322 325 339 330 345 352 338 330 3.52 337 331 330 341
c2 514 | 460 548 473 514 481 524 521 562 189 519 513 507
ca3 937 | 968 995 9.38 931 936 956 9.73 9.44 886 957 881 048
ca4 942 | 850 924 963 936 924 912 950 9.09 892 006 932 878
c5 701 | 681 715 730 643 682 699 6.64 693 700 713 | 633 674
D.1 789 | 744 678 7.28 772 759 783 778 88T 733 700 778 794
D.2 6.06 | 606 6.06 6.06 6.06 606 606 571 571 606 606 606  6.06
D.3 9.21 940 9.07 9.21 9.72 9.21 9.17  9.21 9.21 9.40 9.31 9.72 9.72
D.4 6.08 | 640 6.02 645 597 602 6.8 618 608 620 602 661 608
D.5 672 | 683 678 694 691 645 636 672 672 639 667 683 667
NRE.1 345 345 345 345 345 345 345 345 345 345 345 345 345 345
NRE.2 15.33 | 13.33 15.00 15.11 15.11 14.89 15.67 14.67 15.44 | 15.11 15.11 15.33 14.89 15.44
NRE.3 2259 | 23.95 2235 22.72 2160 2259 2247 2272 2235 | 18.02  23.09
NRE.4 17.86 | 17.86 17.86 17.86 1786 17.86 17.86 17.86 1786 16.90  17.86
NRE.5 74| T4 714 T 714 TM T T T4 T Tl
NRF.1 2143 2143 2143 2143 2143 2143 2143 2143 2143 2143 2143
NRF.2 20.00 | 2000 20.00 20.00 | 20.00 20.00 2000 20.00 2000 1822 20.00
NRF.3 2143 2143 2143 2143 2143 2143 2143 2143 2143 2143 2143
NRF.4 23.81 ‘ 22.62 24.05 20.48 ‘ 23.33 2357 2429 22.86 23.10 21.43 23.81
NRF.5 23.08 2308 23.08 23.08 23.08 23.08 2308 2308 23.08 2308  23.08
NRG.1 10.21 [ 1036 10.28 10.23 1030 1051 1045 10.19 1042 1036 10.34
NRG.2 844 | 887 879 883 892 887 9.8 870 896 9.05 890
NRG.3 10,02 | 991 1002 9.94 994 10.00 9.95 9.96 1006 10.00  9.96
NRG.4 921 | 921 913 921 9.07 909 9.19 899 927 913 929
NRG.5 9.82 | 990 10.00 10.14 992 096 9582 9.08 1004 1014 994
NRH.1 15.03 | 1529 15.08 14.87 [ 1524 14.97 1476 1545 14.92 | 1492 1513 1455 1513 14.92
NRH.2 635 635 635 635 6. 635 635 635 6.35 635 635 635 635 635 635
NRH.3 1695 1695 16.95 1695 16.95 16.95 1695 16.95 1695 1695 16.95 1695 1695 16.95 1695  16.95
NRH.4 15.52 | 1580 1502 1552 | 1552 1552 1603 1580 1552 | 1552 1552 1523 1534 1580
NRH.5 10.91 1091 1091 1091 10.91 10.91 10.91 10.91 1091 10.91 10.91 1091 1091 10.91 10.91 10.91

Table 7: Average RPD for each instance and binarization technique: V-shape
transference functions.
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Instance Set

4 5 6 A B C D Average NRE NRF NRG NRH  Average

Discr. Trans.

D; 1.87% 2.62% 2.46% 3.03% 1.97% 2.47% 2.08% 2.33% 3.85% 0.00% 4.55% 2.36% 3.35%
D 3.79% 2.06% 1.36% 2.90% 2.37% 2.68% 2.08% 2.52% 0.38% 0.69% 1.22% 0.39% 0.88%
D3 S1 2.72% 2.06% 1.86% 2.64% 2.50% 2.88% 1.77% 2.33% 7.69% @ 20.49%  0.78% 0.39% 5.11%
Dy 2.99% 2.62% 1.61% 3.03% 1.97% 2.88% 2.49% 2.56% 0.00% 0.00% 0.44% 1.97% 0.53%
Ds 2.08% 2.47% 1.61% 2.11% 4.34% 2.57% 2.28% 2.39% 0.38% 0.00% 1.11% 0.39% 0.70%
D, 3.15% 2.77% 3.22% 1.711% 2.37% 2.47% 5.50% 3.06% 0.77% 0.00% 4.88% 3.94% 3.29%
Do 0.11% 0.00% 0.08% 0.00% 0.26% 0.10% 2.28% 0.33% 0.38% 0.00% 12.32% 3.15% 7.05%
D3 Sz 1.60% 1.54% 4.15% 1.84% 5.39% 3.30% 2.39% 2.59% 0.00% 0.00% L.55% 0.79% 0.94%
Dy 2.40% 2.93% 3.05% 3.95% 2.11% 2.57% 3.01% 2.82% 0.00% | 22.57%  2.33% 1.97% 5.34%
Ds 3.47% 4.01% 3.22% 3.29% 1.97% 2.47% 1.35% 3.05% 0.38% 0.00% 0.44% 2.36% 0.65%
D, 3.15% 2.77% 3.14% 3.82% 2.24% 1.44% 0.00% 2.48% 0.00% 0.00%  17.54% 16.93%  11.80%
Dy 0.11% 0.00% 0.00% 0.13% 0.00% 0.00% 4.15% 0.51% 5.00% 1.39% | 12.10%  1.18% 7.57%
D3 S3 3.21% 2.52% 3.06% 2.24% 2.37% 2.27% L77% 2.59% 3.85% 0.35% 1.55% 0.39% 1.53%
Dy 2.88% 2.62% 1.27% 1.98% 2.37% 2.37% 4.36% 2.58% 2.69% 0.00% 1.00% 1.97% 1.23%
Ds 1.98% 2.06% 1.69% 1.98% 4.21% 2.68% 1.04% 2.13% 1.54% 0.00% 1.22% 2.76% 1.29%
D; 2.30% 2.57% 3.64% 2.50% 2.76% 3.81% 2.18% 2.77% 0.38% 0.00% 1.00% 0.39% 0.65%
D 027% 0.00% 0.08% 0.26% 0.00% 0.21% 1.66% 0.31% 1.54% 0.00% 2.00% 1.97% 1.59%
D3 Sy 2.19% 4.16% 2.711% 1.98% 1.97% 2.57% 2.60% 2.77% 0.38% 2.43% 1.66% 3.15% 1.82%
Dy 2.94% 2.88% 3.31% 3.43% 2.37% 2.06% 3.12% 2.89% 0.38% 0.00% 2.00% 0.39% L17%
Ds 3.15% 2.26% 1.69% 1.711% 2.89% 1.96% 5.09% 2.67% 0.00% 0.00% 2.33% 4.12% 1.94%
D; 2.51% 3.34% 3.05% 4.22% 2.11% 3.71% 1.56% 2.92% 0.38% 0.69% 2.00% 7.48% 2.35%
D: 2.08% 1.85% 3.31% 4.08% 1.97% 2.06% 1.97% 2.35% 1.15% 0.00% 1.11% 3.94% 1.35%
D3 Vi 2.24% 2.72% 1.61% 2.24% 2.37% 2.27% 2.39% 2.30% 0.77% 1.39% 1.78% 0.39% 1.35%
Dy 3.90% 2.93% 1.78% 1.84% 2.63% 3.71% 3.53% 3.02% 0.00% 0.00% 3.44% 1.18% 2.00%
Ds 2.56% 2.57% 2.46% 1.71% 2.24% 3.19% 2.18% 2.47% 0.38% 0.00% 3.11% 1.97% 2.00%
Dy 2.30% 3.55% 3.39% 2.77% 2.11% 3.81% 2.80% 2.99% 15.00% 0.69% 0.44% 1.97% 2.94%
D2 2.35% 2.11% 3.73% 1.98% 3.82% 2.27% 2.28% 2.57T% 1.15% 0.00% L11% L57% 1.00%
D3 V2 2.56% 1.80% 1.69% 3.95% 1.71% 2.78% 1L.77% 2.25% 0.38%  11.81%  1.44% 1.18% 2.99%
Dy 3.10% 3.03% 1.69% 3.03% 2.11% 2.27% 2.39% .62% 3.85% 0.00% 0.44% 0.79% 0.94%
Ds 2.72% 2.47% 3.90% 2.37% 3.68% 2.27% 4.78% 3.06% 3.08% 0.00% 4.33% 1.97% 3.05%
Dy 4.11% 1.95% 3.47% 2.24% 1.18% 3.09% 0.52% 2.57% 5.00% 0.69% 0.55% 1.97% 1.47%
Do 2.88% 2.57% 3.90% 5.53% 1.97% 2.78% 2.80% 3.09% 0.77% 0.00% 0.44% 1.97% 0.65%
D3 Vs 2.30% 4.16% 2.63% 1.84% 3.16% 2.47% 3.12% 2.92% 1.92% 0.00% 0.89% 0.39% 0.82%
Dy 2.08% 2.57% 1.53% 3.29% 1.97% 3.09% 5.30% 2.70% 2.69% 1.74% 1.33% 0.39% 1.47%
Ds 2.94% 2.98% 4.07% 2.50% 2.50% 2.06% 4.67% 3.12% 0.00% 0.69% 1.22% 2.36% L12%
D, 3.26% 1.75% 1.86% 1.98% 3.95% 2.06% 0.83% 2.25% 0.77% 0.00% 2.33% L57% 1.59%
D, 1.50% 4.16% 1.78% 2.11% 3.42% 2.78% 2.28% 2.62% 0.38%  11.11%  0.67% 1.97% 2.58%
D3 Vi 2.35% 3.03% 5.76% 3.29% 2.63% 2.37% 2.08% 3.06% 1.92% 0.00% 0.33% | 11.42% 2.17%
Dy 2.67% 2.77% 2.12% 2.64% 4.21% 4.84% 1.04% 2.82% 30.77% | 23.26%  0.44% 3.54% 9.40%
Ds 3.21% 2.77% 3.06% 1.84% 3.82% 2.37% 0.52% 2.62% 0.00% 0.00% 0.55% 0.39% 0.35%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%  100.00%

Table 8: Statistical analysis. Percentage of cases in which a binarization
technique offers the best significant performance compared to all others.
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10 Conclusion

In this work we use a binary version of cat swarm optimization, to solve SCP
using its column based representation. In binary optimization problems the
position vector is binary. This causes a significant change in BCSO with
respect to CSO with real numbers. In fact, in BCSO in the seeking mode
the slight change in the position takes place by introducing the mutation
operation. The interpretation of velocity vector in tracing mode also changes
to probability of change in each dimension of position of the cats.

The proposed BCSO was implemented and tested using 65 SCP test
instances from the OR-Library of Beasley. In addition, five discretization
functions and eight transfer functions were combined and tested, resulting
forty tracing modes, with the purpose of improving the results obtained with
the original behaviors. These were analyzed using RPD and a statistical
analysis, to demostrate on a solid basis the best combination.

We could see the premature convergence problem, a typical problem in
metaheuristics, which occurs when the cats quickly attain to dominate the
population, constraining it to converge to a local optimum. For future works
the objective will be make them highly immune to be trapped in local op-
tima and thus less vulnerable to premature convergence problem. Thus, we
could propose an algorithm that shows improved results in terms of both
computational time and quality of solution.

We find significant performance differences according to the binarization
approach assumed when an STA (the BCSO) is adapted to the discrete scope.
Hence, it is crucial to select an adequate binarization approach. Otherwise, it
is possible that the algorithm does not reach its full potential as occurs with
the original BCSO compared to the recommended configurations obtained
in this work. As a direct result of this statement, it is possible that other
algorithms could be improved by studying other binarization approaches.

Comparing with previous work, for most instances the combinations gave
better results were the transfer functions S and Ss with the Roulette Wheel
and Complement method. Moreover, it could also better solutions using
different parameter setting for each set of instances. As can be seen from
the results, metaheuristic performs well in all cases observed according to
old RPD works [26].
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But, we did not find any relevant trend, which leads us to recommend a
specific binarization approach for solving the problem. Instead, we recom-
mend studying different methods and not only one, as did most works in the
field when adapting an algorithm to the discrete scope.

We appreciably increase the BCSO performance after selecting an ade-
quate binarization approach for each instance. However, we cannot recom-
mend this algorithm for solving the SCP, due to it is far from other current
state of-the-art techniques in terms of performance.

The main and specific goals of this thesis work were successfully achieved.
Moreover, it should be mentioned that the following papers based on this the-
sis work were published: "A Binary Cat Swarm Optimization Algorithm for
the Non-Unicost Set Covering Problem" was published in the Mathematical
Problems in Engineering Journal [26]; "Binary Cat Swarm Optimization for
the Set Covering Problem" was published in the 2015 10th Iberian Confer-
enceon Information Systemsand Technologies, CISTI 2015 [24]; "Solving the
Set Covering Problem with Binary Cat Swarm Optimization" was published
in 6th International Conference, ICSI 2015 [25]; and finally was published
"Cat Swarm Optimization with Different Transfer Functions for Solving Set
Covering Problems" in Computational Science and Its Applications, [CCSA
2016 [39].

For future work, there are different directions that researchers may take,
some of them are the follows: Use a parameter tuning technique to find the
appropriated values to help improve results, the use of Autonomous Search
could help the algorithm to be able to self-tune the performance of the Binary
Cat Swarm Optimization. Moreover, find an ideally standard configuration
for the set covering type problems. Finally, it would be interesting to in-
vestigate the impact of binarization techniques on other binary algorithms
solving different problems.
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11 Appendix

11.1 Instance Result Tables

In this study we used 65 standard benchmark problems from the OR-Library.
These intances were randomly generated non-unicost and have been widely
used in literature. Moreover, we used eight transfer functions and five dis-
cretization techniques.

The following eight tables contain the resume results of the executed
tests. The column Med reports the median statistics of the results, the
Max and Min columns report the maximun and the minimum cost of the
best solutions obtained in 30 runs respectively.
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med

med

med

193.0
168.0
183.0
184.0
184.5
73.0

67.0

67.0
61.0

65.0
61.0

61.0

434.0
515.0
536.0
497.0
514.0
560.0
434.0
503.0
661.0
517.0
258.0
306.0
230.0
245.0
216.0
213.0
295.0
288.0
280.0
271.0
144.0

148.0

133.0
166.0

61.0

440.0
534.0
554.0
524.0
526.5
564.0
437.5
522.0
676.0
527.5
262.0
315.0
232.5
245.0
219.0
226.0
307.0
307.5
281.0
276.0
148.0
150.0
153.0
135.0
170.0
274.0
265.5
243.5
247.0
239.0
74.0
85.0
83.0

444.0
529.0
554.0
526.0
526.0
565.0
437.0
517.5
675.5
525.0
262.0
316.0
232.0
246.0
219.0
226.5
306.0
307.0
281.0
275.0
147.0
150.0
153.0
135.0
168.5
276.0
265.0
242.0

16.0
194.0
167.0
183.0
184.0
185.0

73.0

67.0

69.0

67.0

61.0

16.0
195.0
169.0
183.0
185.0
186.0

73.0

67.0

69.0

68.0

61.0

16.0
189.0
165.0
179.0
181.0
181.0

71.0

67.0

69.0

66.0

61.0

441.0
534.0
558.0
509.0
526.0
569.0
438.5
516
676.
526.5
262.0
314.5
232.0
245.5
221.0
226.0
305.0
307.5
281.0
277.0
147.0
150.0
153.0
135.0
170.5
276.0
265.0
244.0
247.0
239.0
74.0
85.5
83.0
84.0
73.0
235.0
231.0
264.5
239.0
232.0

o

T b

16.0
194.5
167.0
182.5
184.0
184.0

73.0

67.0

69.0

67.0

61.0

234.0

244.0

237.0
70.0
80.0
80.0

Table 9:

with all discretization functions

39



D,

max

med

med

med

151.5

456.0
557.0
580.0
537.0
539.0
592.0
450.0
551.0
700.0
551.0
272.0
329.0
243.0
247.0
224.0
235.0
317.0
324.0
281.0
283.0
159.0
150.0
155.0
137.0
172.0
281.0
269.0
253.0
250.0
240.0
78.0
88.0
86.0

66.0
61.0

61.0

61.0

439.0
525.0
555.0
499.0
524.0
560.0
435.0
503.0
673.0
527.0
262.0
311.0
231.0
245.0
218.0
227.0
300.0
306.0
280.0
274.0
148.0
146.0
151.0
134.0
171.0
274.0
263.0
244.0
241.0
237.0
72.0
84.0

16.0
192.0
166.0
182.0
178.0
183.0
70.0
67.0
69.0
67.0
61.0

457.0
539.0
557.0
511.0
527.0
567.0
440.5
518.5
681.5
527.0
262.5
3175
232.5
245.0
220.5
226.0
304.5
306.0
281.0
275.5
146.0
150.0
152.5
134.5
169.5
276.0
265.0
244.5
244.0
239.0
75.0
83.0
83.0

61.0

440.0
535.5
552.0
513.0
526.0
564.5
439.5
522.0
676.0
525.0
262.0
314.5
232.0
245.5

61.0

441.0
530.0
557.0
509.5
523.5
566.0
441.0
503.0
680.5
530.0
263.0
313.0
232.0
245.0
221.0
225.0
306.5
308.5
280.0
277.0
147.5
150.0
152.0
135.0
171.0
277.0
265.0
2425
244.0
239.0
75.5
85.0
84.0
84.0
73.0
235.0
229.5
267.0
240.0
233.0

16.0
195.0
167.5
183.0
184.0
184.5

73.0

67.0

69.0

67.0

61.0

Table 10: Ss

with all discretization functions
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Ss

D3

Ds

med

med

max

152.5

16.0
190.0
165.0
182.0
178.0
183.0

69.0

67.0

69.0

67.0

61.0

537.5
272.0
323.0
242.0
247.0
223.0
237.0
320.5
3225
283.0
279.5
153.5
155.0
155.0
136.0
171.0
281.0
268.0
250.0
249.0
239.0
78.0
88.0
85.0
85.0

16.0
194.0
167.0
182.0
184.0
185.0
73.0
67.0
69.0
67.0
61.0

61.0

446.0
522.0
551.0
515.0
528.0
560.0
434.0
503.0
668.0
520.0
262.0
311.0
231.0
244.0
218.0
226.0
308.0
306.0
280.0
276.0
146.0
146.0
155.0
134.0
167.0
274.0
264.0
242.0
241.0
237.0
73.0
85.0
83.0
84.0
73.0
235.0
227.0
261.0
234.0
228.0

69.0
79.0
63.0
64.0
30.0
34.0
32.0
33.0
30.0
17.0
18.0
17.0
16.0
16.0
192.0
166.0
182.0
178.0
183.0
70.0
67.0
69.0
66.0
61.0

457.0
538.0
556.5
507.0
527.0
569.0
439.5
503.0
682.0
525.5
263.0
314.5
232.0
245.0
221.0
226.0
302.5
307.0
281.0
276.0
149.0
150.0
152.5
135.0
171.0
274.0
265.0
243.5
247.0
239.0
74.0
85.5
83.0

471.0
569.0
574.0
534.0
537.0
587.0
450.0
554.0
694.0
543.0
272.0
323.0
244.0
249.0
224.0
237.0
317.0
315.0
281.0
281.0
157.0
150.0
159.0
137.0
172.0
280.0
268.0
253.0
250.0
241.0
78.0
88.0
86.0

61.0

61.0

440.0
538.5
556.0
513.0
523.5
569.5
442.0
522.0
675.0
525.0
262.0
313.0
232.0
246.0
221.0
226.0
305.0
307.0
281.0
275.5
146.0
150.0
152.0
135.0
170.0
277.0
265.0
244.0
244.0
239.0
75.0
85.0
82.0
84.0
73.0
235.0
231.0
264.0
238.5
232.0

16.0
194.0
167.5
183.0
184.0
184.5

73.0

67.0

69.0

67.0

61.0

456.0
560.0
578.0
541.0
538.0
591.0
449.0
537.0
692.0
550.0
272.0
322.0
242.0
248.0
224.0
227.0
318.0
314.0
287.0
282.0
156.0
154.0
159.0
137.0
172.0
281.0
269.0
251.0
249.0
240.0
78.0
88.0
85.0

Table 11: Sg

with all discretization functions
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Ds

med

med

max

66.0
61.0

320.0
3185
282.0
279.5
154.0
155.0
155.0
136.0
171.0
281.0
268.0
249.5
249.0
239.0
77.0
87.0
85.0

16.0
195.0
167.0
182.5
184.0
184.0
73.0
67.0
69.0
67.0
61.0

61.0

61.0

444.0
536.5
556.5
508.5
526.0
564.5
437.0
522.0
676.0
527.0
262.0
314.5
232.0
245.0
221.0
226.0
306.5
306.0
281.0
274.0
149.0
150.0
154.0
135.0
171.0
276.0
265.0
245.0
247.0
239.0
74.0
85.0
83.0

16.0
194.0
167.0
182.0
184.0
185.0

72.0

67.0

69.0

67.0

61.0

444.5
530.0
564.0
510.5
523.5
564.5

61.0

61.0

461.0
557.0
581.0
541.0
538.0
581.0
446.0
551.0
689.0
542.0
264.0
324.0
244.0
249.0
224.0
227.0
320.0
317.0
289.0
281.0
152.0
151.0
162.0
138.0
172.0
280.0
269.0
254.0
249.0
240.0
78.0
88.0
86.0

Table 12: Sy

with all discretization functions
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D,

Do

o}
o

max

med

med

g
%

194.0
167.0
183.0
184.0
185.0
72.0

67.0

67.0
61.0

450.0
567.0
586.0
541.0
538.0
597.0
450.0
554.0
691.0
544.0
264.0
323.0
242.0
248.0
224.0
243.0
317.0
325.0
281.0
281.0
159.0
150.0
162.0
138.0
172.0
278.0
268.0
254.0
249.0
240.0
78.0
88.0
85.0

61.0

61.0

444.0
5315
557.0
5125
526.0
565.0
440.0
522.0
678.5
527.0
262.0
314.5
232.0
246.0
219.0
226.0
305.5
310.0
281.0
277.0
148.0
150.0
151.5
135.0
171.0
274.0
265.0
241.5
247.0
239.0
74.0
85.0
83.5

61.0

458.0
563.0
574.0
535.0
539.0
587.0
449.0
553.0
693.0
545.0
270.0
324.0
243.0
249.0
224.0
235.0
323.0
320.0
287.0
281.0
153.0
150.0
159.0
138.0
172.0
279.0
268.0
253.0
249.0
240.0
77.0
88.0
86.0

61.0

432.0 | 440.0
516.0 | 534.0
535.0 | 555.5
495.0 | 511.5
516.0 | 526.5
560.0 | 570.0
434.0 | 437.0
503.0 | 522.0
660.0 | 677.0
518.0 | 527.0
257.0 | 262.0
309.0 | 316.0
229.0 | 232.0
242.0 | 2455
216.0 | 221.0
217.0 | 224.0
293.0 | 307.0
294.0 | 307.5
280.0 | 281.0
271.0 | 276.0
143.0 | 147.0
150.0 | 150.0
149.0 | 153.0
133.0 | 135.0
164.0 | 169.5

61.0 | 61.0

61.0

442.0
529.0
554.0
521.5
526.0
568.0
437.0
522.0
675.5
520.0
263.0
313.0
232.0
245.0
221.0
226.0
303.0
305.5
281.0
276.5
146.0
150.0
152.0
135.0
171.0
276.0
265.0
245.0
244.0

16.0
194.5
167.0
182.0
183.5
1845

73.0

67.0

69.0

67.0

61.0

65.0
61.0

235.0
265.0

240.0
232.0

61.0

mc:!r.—xmc_w..‘
Ol 00 = W =1 Ot Ot
GEEIXG &
AP A A

'S

Table 13:

with all

discretization functions
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Do

Ds

med

med

med

max

152.5

61.0

441.0
534.0
554.0
5115
527.0
565.0
440.5
522.0
675.0
527.0
263.0
314.0
233.0
246.0
221.0
226.0
304.5
305.0
281.0
274.5
145.0
150.0
152.0
135.0
170.0
276.0
265.0
2425
247.0
239.0
74.0
84.5
83.0

16.0
194.0
167.0
183.0
184.0
184.5
73.0
67.0
69.0
67.0
61.0

454.0
559.0
580.0
537.0
539.0
597.0
449.0
554.0
685.0
546.0
272.0
324.0
243.0
248.0
224.0
239.0
320.0
315.0
281.0
281.0
152.0
153.0
155.0
138.0
172.0
281.0
269.0
253.0
253.0
240.0
78.0
88.0
86.0

61.0

434.0
519.0
523.0
496.0
516.0
560.0
434.0
494.0
665.0
518.0
257.0
309.0
229.0
242.0
216.0
217.0
294.0
294.0
281.0
271.0
143.0
148.0
149.0
133.0
165.0

16.0
193.0
166.0
181.0
179.0
182.0
70.0
67.0
69.0
67.0
61.0

440.0
536.0
552.0
509.0
526.5
564.0
438.5
5115
678.0
527.0
262.0
315.0
2315
245.0
219.0
226.0
305.0
307.0
281.0
276.0
146.0
150.0
153.0
135.0
171.0
276.0
265.0
244.0
245.5
239.0
74.0
85.0
83.0

16.0
194.0
168.0
183.0
184.0
185.0

73.0

67.0

69.0

67.0

61.0

16.0
194.5
168.0
182.5
184.0
184.0

73.0

67.0

69.0

67.0

61.0

16.0
195.0
169.0
183.0
185.0
186.0

73.0

67.0

69.0

68.0

61.0

440.0
532.0
558.5
511.0
528.0
563.0
436.0
522.0
676.5
527.0
262.0
312.5
232.0
245.0
221.0
226.0
308.0
307.0
281.0
276.0
148.0
150.0
153.0
135.0
170.5
275.0
265.0
2425
244.5
239.0
74.0
85.0
83.0

61.0

456.0
555.0
581.0
538.0
538.0
591.0
447.0
553.0
709.0
546.0
272.0
324.0
242.0
247.0
224.0
239.0
328.0
325.0
290.0
283.0
158.0
150.0
155.0
136.0
172.0
282.0
268.0
254.0
250.0
240.0
78.0
87.0
86.0

231.0

256.0
234.0
227.0

Table 14: V5

with all

discretization functions
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Do

med

med

65.5

194.5
168.0
182.5
184.0
184.0
73.0

67.0

67.0
61.0

61.0

444.5
537.0
561.0
509.5
526.0
566.0
435.5
503.0
676.5
524.0
262.0
314.0
232.0
245.0
221.0
226.0
306.5
307.0
281.0
276.0
146.0
150.0
152.0
135.0
169.5
276.5
265.0
241.5
244.0
239.0
74.5
85.0
83.0

61.0

466.0
554.0
581.0
537.0
539.0
589.0
451.0
554.0
695.0
541.0
269.0
323.0
243.0
248.0
224.0
239.0
316.0
314.0
284.0
281.0
154.0
150.0
158.0
137.0
172.0
281.0
269.0
257.0
249.0
240.0
78.0
88.0
85.0

61.0

16.0
193.0
165.0
182.0
179.0
183.0
70.0
67.0
69.0
67.0
61.0

442.0
534.5
556.0
5115
525.0
565.0
442.0
507.5
675.5
526.0
262.0
313.5
232.0
245.0
219.5
226.0
306.0
308.0
281.0
276.0
146.5
150.0
151.5
135.0
171.0
276.0
265.0
243.5
245.5
239.0
75.0
84.0
83.0

432.0
518.0
531.0
497.0
514.0
560.0
434.0
494.0
658.0
518.0
257.0
306.0
229.0
242.0
216.0
215.0
297.0
293.0
280.0
271.0
143.0
150.0
148.0
133.0
165.0

16.0
194.0
167.0
183.0
184.0
185.0

73.0

67.0

69.0

67.0

61.0

65.0
61.0

61.0

235.0
225.0
255.0
229.0
222.0

Table 15: V3

with all

discretization functions
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Do

med

med

med

442.0
527.5
554.5
511.0
526.5
566.0
440.5
522.0
676.0
524.0
263.0
314.0
232.0
245.0
220.5
226.0
304.0
307.0
281.0
276.0
146.0
150.0
152.0
135.0
170.0
276.0
265.0
244.5
244.0
239.0
75.0
84.0
82.5
84.0
73.0
235.0
233.5
266.5
239.0
232.0

65.0

195.0
167.0
183.0
183.5
184.5
73.0

67.0

67.0
61.0

61.0

457.0
541.0
557.0
513.0
527.0
569.0
441.5
522.0
676.0
527.5
262.0
313.0
2325
245.5
221.0
226.0
302.5
310.0
281.0
276.0
149.0
150.0
151.5
135.0
170.0
275.0
265.0
246.0
244.0
239.0
74.0
85.0
83.0

61.0

468.0
567.0
574.0
541.0
539.0
589.0
450.0
553.0
689.0
543.0
264.0
325.0
244.0
248.0
224.0
239.0
317.0
315.0
281.0
283.0
155.0
151.0
155.0
138.0
172.0
280.0
269.0
256.0
251.0
240.0
77.0
89.0
85.0

184.0
184.0
187.0
73.0
67.0
69.0
67.0
61.0

440.0
515.0
531.0
498.0
517.0
560.0
434.0
503.0
665.0
518.0
258.0
306.0
229.0
245.0
216.0
217.0
294.0
295.0
280.0
271.0
143.0
150.0
148.0
133.0
164.0

61.0

440.0
539.0
554.5
5115
528.0
567.0
440.5
522.0
674.0
527.5
262.0
314.0
233.0
245.0
221.0
225.5
303.0
306.5
281.0
275.0
148.0
150.0
152.0
135.0
168.5
274.5
265.0
246.0
246.0
239.0
74.0
84.5
83.0

16.0
194.5
168.0
183.0
184.0
185.0

72.0

67.0

69.0

67.0

61.0

16.0
194.0
168.0
183.0
184.0
185.5

73.0

67.0

69.0

67.0

61.0

66.0
61.0

265.5
245.5

16.0
194.0
168.0
183.0
184.0
184.5

73.0

67.0

69.0

67.0

61.0

Table 16: V4

with all

discretization functions
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